CSE 5311 Homework #2 Solutions

1 MST Using Warshall’s Algorithm

The results are as follows:

0.14
0.21
0.12
0.11
0.25
0.21
0.23
0.19

CO Oy O UL i W —
O© O© IO O i =N

2 Problem 24.2-4, p. 510

When the edge weights are integers in the range 1 to V|, then line 4 (p. 505) of Kruskal’s
algorithm can be done using the counting sort in O(FE) time but the disjoint-set forest
operations still take O(E 1g E) time. So the total running time remains O(FEIg E).

When the edge weights are integers in the range 1 to W for some constant W, it
doesn’t change anything. Running time remains O(Elg F).

3 Problem 24.2-5, p. 510

If the edge weights are integers in the range 1 to W and W is a very small constant (say
3, i.e., all edge weights are either 1, 2 or 3), then the priority queue can be maintained
as a doubly-linked list with the operation Extract-Min taking O(1) time and then the
running time or Prim’s algorithm becomes O(|V| + |E)).

If the edge weights are integers in the range 1 to |V| it doesn’t really change anything
except when |V| is very small the the W chosen above.

4 PROBLEM 27.2-2, P. 599 2

4 Problem 27.2-2, p. 599

Figure 1 gives the results using Edmonds-Karp. Augmenting paths are denoted by dashed
lines.

Residual Network Flow Network

Maximum Flow = 23

Figure 1: Edmonds-Karp Solution

5 LATTICE FOR STABLE MARRIAGE PROBLEM 3

—
o

16
13
12
10
4
14
9
20
7
4

B R W WO OOOoOOD
LW O N &~ DN WD = Ot

Table 1: Input File for preflowPush.c

For the preflow-push results you may use preflowPush.c located in the public direc-
tory (/public/cse/5311) on omega. Table 1 gives an input file which encodes the figure
from the book into the proper format for that program. The source is assigned a node
number of 0 and the sink a node number of 5. The other node numbers correspond to
the numbers in the diagram.

5 Lattice for Stable Marriage Problem

Figure 2 shows the male-oriented lattice.

6 Problem 23-1, p. 495

a. Undirected Graph with breadth-first search (BFS):

e Because of the properties of BFS—the way nodes are visited in BFS, there
can be no back and forward edges. The edges that constitute as back and
forward edges in depth-first search (DFS), have already been visited through
the parent and are tree edges in a BFS of an undirected graph.

e Again, because of the way nodes are visited in a BFS, for each tree edge (u, v),
d[u] has to be equal to d[u] + 1.

e Two kinds of situations may arise where there can be cross edges. These are
depicted in figure 3. In one case d[v] = d[u] and in the other case d[v] = d[u]+1.

b. Directed Graph with BFS:

6 PROBLEM 23-1, P. 495 4

Figure 2: Stable-Marriage Lattice
d[v] = d[u] d[v] = dfu] + 1

Figure 3: Undirected Graph Using BFS

e Because the graph is directed, it can now have back edges. However, there
are still no forward edges, because of the way nodes are visited in a BFS. The
forward edges of a DFS are tree edges in a BF'S already visited by the parent
node.

e Same as a) 2 above.

7 MAX FLOW USING PREFLOW-PUSH 5

e Same as a) 2 above. So, d[v] < d[u] + 1.

e Two examples of a back edge in a BFS of a directed graph are given in figure 4.
In one case we have d[v] < d[u] and in the other case we have 0 < d[v] < d|u].

dlv]>0

Figure 4: Directed Graph Using BFS

7 Max Flow Using Preflow-Push

The following output was obtain by using preflowPush.c located in the public directory
(/public/cse/5311) on omega. The source is assigned a node number of 0 and the sink
a node number of 3. The nodes labelled A and B are given labels of 1 and 2, respectively.

debug: after initialization
i height excess

0 4 0
1 0 10
2 0 50
3 0 0
i j capacity ...flow
0o 1 10 10
0 2 50 50
1 3 100 0
2 3 20 0

debug: (1,0) changed minHeight to 4
debug: (1,3) changed minHeight to O
debug: 1lifting 1 from 0 to 1
debug: (2,0) changed minHeight to 4
debug: (2,3) changed minHeight to 0
debug: 1lifting 2 from O to 1

7 MAX FLOW USING PREFLOW-PUSH

debug:
i height excess
0 4 0
1 1 10
2 1 50
3 0 0
i j capacity ...flow
0o 1 10 10
0o 2 50 50
1 3 100 0
2 3 20 0

debug: pushing 10 units from 1 to 3
debug: pushing 20 units from 2 to 3

debug:
i height excess
0 4 0
1 1 0
2 1 30
3 0 30
i j capacity ...flow
0o 1 10 10
0o 2 50 50
1 3 100 10
2 3 20 20

debug: (2,0) changed minHeight to 4
debug: 1lifting 2 from 1 to 5

debug:
i height excess
0 4 0
1 1 0
2 5 30
3 0 30
i j capacity ...flow
0o 1 10 10
0 2 50 50
1 3 100 10
2 3 20 20
debug: pushing 30 units from 2 to O
debug:

i height excess
0 4 30

8 KNP FAIL LINKS 7

1 1 0
2 5 0
3 0 30
i j capacity ...flow
0o 1 10 10
0 2 50 20
1 3 100 10
2 3 20 20
debug:
i height excess
0 4 30
1 1 0
2 5 0
3 0 30
i j capacity ...flow
0 1 10 10
0 2 50 20
1 3 100 10
2 3 20 20

final result:
i height excess

0 4 30
1 1 0
2 5 0
3 0 30
i j capacity ...flow
0 1 10 10
0 2 50 20
1 3 100 10
2 3 20 20

8 KNP Fail Links

The Knuth-Morris-Pratt fails links (both methods) for the search pattern abracadabra
are given in the table below:

a b r ac ad a b r a
Method1 0 1 1 1 2 1 2 1 2 3 4
Method2 0 1 1 0 2 0 2 0 1 1 0

9 COMPLEXITY OF RECURSIVE MATRIX MULTIPLICATION 8

9 Complexity of Recursive Matrix Multiplication

Suppose that matrix multiplication is implemented in a recursive decomposition fashion
like Strassen’s methods. However, instead of using his equations we use the everyday
ones, i.e., Cj; = Ay * Byj + Ajp ¥ Byj. What is the asymptotic complexity, based on the
number of scalar multiplies and additions/subtractions?

For C'= AB, we divide each of A, B,C into four § x 2 matrices. Then,

-6

Then according to: Cj; = A1 * By + Aip x By we have:

r = ae—+ bf
s = ag+ bh
t = ce+df
u = cg+dh

Each of these four equations specifies two multiplications of % x ¢ and addition of
5 X 5 products. Then the number of multiplies is 8 and the number of additions is 4.

1. Let M (k) be the # of scale multiplies for n = 2. Then,

M©O) = 1

M(1) = 8

M) = 8M(k-1)
M(n) = n’

PO) = 0

P(1) = 4

P(k) = 8P(k—1)+n
P(n) = 8P(n/2)+n?
P(n) = ©(n%)

So, the asymptotic complexity is ©(n?).

