CSE 5311 Lab Assignment 1

Due July 10, 2006

Goals:
1. Review of binary heaps.
2. Understanding of d-heaps.
Requirements:
1. Write (and test) a C/C++ program that performs the following computation for various branching (d) values:
a. Generate two million d-heap elements with ID numbers from 0 . . . 1,999,999 and random priorities from O . . .
20,000.
b. Build a d-heap (min-heap ordering).
c. Insert two million additional elements into your d-heap (ID numbers from 2,000,000 . . . 3,999,999).
d. Randomly change the priority of each of the four million d-heap elements.
e. Extract each d-heap element (ascending priority order).
Your program must compile and execute on OMEGA. There should be a comment near the beginning of your code that
indicates how to compile on OMEGA. Your debugging trace should be disable in the version you submit.
2. Prepare a brief report summarizing the CPU performance of your code for various d values. Your report may be a text,
html, PDF, or MS Word file.
3. Email your code and report (as attachments) to pradipde@cse.uta.edu before 10:15 am on July 10. The subject

should include your name as recorded by the University.

Getting Started:

1.

Either array element O or array element 1 may be used as the root of your tree. Regardless of your choice, you should first
work out the details of the mapping.

Besides keeping the priorities in your min-heap, it is important to simulate the maintenance of the data that accompanies
each priority. Each heap item will have a ID number from 0 . . . 3,999,999 that will move within the heap tree along
with its priority. There will also be a separate table that will allow finding the heap item for a particular ID number. This
separate table is useful when the priority of an item changes.

Priorities should be values from 0 . . . 20,000. Priorities may either increase or decrease.

You should initially run your program with a variety of values for d. After observing the values that give good results,
the version you submit should use five of these values.

Using a compiler code optimization option (=02 for C) is worthwhile.

Code for binary heaps, including the indicated test cases, are available from the course web page.



