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CSE 5311 Notes 1:  Mathematical Preliminaries

(Last updated 5/25/13 4:20 PM)

Chapter 1 - Algorithms & Computing


Relationship between complexity classes, e.g. 
[image: image1.wmf], 
[image: image2.wmf], 
[image: image3.wmf],
[image: image4.wmf], 
[image: image5.wmf], etc.

Chapter 2 - Getting Started


Loop Invariants


RAM Model



Assumed
Reality

Memory

Access

Arithmetic

Word size

Chapter 3 - Asymptotic Notation


f(n) = O(g(n)) ( g(n) bounds f(n) above (by a constant factor)


f(n) = (g(n)) ( g(n) bounds f(n) below (by a constant factor)


f(n) = (g(n)) ( f(n) = O(g(n)) and f(n) = (g(n))

Iterated Logarithms


logk n = (log n)k
log(k) n = log(log(k-1) n) = log log . . . log n    (log(1) n = log n)

lg* n = Count the times that you can punch a log key on your calculator before value is ( 1



Arises for algorithms that run in “practically” or “nearly” constant time.

Appendix A - Summations


Review:
Geometric Series (p. 1147)
Harmonic Series (p. 1147)




Approximation by integrals (p. 1154) 

Chapter 4 - Recurrences

Substitution Method - Review

1.
Guess the bound.

2.
Prove using (strong) math. induction.

Exercise:


[image: image6.wmf]
Try 
[image: image7.wmf] and confirm by math induction



[image: image8.wmf]
Improve bound to 
[image: image9.wmf] and confirm
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[image: image11.wmf] as lower bound:
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[image: image13.wmf] as lower bound:



[image: image14.wmf]
What’s going on . . .
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[image: image16.wmf]:
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[image: image18.wmf]:  [This was already proven.]
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Exercise:
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Recursion-Tree Method - Review and Prelude to Master Method


Convert to summation and then evaluate

Example:  Mergesort, p. 38  
[image: image27.wmf]  (case 2 for master method)

[image: image28.wmf]
Exercise:



[image: image29.wmf]
[image: image30.wmf]
Using definite geometric sum formula:



[image: image31.wmf]
(Case 1 of master method)

Exercise:  (case 3 of master method)



[image: image32.wmf]
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Using indefinite geometric sum formula:


[image: image34.wmf]
Using definite geometric sum formula:


[image: image35.wmf]
Master Method/Theorem (“new”) - CLRS 4.5



[image: image36.wmf]

a ( 1  b > 1

Three mutually exclusive cases (proof sketched in 4.6.1):

1.

[image: image37.wmf]

(leaves dominate)

2.

[image: image38.wmf]

(each level contributes equally)

3.

[image: image39.wmf]

(root dominates)


(Problem 4.6-3 shows that 
[image: image40.wmf] in 3. follows from the existence of 
[image: image41.wmf] and 
[image: image42.wmf].  By taking 
[image: image43.wmf] and the condition on f, 
[image: image44.wmf] may be established.  Last step is 
[image: image45.wmf].)

Example:



[image: image46.wmf]


a = 10   b = 10   f(n) = n.5 
[image: image47.wmf] = n

Case 1: 
n.5 = O(n1-(), 0 < ( ( 0.5





[image: image48.wmf]
Example:  (recursion tree given earlier - leaves dominate)



[image: image49.wmf]


a = 4   b = 2   f(n) = n   
[image: image50.wmf] = n2

Case 1: 
n = O(n2-(), 0 < ( ( 1





[image: image51.wmf]
Example:



[image: image52.wmf]


a = 9   b = 3   f(n) = 2n2 
[image: image53.wmf] = n2

Case 2: 
2n2 = (n2)





[image: image54.wmf]
Recursion Tree

[image: image55.wmf]


[image: image56.wmf]
Example:



[image: image57.wmf]


a = 2   b = 2   f(n) = n3   nlg 2 = n

Case 3: 
n3 = ((n1+(), 0 < ( ( 2





[image: image58.wmf]
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Example:



[image: image60.wmf]


a = 1   b = 2   f(n) = n/2   nlg 1 = n0 = 1


Case 3: 
n/2 = ((n0n(), 0 < ( ( 1





[image: image61.wmf]
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From CLRS, p. 95:



[image: image63.wmf]


a = 2   b = 2   f(n) = n lg n   nlg 2 = n1 = n



[image: image64.wmf], but 
[image: image65.wmf] for any 
[image: image66.wmf] . . .





[image: image67.wmf]


So master method (case 3) does not support 
[image: image68.wmf]

Using exercise 4.6-2 as a hint . . . (or a simple recursion tree with 
[image: image69.wmf])


Substitution method to show 
[image: image70.wmf]



[image: image71.wmf]
Probabilistic Analysis

Hiring Problem - Interview potential assistants, always hiring the best available.


Input:
Permutation of 1 . . . n

Output:
The number of sequence values that are larger than all previous sequence elements.


3  1  2  4

1  2  3  4

4  3  2  1


Worst-case = n

Observation:  For any k-prefix of sequence, the last element is the largest with probability ______.


Summing for all k-prefixes:



[image: image72.wmf]
Hiring m-of-n Problem


Observation:  For any k-prefix of sequence, the last element is one of the m largest with probability ______.



______ if k ( m


______ otherwise


Sum for all k-prefixes (expected number that are hired)




[image: image73.wmf]

What data structure supports this application?

