CSE 5311 Lab Assignment 2

Due July 9, 2003

Goals:

1

2.

Review of binary heaps.

Understanding of d-heaps.

Requirements:

1.

Write (and test) a program that performs the following computation for various branching (d) values:

1. Generate two million d-heap elements with ID numbersfrom 0 . . . 1,999,999 and random prioritiesfrom 0. . . 20,000.
2. Build a d-heap (min-hesap ordering).

3. Insert two million additional elementsinto your d-heap (ID numbers from 2,000,000 . . . 3,999,999).

4. Randomly change the priority of each of the four million d-heap elements.

5. Extract each d-heap element (ascending priority order).

Y our program must compile and execute on OMEGA. There should be a comment near the beginning of your code that indicates
how to compile on OMEGA.. Y our debugging trace should be disabled in the version you submit.

Prepare a brief report summarizing the performance of your code for various d values. Y our report may be atext, html,
PostScript, PDF, or MS Word file.

Email your code and report (as attachments) to yxb4544@nega. ut a. edu before 3:00 pm on July 9. The subject should
include your name as recorded by the University.

Getting Started:

1.

5.

6.

Either array element O or array element 1 may be used as the root of your tree. Regardless of your choice, you should first work
out the details of the mapping.

Besides keeping the prioritiesin your min-heap. it isimportant to simulate the maintenance of the data that accompanies each
priority. Each heap item will have alD number from O . . . 3,999,999 that will move within the heap tree along with its prioriy.
There will also be a separate table that will allow finding the heap item for a particular ID number. This separate table is useful
when the priority of anitem changes.

Priorities should be valuesfrom 0 . . . 20,000. Priorities may either increase or decrease.

Y ou should initially run your program with avariety of valuesfor d. After observing the values that give good results, the version
you submit should use five of these values.

Using a compiler code optimization option (-O2 for C) will be worthwhile.

get rusage() may be used to capture CPU times for the various phases of your code:

#i ncl ude <sys/time. h>
#i ncl ude <sys/resource. h>

}:_Ioat CPUti me()

struct rusage rusage;

get rusage(RUSAGE_SELF, &r usage) ;

return rusage.ru_utinme.tv_sec+rusage.ru_utine.tv_usec/1000000. 0
+ rusage.ru_stime.tv_sec+rusage.ru_stine.tv_usec/1000000. O;

