PAGE
11

CSE 5311 Notes 1: Mathematical Preliminaries

(Last updated 5/25/13 4:20 PM)

Chapter 1 - Algorithms & Computing

Relationship between complexity classes, e.g.
[image: image1.wmf],
[image: image2.wmf],
[image: image3.wmf],
[image: image4.wmf],
[image: image5.wmf], etc.

Chapter 2 - Getting Started

Loop Invariants

RAM Model

Assumed
Reality

Memory

Access

Arithmetic

Word size

Chapter 3 - Asymptotic Notation

f(n) = O(g(n)) (g(n) bounds f(n) above (by a constant factor)

f(n) = (g(n)) (g(n) bounds f(n) below (by a constant factor)

f(n) = (g(n)) (f(n) = O(g(n)) and f(n) = (g(n))

Iterated Logarithms

logk n = (log n)k
log(k) n = log(log(k-1) n) = log log . . . log n (log(1) n = log n)

lg* n = Count the times that you can punch a log key on your calculator before value is (1

Arises for algorithms that run in “practically” or “nearly” constant time.

Appendix A - Summations

Review:
Geometric Series (p. 1147)
Harmonic Series (p. 1147)

Approximation by integrals (p. 1154)

Chapter 4 - Recurrences

Substitution Method - Review

1.
Guess the bound.

2.
Prove using (strong) math. induction.

Exercise:

[image: image6.wmf]
Try
[image: image7.wmf] and confirm by math induction

[image: image8.wmf]
Improve bound to
[image: image9.wmf] and confirm

[image: image10.wmf]

[image: image11.wmf] as lower bound:

[image: image12.wmf]

[image: image13.wmf] as lower bound:

[image: image14.wmf]
What’s going on . . .

[image: image15.wmf]

[image: image16.wmf]:

[image: image17.wmf]

[image: image18.wmf]: [This was already proven.]

[image: image19.wmf]
Exercise:

[image: image20.wmf]

[image: image21.wmf]:

[image: image22.wmf]

[image: image23.wmf]

[image: image24.wmf]

[image: image25.wmf]

[image: image26.wmf]
Recursion-Tree Method - Review and Prelude to Master Method

Convert to summation and then evaluate

Example: Mergesort, p. 38
[image: image27.wmf] (case 2 for master method)

[image: image28.wmf]
Exercise:

[image: image29.wmf]
[image: image30.wmf]
Using definite geometric sum formula:

[image: image31.wmf]
(Case 1 of master method)

Exercise: (case 3 of master method)

[image: image32.wmf]
[image: image33.wmf]
Using indefinite geometric sum formula:

[image: image34.wmf]
Using definite geometric sum formula:

[image: image35.wmf]
Master Method/Theorem (“new”) - CLRS 4.5

[image: image36.wmf]

a (1 b > 1

Three mutually exclusive cases (proof sketched in 4.6.1):

1.

[image: image37.wmf]

(leaves dominate)

2.

[image: image38.wmf]

(each level contributes equally)

3.

[image: image39.wmf]

(root dominates)

(Problem 4.6-3 shows that
[image: image40.wmf] in 3. follows from the existence of
[image: image41.wmf] and
[image: image42.wmf]. By taking
[image: image43.wmf] and the condition on f,
[image: image44.wmf] may be established. Last step is
[image: image45.wmf].)

Example:

[image: image46.wmf]

a = 10 b = 10 f(n) = n.5
[image: image47.wmf] = n

Case 1:
n.5 = O(n1-(), 0 < ((0.5

[image: image48.wmf]
Example: (recursion tree given earlier - leaves dominate)

[image: image49.wmf]

a = 4 b = 2 f(n) = n
[image: image50.wmf] = n2

Case 1:
n = O(n2-(), 0 < ((1

[image: image51.wmf]
Example:

[image: image52.wmf]

a = 9 b = 3 f(n) = 2n2
[image: image53.wmf] = n2

Case 2:
2n2 = (n2)

[image: image54.wmf]
Recursion Tree

[image: image55.wmf]

[image: image56.wmf]
Example:

[image: image57.wmf]

a = 2 b = 2 f(n) = n3 nlg 2 = n

Case 3:
n3 = ((n1+(), 0 < ((2

[image: image58.wmf]

[image: image59.wmf]
Example:

[image: image60.wmf]

a = 1 b = 2 f(n) = n/2 nlg 1 = n0 = 1

Case 3:
n/2 = ((n0n(), 0 < ((1

[image: image61.wmf]

[image: image62.wmf]
From CLRS, p. 95:

[image: image63.wmf]

a = 2 b = 2 f(n) = n lg n nlg 2 = n1 = n

[image: image64.wmf], but
[image: image65.wmf] for any
[image: image66.wmf] . . .