Coupon Collecting (Knuth)


n types of coupon.  One coupon per cereal box.


How many boxes of cereal must be bought (expected) to get at least one of each coupon type?


Collecting the n coupons is decomposed into n steps:



Step 0 = get first coupon



Step 1 = get second coupon



Step m = get m+1st coupon



Step n - 1 = get last coupon


Number of boxes for step m


Let 
[image: image74.wmf] = probability of needing exactly i boxes




[image: image75.wmf] and the expected number of boxes for coupon m + 1 is 
[image: image76.wmf]


Let 
[image: image77.wmf] = probability of needing at least i boxes = probability that previous i - 1 boxes are failures



So, 
[image: image78.wmf]



[image: image79.wmf]



[image: image80.wmf]

Summing over all steps gives




[image: image81.wmf]
Analyze the following game:


n sides on each die, numbered 1 through n.


Roll dice one at a time.


Keep a die only if its number > numbers on dice you already have.


a.
What is the expected number of rolls (including those not kept) to get a die numbered n?




[image: image82.wmf]

b.
What number of dice do you expect (mathematically) to keep?



Keep going until an n is encountered.



Repeats of a number are discarded.



Results in hiring problem 
[image: image83.wmf]
Suppose a gambling game involves a sequence of rolls from a standard six-sided die.  A player wins $1 when the value rolled is the same as the previous roll.  If a sequence has 1201 rolls, what is the expected amount paid out?


Probability of a roll paying $1 = 1/6.  1200/6 = $200

Suppose a gambling game involves a sequence of rolls from a standard six-sided die.  A player wins $1 when the value rolled is larger than the previous roll.  If a sequence has 1201 rolls, what is the expected amount paid out?



[image: image84.wmf]

1200*5/12 = $500

Suppose a gambling game involves a sequence of rolls from a standard six-sided die.  A player wins $1 when the value rolled is different from the previous roll.  If a sequence has 601 rolls, what is the expected amount paid out?


600*5/6 = $500

Suppose a gambling game involves a sequence of rolls from a standard six-sided die.  A player wins k dollars when the value k rolled is smaller than the previous roll.  If a sequence has 601 rolls, what is the expected amount paid out?



[image: image85.wmf]

600*35/36 = $583.33

Suppose a gambling game involves a sequence of rolls from a standard six-sided die.  What is the expected number of rolls until the first pair of consecutive sixes appears?


Expected rolls to get first six = 6  = 
[image: image86.wmf]

Probability that next roll is not a six = 
[image: image87.wmf]

Expected rolls for consecutive sixes = 
[image: image88.wmf]
Also, see:

http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2408776.2408800 and http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2428556.2428578
along with the book by Grinstead & Snell, especially the first four chapters.

Generating Random Permutations

Permute-By-Sorting (p. 125, skim)


Generates randoms in 1 . . . n3 and then sorts to get permutation in (n log n) time.


Can use radix/counting sort to perform in (n) time.

Randomize-In-Place


Array A must initially contain a permutation.  Could simply be identity permutation:  A[i] = i.


for i=1 to n


swap A[i] and A[Random(i,n)]


Code is equivalent to reaching in a bag and choosing a number to “lock” into each slot.


Uniform - all n! permutations are equally likely to occur.

Problem 5.3-3 Permute-With-All

for i=1 to n


swap A[i] and A[Random(1,n)]


Produces 
[image: image89.wmf] outcomes, but 
[image: image90.wmf] does not divide into 
[image: image91.wmf] evenly.


( Not uniform - some permutations are produced more often than others.


Assume n=3 and A initially contains identity permutation.  Random choices that give each permutation.

1 2 3:  1 2 3  1 3 2  2 1 3  3 2 1

1 3 2:  1 2 2  1 3 3  2 1 2  2 3 1  3 1 1

2 1 3:  1 1 3  2 2 3  2 3 2  3 1 2  3 3 1

2 3 1:  1 1 2  1 3 1  2 2 2  2 3 3  3 1 3

3 1 2:  1 1 1  2 2 1  3 2 2  3 3 3

3 2 1:  1 2 1  2 1 1  3 2 3  3 3 2

Randomized Algorithms

Las Vegas


Output is always correct.


Time varies depending on random choices (or randomness in input).


Challenge:  Determine expected time.

Classic Examples:


Randomized (pivot) quicksort takes expected time in 
[image: image92.wmf].


Universal hashing

This Semester:


Treaps

Skip Lists
Perfect Hashing
Rabin-Karp Text Search

Asides:


Randomized Binary Search - About 50% more probes


List Ranking - Shared Memory and Distributed Versions (http://ranger.uta.edu/~weems/NOTES4351/09notes.pdf)


Ethernet:  http://en.wikipedia.org/wiki/Exponential_backoff


Valiant-Brebner routing

Monte Carlo


Correct solution with some (large) probability.  Use repetition to improve odds.

Usually has one-sided error - one of the outcomes can be wrong
Example - testing primality without factoring

To check N for being prime:


Randomly generate some a with 1 < a < 
[image: image93.wmf])


If 
[image: image94.wmf], then report composite else report prime


One-sided error - prime could be wrong.


(Several observations from number theory are needed to make this robust)
Concept:  Repeated application of Monte Carlo technique can lead to:


Improved reliability


Las Vegas algorithm that gives correct result “with high probability”
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