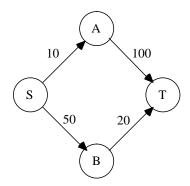

CSE 5311: Homework 2


1. Find the MST of the following graph using the method based on Warshall's algorithm:

- 2. 24.2-4
- 3. 24.2-5
- 4. 27.2-2, also solve using preflow-push
- 5. Determine the lattice of solutions for the following stable marriage problem, given the following precedence lists ordered from most favored to least favored:

Men			Women				
1	2	3	4	1	2	3	4
1	2	3	4	4	3	2	1
2	1	4	3	3	4	1	2
3	4	1	2	2	1	4	3
4	3	2	1	1	2	3	4

- 6. 23-1
- 7. Find a maximum flow in the following network using the preflow-push algorithm.

- 8. Give the Knuth-Morris-Pratt fail links (both methods) for the search pattern abracadabra.
- 9. Suppose that matrix multiplication is implemented in a recursive, decomposition fashion like Strassen's method. However, instead of using his equations we use the everyday ones, i.e. $c_{ij} = a_{i1} * b_{1j} + a_{i2} * b_{2j}$ What is the asymptotic complexity, based on the number of scalar multiplies and additions/subtractions?