[image: image67.wmf]

So master method (case 3) does not support
[image: image68.wmf]

Using exercise 4.6-2 as a hint . . . (or a simple recursion tree with
[image: image69.wmf])

Substitution method to show
[image: image70.wmf]

[image: image71.wmf]
Probabilistic Analysis

Hiring Problem - Interview potential assistants, always hiring the best available.

Input:
Permutation of 1 . . . n

Output:
The number of sequence values that are larger than all previous sequence elements.

3 1 2 4

1 2 3 4

4 3 2 1

Worst-case = n

Observation: For any k-prefix of sequence, the last element is the largest with probability ______.

Summing for all k-prefixes:

[image: image72.wmf]
Hiring m-of-n Problem

Observation: For any k-prefix of sequence, the last element is one of the m largest with probability ______.

______ if k (m

______ otherwise

Sum for all k-prefixes (expected number that are hired)

[image: image73.wmf]

What data structure supports this application?

Coupon Collecting (Knuth)

n types of coupon. One coupon per cereal box.

How many boxes of cereal must be bought (expected) to get at least one of each coupon type?

Collecting the n coupons is decomposed into n steps:

Step 0 = get first coupon

Step 1 = get second coupon

Step m = get m+1st coupon

Step n - 1 = get last coupon

Number of boxes for step m

Let
[image: image74.wmf] = probability of needing exactly i boxes

[image: image75.wmf] and the expected number of boxes for coupon m + 1 is
[image: image76.wmf]

Let
[image: image77.wmf] = probability of needing at least i boxes = probability that previous i - 1 boxes are failures

So,
[image: image78.wmf]

[image: image79.wmf]

[image: image80.wmf]

Summing over all steps gives

[image: image81.wmf]
Analyze the following game:

n sides on each die, numbered 1 through n.

Roll dice one at a time.

Keep a die only if its number > numbers on dice you already have.

a.
What is the expected number of rolls (including those not kept) to get a die numbered n?

[image: image82.wmf]

b.
What number of dice do you expect (mathematically) to keep?

Keep going until an n is encountered.

Repeats of a number are discarded.

Results in hiring problem
[image: image83.wmf]
Suppose a gambling game involves a sequence of rolls from a standard six-sided die. A player wins $1 when the value rolled is the same as the previous roll. If a sequence has 1201 rolls, what is the expected amount paid out?

Probability of a roll paying $1 = 1/6. 1200/6 = $200

Suppose a gambling game involves a sequence of rolls from a standard six-sided die. A player wins $1 when the value rolled is larger than the previous roll. If a sequence has 1201 rolls, what is the expected amount paid out?

[image: image84.wmf]

1200*5/12 = $500

Suppose a gambling game involves a sequence of rolls from a standard six-sided die. A player wins $1 when the value rolled is different from the previous roll. If a sequence has 601 rolls, what is the expected amount paid out?

600*5/6 = $500

Suppose a gambling game involves a sequence of rolls from a standard six-sided die. A player wins k dollars when the value k rolled is smaller than the previous roll. If a sequence has 601 rolls, what is the expected amount paid out?

[image: image85.wmf]

600*35/36 = $583.33

Suppose a gambling game involves a sequence of rolls from a standard six-sided die. What is the expected number of rolls until the first pair of consecutive sixes appears?

Expected rolls to get first six = 6 =
[image: image86.wmf]

Probability that next roll is not a six =
[image: image87.wmf]

Expected rolls for consecutive sixes =
[image: image88.wmf]
Also, see:

http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2408776.2408800 and http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2428556.2428578
along with the book by Grinstead & Snell, especially the first four chapters.

Generating Random Permutations

Permute-By-Sorting (p. 125, skim)

Generates randoms in 1 . . . n3 and then sorts to get permutation in (n log n) time.

Can use radix/counting sort to perform in (n) time.

Randomize-In-Place

Array A must initially contain a permutation. Could simply be identity permutation: A[i] = i.

for i=1 to n

swap A[i] and A[Random(i,n)]

Code is equivalent to reaching in a bag and choosing a number to “lock” into each slot.

