PAGE
18

CSE 5311 Notes 2: Binary Search Trees

(Last updated 5/27/13 8:37 AM)

Rotations

[image: image1.wmf]
[image: image2.wmf]
What two single rotations are equivalent?

(Bottom-Up) Red-Black Trees

A red-black tree is a binary search tree whose height is logarithmic in the number of keys stored.

1.
Every node is colored red or black. (Colors are only examined during insertion and deletion)

2.
Every “leaf” (the sentinel) is colored black.

3.
Both children of a red node are black.

4.
Every simple path from a child of node X to a leaf has the same number of black nodes.

This number is known as the black-height of X (bh(X)).

Example:

[image: image3.wmf]
Observations:

1.
A red-black tree with n internal nodes (“keys”) has height at most 2 lg(n+1).

2.
If a node X is not a leaf and its sibling is a leaf, then X must be red.

3.
There may be many ways to color a binary search tree to make it a red-black tree.

4.
If the root is colored red, then it may be switched to black without violating structural properties.

Insertion

1.
Start with unbalanced insert of a “data leaf” (both children are the sentinel).

2.
Color of new node is _________.

3.
May violate structural property 3. Leads to three cases, along with symmetric versions.

The x pointer points at a red node whose parent might also be red.

Case 1: (in 2320 Notes 12, using Sedgewick’s book, this is done top-down before attaching new leaf)

[image: image4.wmf]
Case 2:

[image: image5.wmf]
Case 3:

[image: image6.wmf]
Example:

[image: image7.wmf]
Insert 15

[image: image8.wmf]
Insert 13

[image: image9.wmf]
Insert 75

[image: image10.wmf]
Insert 14

[image: image11.wmf]
Example:

[image: image12.wmf]
Insert 75

[image: image13.wmf][image: image14.wmf]
[image: image15.wmf][image: image16.wmf]
[image: image17.wmf]
Deletion

Start with one of the unbalanced deletion cases:

1.
Deleted node is a “data leaf”.

a.
Splice around to sentinel.

b.
Color of deleted node?

Red (
Done

Black (
Set “double black” pointer at sentinel.

Determine which of four rebalancing cases applies.

2.
Deleted node is parent of one “data leaf”.

a.
Splice around to “data leaf”

b.
Color of deleted node?

Red (
Not possible

Black (
“data leaf” must be red. Change its color to black.

3.
Node with key-to-delete is parent of two “data nodes”.

a.
“Steal” key and data from successor (but not the color).

b.
“Delete” successor using the appropriate one of the previous two cases.

Case 1:

[image: image18.wmf]
Case 2:

[image: image19.wmf]
Case 3:

[image: image20.wmf]
Case 4:

[image: image21.wmf]
(At most three rotations occur while processing the deletion of one key)

Example:

[image: image22.wmf]
Delete 50

[image: image23.wmf]
[image: image24.wmf]
If x reaches the root, then done. Only place in tree where this happens.

Delete 60

[image: image25.wmf]
Delete 70

[image: image26.wmf]
If x reaches a red node, then change color to black and done.

Delete 10

[image: image27.wmf]
Delete 40

[image: image28.wmf]
Delete 120

[image: image29.wmf]
Delete 100

[image: image30.wmf]
AVL Trees

An AVL tree is a binary search tree whose height is logarithmic in the number of keys stored.

1.
Each node stores the difference of the heights (known as the balance factor) of the right and left subtrees rooted by the children:

heightright - heightleft
[image: image31.wmf]
2.
A balance factor must be +1, 0, -1 (leans right, “balanced”, leans left).

3.
An insertion is implemented by:

a.
Attaching a leaf

b.
Rippling changes to balance factor:

1.
Right child ripple

Parent.Bal = 0 (+1 and ripple to parent

Parent.Bal = -1 (0 to complete insertion

Parent.Bal = +1 (+2 and ROTATION to complete insertion

2.
Left child ripple

Parent.Bal = 0 (-1 and ripple to parent

Parent.Bal = +1 (0 to complete insertion

Parent.Bal = -1 (-2 and ROTATION to complete insertion

4.
Rotations

a.
Single (LL) - right rotation at D

[image: image32.wmf]

Restores height of subtree to pre-insertion number of levels

RR case is symmetric

b.
Double (LR)

[image: image33.wmf]

Restores height of subtree to pre-insertion number of levels

RL case is symmetric

Deletion -

Still have RR, RL, LL, and LR, but two addditional (symmetric) cases arise.

