
CSE 5311 Lab Assignment 1

Due July 12, 2004

Goals:

1. Understanding (and evaluation) of self-organizing list techniques.

2. Understanding of Markov chains and iterative methods for determining stationary distributions.

3. Understanding of ranking and unranking for permutations.

Requirements:

1. Write a C or C++ program to evaluate the move-to-front and transpose techniques for lists with 2-8 elements under
uniform and Zipf distributions. The input is a single line with the following values:

a. n - the number of list elements.
b. strategy - 0 = move-to-front, 1 = transpose.

c. distribution of request probabilities for the n elements - 0 = uniform

€

Pi = 1n() , 1 = Zipf

€

Pi−1 = 1
iHn

 .

d. iterations - maximum number of iterations for the iterative solver.
e. epsilon - threshold for terminating the iterative solver. If every value in the stationary distribution changes by no

more than epsilon in a given iteration, the iterative solver should terminate. (1e-8 is typical assuming doubles are
used.)

Every case should have the following outputs:

a. The actual number of iterations used by the iterative solver.
b. The overall expected number of probes.
c. The expected number of probes for each element.
d. If n ≤ 4, then provide the stationary probability for each list permutation.

2. E-mail your program to ozcan@cse.uta.edu before 2:45 pm on July 12.

Getting Started:

1. Review Notes 4, especially the Markov models for n = 2 and n = 3 for move-to-front.

2. When implementing code for the systems of equations, it is useful to have a bijection between permutations of n elements
and the values 0 . . . n! - 1. Mapping from a permutation to an integer is known as ranking, while the inverse mapping is
known as unranking. There are many resources available for this concept, including pages 29-35 of
http://reptar.uta.edu/NOTES4351/02notes.pdf that gives lexicographic ranking/unranking code. Be
sure to give credit for any code that you use.

3. Notes 4 cites the usual approach for solving for the probability of the list being in each configuration (known as the
stationary distribution) by replacing one of the equations with 1 = sum of all probabilities for the configurations and then
applying a general method such as Gaussian elimination, LU decomposition, or Householder reduction.

Since Markov models are usually sparse, iterative methods are convenient and fast:

a. The system of equations is constructed for the particular technique, e.g. move-to-front or transpose, and references
the ranks of the configurations that are possible predecessors for each configuration.

b. Conceptually, there are two tables of n! probabilities each. One is the old values from the previous iteration and the
other is the new values from the current iteration. During each iteration, each equation is evaluated exactly once.

c. For performing the first iteration, the old values are set to arbitrary probabilities that sum to exactly 1.

This implementation may be viewed as being a row-oriented or predecessor-oriented iterative method. It is also possible
to have a column-oriented or successor-oriented iterative method that substitutes an old value in all relevant equations at
the same time.

4. Tables may be preallocated for the maximum value of n (8).

5. The following example demonstrates the convergence. Such tracing is useful for debugging, but should be disabled in the
version that you submit.

Enter n strategy (MTF/trans) dist (uni/Zipf) iterations epsilon
3 1 1 10 1e-2
Transpose
Zipf
By perms:
P012<-p0*P012+p0*P102+p1*P021
P021<-p0*P021+p0*P201+p2*P012
P102<-p1*P102+p1*P012+p0*P120
P120<-p1*P120+p1*P210+p2*P102
P201<-p2*P201+p2*P021+p0*P210
P210<-p2*P210+p2*P120+p1*P201
By ranks:
P0<-p0*P0+p0*P2+p1*P1
P1<-p0*P1+p0*P4+p2*P0
P2<-p1*P2+p1*P0+p0*P3
P3<-p1*P3+p1*P5+p2*P2
P4<-p2*P4+p2*P1+p0*P5
P5<-p2*P5+p2*P3+p1*P4
Start of iteration 0
012: 0.166667
021: 0.166667
102: 0.166667
120: 0.166667
201: 0.166667
210: 0.166667
Start of iteration 1
012: 0.227273
021: 0.212121
102: 0.181818
120: 0.121212
201: 0.151515
210: 0.106061

Start of iteration 2
012: 0.280992
021: 0.239669
102: 0.177686
120: 0.095041
201: 0.123967
210: 0.082645
Start of iteration 3
012: 0.315552
021: 0.249437
102: 0.176935
120: 0.080766
201: 0.111195
210: 0.066116
Start of iteration 4
012: 0.336657
021: 0.254081
102: 0.178369
120: 0.072229
201: 0.101632
210: 0.057032
Start of iteration 5
012: 0.350218
021: 0.255236
102: 0.179859
120: 0.067684
201: 0.095783
210: 0.051220

Used 6 iterations
0.358743: 012
0.255141: 021
0.181485: 102
0.065130: 120
0.091760: 201
0.047742: 210
Expected probes is 1.826930
Element 0 expected probes 1.498987
Element 1 expected probes 2.100286
Element 2 expected probes 2.400727