Uniform - all n! permutations are equally likely to occur.

Problem 5.3-3 Permute-With-All

for i=1 to n

swap A[i] and A[Random(1,n)]

Produces
[image: image89.wmf] outcomes, but
[image: image90.wmf] does not divide into
[image: image91.wmf] evenly.

(Not uniform - some permutations are produced more often than others.

Assume n=3 and A initially contains identity permutation. Random choices that give each permutation.

1 2 3: 1 2 3 1 3 2 2 1 3 3 2 1

1 3 2: 1 2 2 1 3 3 2 1 2 2 3 1 3 1 1

2 1 3: 1 1 3 2 2 3 2 3 2 3 1 2 3 3 1

2 3 1: 1 1 2 1 3 1 2 2 2 2 3 3 3 1 3

3 1 2: 1 1 1 2 2 1 3 2 2 3 3 3

3 2 1: 1 2 1 2 1 1 3 2 3 3 3 2

Randomized Algorithms

Las Vegas

Output is always correct.

Time varies depending on random choices (or randomness in input).

Challenge: Determine expected time.

Classic Examples:

Randomized (pivot) quicksort takes expected time in
[image: image92.wmf].

Universal hashing

This Semester:

Treaps

Skip Lists
Perfect Hashing
Rabin-Karp Text Search

Asides:

Randomized Binary Search - About 50% more probes

List Ranking - Shared Memory and Distributed Versions (http://ranger.uta.edu/~weems/NOTES4351/09notes.pdf)

Ethernet: http://en.wikipedia.org/wiki/Exponential_backoff

Valiant-Brebner routing

Monte Carlo

Correct solution with some (large) probability. Use repetition to improve odds.

Usually has one-sided error - one of the outcomes can be wrong
Example - testing primality without factoring

To check N for being prime:

Randomly generate some a with 1 < a <
[image: image93.wmf])

If
[image: image94.wmf], then report composite else report prime

One-sided error - prime could be wrong.

(Several observations from number theory are needed to make this robust)
Concept: Repeated application of Monte Carlo technique can lead to:

Improved reliability

Las Vegas algorithm that gives correct result “with high probability”

_1115477539.unknown

_1240827431.unknown

_1240828406.unknown

_1273904643.unknown

_1304769462.unknown

_1304769907.unknown

_1273593187.unknown

_1273643775.unknown

_1273591894.unknown

_1273592365.unknown

_1273591311.unknown

_1240827648.unknown

_1240827861.unknown

_1240827450.unknown

_1146247951.unknown

_1240827363.unknown

_1240827394.unknown

_1146365828.unknown

_1240748566.unknown

_1146248049.unknown

_1146248123.unknown

_1146247820.unknown

_1146247898.unknown

_1115533108.unknown

_1146247665.unknown

_1115534186.unknown

_1115480637.unknown

_1083856900.unknown

_1083857210.unknown

_1083857312.unknown

_1084077109.unknown

_1103432556.unknown

_1084075915.unknown

_1084076193.unknown

_1083858941.unknown

_1083857277.unknown

_1083857073.unknown

_1083857135.unknown

_1083857037.unknown

_1083856950.unknown

_1083857000.unknown

_997768769.unknown

_1007057116.unknown

_1010112216.unknown

_1083856618.unknown

_1083856835.unknown

_1083856880.unknown

_1083856656.unknown

_1083856723.unknown

_1083856636.unknown

_1083856356.unknown

_1083856455.unknown

_1021200289.unknown

_1007057555.unknown

_1007094267.unknown

_1007096454.unknown

_1007176844.unknown

_1007098713.unknown

_1007096020.unknown

_1007092752.unknown

_1007093879.unknown

_1007091919.unknown

_1007057461.unknown

_1007057521.unknown

_1007057232.unknown

_1007054219.unknown

_1007056747.unknown

_1007056871.unknown

_1007056489.unknown

_1007055873.unknown

_1007056063.unknown

_1007056343.unknown

_1007054411.unknown

_998019900.unknown

_998019947.unknown

_997936838.unknown

_997938063.unknown

_997936225.unknown

_997595044.unknown

_997678693.unknown

_997679366.unknown

_997762786.unknown

_997678672.unknown

_997590222.unknown

_997590394.unknown

_997588592.unknown

