CSE 5311 Notes 3: Amortized Analysis
(Last updated 5/27/13 8:52 AM)

PROBLEM: Worst case for a single operation is too pessimistic for analyzing a sequence of operations.
ELEMENTARY EXAMPLES
1. Stack operations with “multiple pop”
Usual push for a single entry - 6(1)
Multi-pop for k entries - 0(k)
Sequence of n operations takes 0(n) time.
2. Queue implemented with two lists/stacks (in a functional language)
List 1 List 2 Enqueue: At head of list 2
l l Dequeue: if list 1 is empty
1 6 while list 2 not empty

Remove head of list 2
Insert as head of list 1

2 S Remove head of list 1

Y Y

3 4 Application to maximum message length (see end of
= = CSE 2320 Notes 10)

3. Incrementing a counter repetitively by 1 (CLRS, p. 461)

0001111
+ 1

ANALYSIS
1. Aggregate Method

Yactual cost Y¢;
of operations n

= ¢; = amortized cost

n n
2. Accounting Method - For any sequence Y ¢; = D.cj

i=1 =l

Charge more for early operations in sequence to pay for later operations.
Consider queue with 2 lists:

Each item is touched 3 times

Charge 2 for enqueue

Charge 1 for dequeue

Each item in list 2 has a credit of 1. Credit is consumed in dequeue with empty list 1.

3. Potential Method - Preferred method

Concept:

Generalizes accounting method.

Tedious for initial designer, but hides details for others.
Map entire state of data structure to a potential. Captures “difficulty” of future operations.
Assuming a sequence of operations:

¢; = actual cost of ith operation
¢; = amortized cost of ith operation
D;_1 = data structure state before ith operation
D; = data structure state after ith operation
Cj=cj+ d)(Dl') - (I)(Dl'_l)
Total amortized cost for a sequence is:
n_on n
>cj= E(Ci + CIJ(DZ‘) - (I)(Di—l)) = Yci+ q)(Dn) - CID(D())
i=1 =l i=1
Book: Multipop stack (® = # of items on stack)

Binary counter (® = # of ones)

Defining ® is the hard part.

BINARY TREE TRAVERSALS - Slightly more involved than previous examples
Observation: Tree traversal on tree with n nodes requires 2n - 2 edges “touches”
Operations: INIT: Finds first node in traversal
c1=0

Succ(x): Finds successor of x

¢j =2 for 2 =i =< n (n exits tree)
Need @ for inorder, postorder, and preorder

Example: For INIT for inorder, must stop at a.

c1 =2.¢1 =0,and ¢1 = ¢ + D(Dy) - (D)
0=2+d(Dy)-0

Succ(a) =b Succ(b) =c

cp =16y =2,and ¢ =cp + (D) - (D) c3=163=2and 3 =c3+®(D3)-D(Dy)
2=1+D(Dy) - (-2) 2=1+®(D3)-(-1)

Succ(c)=d

cq4 =304 =2,and g =cq + D(Dyg)-D(D3)
2=3+®(Dyg)-0

For INIT for postorder, must stop at a. Succ(a) =b

c1 =2.¢1 =0,and ¢1 = ¢ + D(Dy) - (D) cp =16y =2,and ¢ =cp + (D) - (D)
0=2+®(Dp)-0 2=1+D(D2)-(-2)

Succ(b) =d Succ(d) =f

c3=4,03=2,and ¢3 =c3+®(D3)-D(D) cq4 =204 =2,and ¢4 =cq + D(Dy)-D(D3)
2=4+®(D3)-(-1) 2=2+®(Dy)~(-3)

3 3

For preorder (not shown): rank, r(x), of node x is r(root) = 0, r(x—left) = r(x) + 1, r(x—right) = r(x) + 1

Aside: If non-negative ranks/potential are desired (e.g. for inorder and postorder),

then make r(root) = D = height of tree (or number of nodes if height is unknown).
DyYNAMIC TABLE GROWTH — CLRS 17 .4
Applies to tables with embedded free space.
Periodic reorganization takes @(n) time . . .

Fixed vs. fractional growth and amortizing reorganization cost over all inserts

Deletion issues

CLRS PROBLEM 17-2 — Making binary search dynamic
Related to binomial heaps in Notes 7

Representation of dictionary with » items

Binary searches to find item

Inserting an item in @(1og n) amortized time using ordered merges

Deletion?

APPLICATION OF POTENTIAL FUNCTION METHOD THIS SEMESTER . . .

Comparison of online MTF lists to an (unknown) optimal strategy (Notes 4)

Splay trees (Notes 5)

Fibonacci heaps - a priority queue to improve algorithms such as Prim’s and Dijkstra’s (Notes 7)
Union-find trees (Notes 8) - not detailed

Push-relabel methods for maxflows (Notes 12) - not detailed

KMP string search (Notes 15) - easy

