
CSE 5311 Notes 3: Amortized Analysis

(Last updated 5/27/13 8:52 AM)

PROBLEM: Worst case for a single operation is too pessimistic for analyzing a sequence of operations.

ELEMENTARY EXAMPLES

1. Stack operations with “multiple pop”

 Usual push for a single entry - θ(1)

 Multi-pop for k entries - θ(k)

 Sequence of n operations takes θ(n) time.

2. Queue implemented with two lists/stacks (in a functional language)

List 1 List 2

1

2

3

6

5

4

 Enqueue: At head of list 2

 Dequeue: if list 1 is empty
 while list 2 not empty
 Remove head of list 2
 Insert as head of list 1
 Remove head of list 1

 Application to maximum message length (see end of

CSE 2320 Notes 10)

3. Incrementing a counter repetitively by 1 (CLRS, p. 461)

 0 0 0 1 1 1 1
 + 1

ANALYSIS

1. Aggregate Method

€

actual cost∑
of operations =

ci∑
n = ˆ c i = amortized cost

 2

2. Accounting Method - For any sequence

€

ˆ c i
i=1

n
∑ ≥ ci

i=1

n
∑

 Charge more for early operations in sequence to pay for later operations.

 Consider queue with 2 lists:

 Each item is touched 3 times

 Charge 2 for enqueue

 Charge 1 for dequeue

 Each item in list 2 has a credit of 1. Credit is consumed in dequeue with empty list 1.

3. Potential Method - Preferred method

 Concept:

 Generalizes accounting method.

 Tedious for initial designer, but hides details for others.

 Map entire state of data structure to a potential. Captures “difficulty” of future operations.

 Assuming a sequence of operations:

€

ci = actual cost of ith operation
ˆ c i = amortized cost of ith operation
Di−1 = data structure state before ith operation
Di = data structure state after ith operation

ˆ c i = ci +Φ Di() −Φ Di−1()

 Total amortized cost for a sequence is:

€

ˆ c i
i=1

n
∑ = ci +Φ Di() −Φ Di−1()()

i=1

n
∑ = ci

i=1

n
∑ +Φ Dn() −Φ D0()

 Book: Multipop stack (Φ = # of items on stack)

 Binary counter (Φ = # of ones)

 Defining Φ is the hard part.

 3
BINARY TREE TRAVERSALS - Slightly more involved than previous examples

Observation: Tree traversal on tree with n nodes requires 2n - 2 edges “touches”

Operations: INIT: Finds first node in traversal

€

ˆ c 1 = 0

 SUCC(x): Finds successor of x

€

ˆ c i = 2 for 2 ≤ i ≤ n (n exits tree)

Need Φ for inorder, postorder, and preorder

Example:

a

b

c

d

e

f

g

h

For INIT for inorder, must stop at a.

€

c1 = 2, ˆ c 1 = 0,and ˆ c 1 = c1 +Φ D1() −Φ D0()
 0 = 2 +Φ D1() − 0

a

b

c

d

e

f

g

hx
-2

SUCC(a) = b

€

c2 =1, ˆ c 2 = 2,and ˆ c 2 = c2 +Φ D2() −Φ D1()
 2 =1+Φ D2() − (−2)

a

b

c

d

e

f

g

h

x

-2

-1

SUCC(b) = c

€

c3 =1, ˆ c 3 = 2,and ˆ c 3 = c3 +Φ D3() −Φ D2()
 2 =1+Φ D3() − (−1)

a

b

c

d

e

f

g

h

x

-2

-1

0

 4

SUCC(c) = d

€

c4 = 3, ˆ c 4 = 2,and ˆ c 4 = c4 +Φ D4() −Φ D3()
 2 = 3+Φ D4() − 0

a

b

c

d

e

f

g

h

x
-2

-1

0

-1

In general: rank, r(x), of node x is r(root) = 0, r(x→left) = r(x) - 1, r(x→right) = r(x) + 1

a

b

c

d

e

f

g

h
-2

-1

0

-1

1

0 2

1

For INIT for postorder, must stop at a.

€

c1 = 2, ˆ c 1 = 0,and ˆ c 1 = c1 +Φ D1() −Φ D0()
 0 = 2 +Φ D1() − 0

a

b

c

d

e

f

g

hx
-2

SUCC(a) = b

€

c2 =1, ˆ c 2 = 2,and ˆ c 2 = c2 +Φ D2() −Φ D1()
 2 =1+Φ D2() − (−2)

a

b

c

d

e

f

g

h

x

-2

-1

 5
SUCC(b) = d

€

c3 = 4, ˆ c 3 = 2,and ˆ c 3 = c3 +Φ D3() −Φ D2()
 2 = 4 +Φ D3() − (−1)

a

b

c

d

e

f

g

h

x
-2

-1

-3

SUCC(d) = f

€

c4 = 2, ˆ c 4 = 2,and ˆ c 4 = c4 +Φ D4() −Φ D3()
 2 = 2 +Φ D4() − −3()

a

b

c

d

e

f

g

h

x
-2

-1

-3 -3

In general: rank, r(x), of node x is r(root) = 0, r(x→left) = r(x) - 1, r(x→right) = r(x) - 1

a

b

c

d

e

f

g

h
-2

-1

-3 -3

-2 -2

-1

0

For preorder (not shown): rank, r(x), of node x is r(root) = 0, r(x→left) = r(x) + 1, r(x→right) = r(x) + 1

Aside: If non-negative ranks/potential are desired (e.g. for inorder and postorder),
 then make r(root) = D0 = height of tree (or number of nodes if height is unknown).

DYNAMIC TABLE GROWTH – CLRS 17.4

Applies to tables with embedded free space.

Periodic reorganization takes

€

Θ n() time . . .

Fixed vs. fractional growth and amortizing reorganization cost over all inserts

Deletion issues

 6
CLRS PROBLEM 17-2 – Making binary search dynamic

Related to binomial heaps in Notes 7

Representation of dictionary with n items

Binary searches to find item

Inserting an item in

€

Θ logn() amortized time using ordered merges

Deletion?

APPLICATION OF POTENTIAL FUNCTION METHOD THIS SEMESTER . . .

Comparison of online MTF lists to an (unknown) optimal strategy (Notes 4)

Splay trees (Notes 5)

Fibonacci heaps - a priority queue to improve algorithms such as Prim’s and Dijkstra’s (Notes 7)

Union-find trees (Notes 8) - not detailed

Push-relabel methods for maxflows (Notes 12) - not detailed

KMP string search (Notes 15) - easy

