
CSE 5311 Lab Assignment 1

Due July 9, 2013

Goals:

1. Review of binary search trees.

2. Understanding of randomized search trees (treaps).

Requirements:

1. Write (and test) a C/C++ program that uses a treap to implement the dynamic programming algorithm for finding a

heaviest strictly increasing subsequence in expected

€

Ο n logn() time. Your program must compile and execute on at
least one of OMEGA or Visual Studio.

 The input to your program will be the same as for the provided program HISstrict2.c (which runs in

€

Ο n2

 time

due to its limited data structures). The first line of the input gives n, the number of (value, weight) pairs appearing on
the next n lines. Each value will be non-negative and each weight will be positive.

2. Email your code (as attachments) to derekwwhite@mavs.uta.edu before 5:45 pm on July 9. The subject should

include your name as recorded by the University.

Getting Started:

1. You may borrow from the code at http://www.cs.fiu.edu/~weiss (or other places - besides each other), but be

sure to give appropriate credit in your comments.

2. n will not exceed 2,000,000.

3. Be careful with the randomly generated priorities.

4. After processing each pair, all values in the treap should be unique.

 For each value, the treap will store the total weight (tWeight) for the heaviest strictly increasing sequence ending

with this value, along with the index of the value in the input sequence. If valuei < valuej and tWeighti ≥
tWeightj, then pair j should be deleted from the treap. (In other words, an inorder traversal on the treap will be in
ascending order by both value and tWeight.)

 Bottom line: the inefficient “m” tables in HISstrict2.c are being replaced with an efficient treap.

5. Your output will be similar to HISstrict2.c, including a trace of the number of treap elements.

// Heaviest strictly increasing subsequence, 06/08 BPW
// Based on G. Jacobsen and K-P Vo, Heaviest Increasing/Common Subsequence
// Problems and
// D. Gries, The Science of Programming, p. 262
// which is based on M. Fredman, Discrete Mathematics 11 (1975),
// 29-35

// This version uses low- and high-valued sentinels to simplify.

#include <stdio.h>
#include <stdlib.h>

#define MAXN (1000)

 2
int b[MAXN]; // Input sequence values
int bWt[MAXN]; // bWt[i] is weight for b[i]
int bPred[MAXN+1]; // Predecessor to b[i] in some IS
int bLength; // Number of entries for b, bWt, and bPred

int m[MAXN+1]; // m[i] is the smallest value for an IS with
int mWt[MAXN+1]; // total weight mWt[i]
int mLink[MAXN+1]; // The value j for the b[j] last used to set m[i] & mWt[i]
int mLength; // Number of entries in use for m, mWt, mLink

int seq[MAXN+1]; // Result sequence
int seqWt[MAXN+1]; // seqWt[i] is weight for seq[i]
int seqLength; // Number of entries for seq, seqWt, and seqLength

int findUnneeded(int start,int weight)
{ // Binary search for last mWt element <= weight
int low=start, // Returned subscript will be no smaller than start-1
 high=mLength-1,
 mid;

while (low<=high)
{
 mid=(low+high)/2;
 if (mWt[mid]<=weight)
 low=mid+1;
 else
 high=mid-1;
}
return high;
}

void mShift(int start,int weight)
// Shifts elements, from start thru mLength-1, of m, mWt, and mLink
// whose mWt is <= weight. This allows an insert at slot start.
{
int j,k;
// Find unneeded entries
j=findUnneeded(start,weight)+1;
if (j==start)
{ // All entries are needed, so shift right one slot to make room
 for (j=mLength-1;j>=start;j--)
 {
 m[j+1]=m[j];
 mWt[j+1]=mWt[j];
 mLink[j+1]=mLink[j];
 }
 mLength++;
}
else
{ // Shift left over unneeded entries
 for (k=start+1;j<mLength;j++,k++)
 {
 m[k]=m[j];
 mWt[k]=mWt[j];
 mLink[k]=mLink[j];
 }
 mLength=k;
}
}

 3
int findSupported(int x)
{
// Binary search to find supported element for seq value x.
// Returned subscript is for slot with value >= x and the
// previous slot is < x.
int mid,low,high;

low=0;
high=mLength-1;
//printf("start search\n");
while (low<=high)
{
 //printf("low %d high %d\n",low,high);
 mid=(low+high)/2;
 if (m[mid]<x)
 low=mid+1;
 else
 high=mid-1;
}
return low;
}

main()
{

int i,j,k,pos;

scanf("%d",&bLength);
for (i=0;i<bLength;i++)
 scanf("%d %d",&b[i],&bWt[i]);

// Initialize low- and high-valued sentinels
mLength=2;
m[0]=(-999999999);
mWt[0]=0;
mLink[0]=(-1);
m[1]=999999999;
mWt[1]=999999999;
mLink[1]=(-1);
for (i=0;i<bLength;i++)
{ // Binary search to find supported element
 pos=findSupported(b[i]);
 // m[pos-1] is supporting element
 if (m[pos]>b[i])
 { // Shift items, then use entry pos
 mShift(pos,mWt[pos-1]+bWt[i]);
 m[pos]=b[i];
 mWt[pos]=mWt[pos-1]+bWt[i];
 bPred[i]=mLink[pos-1];
 mLink[pos]=i;
 printf("1: b[%d]=%d has been inserted in m, mLength %d\n",
 i,b[i],mLength);
 }

 4
 else
 { // m[pos]==b[i]
 if (mWt[pos-1]+bWt[i]>mWt[pos])
 { // Can improve entry pos
 mWt[pos]=mWt[pos-1]+bWt[i];
 bPred[i]=mLink[pos-1];
 mLink[pos]=i;
 // Find unneeded entries
 j=findUnneeded(pos+1,mWt[pos])+1;
 if (j>pos+1)
 { // Shift left over unneeded entries
 for (k=pos+1;j<mLength;j++,k++)
 {
 m[k]=m[j];
 mWt[k]=mWt[j];
 mLink[k]=mLink[j];
 }
 mLength=k;
 }
 printf("2: b[%d]=%d has improved an entry of m, mLength %d\n",
 i,b[i],mLength);
 }
 else
 {
 bPred[i]=(-2);
 printf("3: b[%d]=%d has been ignored due to strictness\n",i,b[i]);
 }
 }
}
printf(" i b bWt bPred\n");
for (i=0;i<bLength;i++)
 printf("%5d %5d %5d %5d\n",i,b[i],bWt[i],bPred[i]);
printf(" i m mWt mLink\n");
for (i=0;i<mLength;i++)
 printf("%5d %5d %5d %5d\n",i,m[i],mWt[i],mLink[i]);
// Get result sequence
i=mLink[mLength-2]; // Ignore high-valued sentinel
seqLength=0;
while (i!=(-1))
{
 seqLength++;
 i=bPred[i];
}
i=mLink[mLength-2]; // Ignore high-valued sentinel
for (j=seqLength-1;j>=0;j--)
{
 seq[j]=b[i];
 seqWt[j]=bWt[i];
 i=bPred[i];
}
printf("HSIS (total weight %d):\n",mWt[mLength-2]);
for (i=0;i<seqLength;i++)
 printf("%4d %4d %4d\n",i,seq[i],seqWt[i]);
}

