
CSE 5311 Lab Assignment 1

Due July 6, 2011

Goals:

1. Review of binary search trees.

2. Understanding of randomized search trees (treaps).

Requirements:

1. Write (and test) a C/C++ program that uses a treap to implement the sweepline algorithm for 2-d closest pairs (Notes 17)

in expected O(n log n) time. Your program must compile and execute on at least one of omega.uta.edu or Visual
Studio.

 The input (stdin) to your program will a single line with the number of points (n) followed by the n points as pairs of

integer coordinates, one pair per line. Do not prompt for an input file name! All coordinates will be in the range
 -16000 . . . 16000, inclusive.

 Besides outputting the coordinates of the two closest points, your program should provide performance metrics such as:

maximum BST size, CPU time, and the number of rotations.

2. Email your code (as attachments) to miao.zhang@mavs.uta.edu before 3:15 pm on July 6. The subject should

include your name as recorded by the University.

Getting Started:

1. You may borrow from the code at http://www.cs.fiu.edu/~weiss (or other places - besides each other), but be

sure to give appropriate credit in your comments.

2. n will not exceed 100,000,000.

3. Be careful with your randomly generated priorities.

4. To help assure the correctness of your code, it is convenient to compare results with the obvious

€

Ο n2

 method for

€

n ≤ 40,000.

5. The range restriction for coordinates allows this assignment to be done without floating-point arithmetic (e.g. sqrt() is

not needed) by comparing squares of distances rather than the usual

€

Δx2 + Δy2 . short integers can be used, but
are not required.

6. Compiling with -O3 optimizations can be helpful when working with large n.

7. Even though Notes 17 describes the processing in terms of predecessor and sucessor navigation, it is convenient to code

the attempt to improve δ by an efficient recursive range search (that avoids unnecessary y-coordinate comparisons) before
inserting point k + 1.

8. The preprocessing sort may be done using the library qsort().