Suppose 70 is deleted from this tree. Either LL or LR may be applied.

[image: image34.wmf]
Fibonacci Trees - special case of AVL trees exhibiting two worst-case behaviors -

1.
Maximally skewed. (max height is roughly log1.618 n =1.44 lg n, expected height is lg n +.25)

2.
(log n) rotations for a single deletion.

[image: image35.wmf]
Treaps (CLRS, p. 333)
Hybrid of BST and min-heap ideas

Gives code that is clearer than RB or AVL (but comparable to skip lists)

Expected height of tree is logarithmic (2.5 lg n)

Keys are used as in BST

Tree also has min-heap property based on each node having a priority:

Randomized priority - generated when a new key is inserted

Virtual priority - computed (when needed) using a function similar to a hash function

[image: image36.wmf]

Asides: the first published such hybrid were the cartesian trees of J. Vuillemin, “A Unifying Look at Data Structures”, C. ACM 23 (4), April 1980, 229-239. A more complete explanation appears in E.M. McCreight, “Priority Search Trees”, SIAM J. Computing 14 (2), May 1985, 257-276 and chapter 10 of M. de Berg et.al. These are also used in the elegant implementation in M.A. Babenko and T.A. Starikovskaya, “Computing Longest Common Substrings” in E.A. Hirsch, Computer Science - Theory and Applications, LNCS 5010, 2008, 64-75.

Insertion

Insert as leaf

Generate random priority (large range to minimize duplicates)

Single rotations to fix min-heap property

Example: Insert 16 with a priority of 2

[image: image37.wmf]
After rotations:

[image: image38.wmf]
Deletion

Find node and change priority to (

Rotate to bring up child with lower priority. Continue until min-heap property holds.

Remove leaf.

Delete key 2:

[image: image39.wmf]
[image: image40.wmf]
Augmenting Data Structures

Read CLRS, section 14.1 on using RB tree with ranking information for order statistics.

Retrieving an element with a given rank

Determine the rank of an element

Problem: Maintain summary information to support an aggregate operation on the k smallest (or largest) keys in O(log n) time.

Example: Prefix Sum

Given a key, determine the sum of all keys (given key (prefix sum).

Solution: Store sum of all keys in a subtree at the root of the subtree.

[image: image41.wmf]

Key
Prefix Sum

1
1

2
3

3
6

4
10

10
20

15
35

16
51

20
71

21
92

24
116

26
142

30
172

To compute prefix sum for a key:

Initialize sum to 0

Search for key, modifying total as search progresses:

Search goes left - leave total alone

Search goes right or key has been found - add present node’s key and left child’s sum to

total

Key is 24: (15 + 20) + (20 + 16) + (24 + 21) = 116

Key is 10: (1 + 0) + (10 + 9) = 20

Key is 16: (15 + 20) + (16 + 0) = 51

Variation: Determine the smallest key that has a prefix sum ≥ a specified value.

Updates to tree:

Non-structural (attach/remove node) - modify node and every ancestor

Single rotation (for prefix sum)

[image: image42.wmf]

(Similar for double rotation)

General case - see CLRS 14.2, especially “Theorem” 14.1

Interval trees (CLRS 14.3) - a more significant application

Set of (closed) intervals [low, high] - low is the key, but duplicates are allowed

Each subtree root contains the max value appearing in any interval in that subtree

Aggregate operation to support - find any interval that overlaps a given interval [low’, high’]

Modify BST search . . .

if ptr == nil

no interval in tree overlaps [low’, high’]

if high’ ≥ ptr->low and ptr->high ≥ low’

return ptr as an answer

if ptr->left != nil and ptr->left->max ≥ low’

ptr := ptr->left

else

ptr := ptr->right

Updates to tree - similar to prefix sum, but replace additions with maximums

