
CSE 5311 Notes 3:  Amortized Analysis 
 

(Last updated 5/27/13 8:52 AM) 
 
PROBLEM:  Worst case for a single operation is too pessimistic for analyzing a sequence of operations. 
 
ELEMENTARY EXAMPLES 
 
1. Stack operations with “multiple pop” 
 
 Usual push for a single entry - θ(1) 
 
 Multi-pop for k entries - θ(k) 
 
 Sequence of n operations takes θ(n) time. 
 
2. Queue implemented with two lists/stacks (in a functional language)
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 Enqueue: At head of list 2 
 
 Dequeue: if list 1 is empty    
    while list 2 not empty 
     Remove head of list 2 
     Insert as head of list 1 
   Remove head of list 1 
 
 
 Application to maximum message length (see end of 

CSE 2320 Notes 10) 

 
3. Incrementing a counter repetitively by 1 (CLRS, p. 461) 
 
 0 0 0 1 1 1 1 
           + 1 
 ------------- 
 
 
 
 
ANALYSIS 
 
1. Aggregate Method 
 

 

€ 

actual cost∑
# of operations =

ci∑
n = ˆ c i = amortized cost  
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2. Accounting Method - For any sequence  

€ 

ˆ c i
i=1

n
∑ ≥ ci

i=1

n
∑  

  
 Charge more for early operations in sequence to pay for later operations. 
 
 Consider queue with 2 lists: 
 
  Each item is touched 3 times 
 
  Charge 2 for enqueue 
 
  Charge 1 for dequeue 
 
  Each item in list 2 has a credit of 1.  Credit is consumed in dequeue with empty list 1. 
 
3. Potential Method - Preferred method 
 
 Concept: 
 
  Generalizes accounting method. 
 
  Tedious for initial designer, but hides details for others. 
 
 Map entire state of data structure to a potential.  Captures “difficulty” of future operations. 
 
 Assuming a sequence of operations: 
 

  

€ 

ci = actual cost of ith operation
ˆ c i = amortized cost of ith operation
Di−1 = data structure state before ith operation
Di = data structure state after ith operation

ˆ c i = ci +Φ Di( ) −Φ Di−1( )

 

 
 Total amortized cost for a sequence is: 
 

  

€ 

ˆ c i
i=1

n
∑ = ci +Φ Di( ) −Φ Di−1( )( )

i=1

n
∑ = ci

i=1

n
∑ +Φ Dn( ) −Φ D0( )  

 
 Book: Multipop stack (Φ = # of items on stack) 
 
   Binary counter (Φ = # of ones) 
 
 Defining Φ is the hard part. 
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BINARY TREE TRAVERSALS - Slightly more involved than previous examples 
 
Observation: Tree traversal on tree with n nodes requires 2n - 2 edges “touches” 
 
Operations: INIT:  Finds first node in traversal 
 
   

€ 

ˆ c 1 = 0 
 
   SUCC(x):  Finds successor of x 
 
   

€ 

ˆ c i = 2 for 2 ≤ i ≤ n (n exits tree)  
 
Need Φ for inorder, postorder, and preorder 
 
Example: 
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For INIT for inorder, must stop at a. 
 

€ 

c1 = 2, ˆ c 1 = 0,and ˆ c 1 = c1 +Φ D1( ) −Φ D0( )
                           0 = 2 +Φ D1( ) − 0
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SUCC(a) = b 
 

€ 

c2 =1, ˆ c 2 = 2,and ˆ c 2 = c2 +Φ D2( ) −Φ D1( )
                            2 =1+Φ D2( ) − (−2)
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SUCC(b) = c 
 

€ 

c3 =1, ˆ c 3 = 2,and ˆ c 3 = c3 +Φ D3( ) −Φ D2( )
                            2 =1+Φ D3( ) − (−1)
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SUCC(c) = d 
 

€ 

c4 = 3, ˆ c 4 = 2,and ˆ c 4 = c4 +Φ D4( ) −Φ D3( )
                             2 = 3+Φ D4( ) − 0

 

 

a

b

c

d

e

f

g

h

x
-2

-1

0

-1  
 
In general:  rank, r(x), of node x is r(root) = 0, r(x→left) = r(x) - 1, r(x→right) = r(x) + 1 
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For INIT for postorder, must stop at a. 
 

€ 

c1 = 2, ˆ c 1 = 0,and ˆ c 1 = c1 +Φ D1( ) −Φ D0( )
                           0 = 2 +Φ D1( ) − 0
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SUCC(a) = b 
 

€ 

c2 =1, ˆ c 2 = 2,and ˆ c 2 = c2 +Φ D2( ) −Φ D1( )
                           2 =1+Φ D2( ) − (−2)
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SUCC(b) = d 
 

€ 

c3 = 4, ˆ c 3 = 2,and ˆ c 3 = c3 +Φ D3( ) −Φ D2( )
                           2 = 4 +Φ D3( ) − (−1)
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SUCC(d) = f 
 

€ 

c4 = 2, ˆ c 4 = 2,and ˆ c 4 = c4 +Φ D4( ) −Φ D3( )
                           2 = 2 +Φ D4( ) − −3( )
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In general:  rank, r(x), of node x is r(root) = 0, r(x→left) = r(x) - 1, r(x→right) = r(x) - 1 
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For preorder (not shown):  rank, r(x), of node x is r(root) = 0, r(x→left) = r(x) + 1, r(x→right) = r(x) + 1 
 
Aside:  If non-negative ranks/potential are desired (e.g. for inorder and postorder),  
 then make r(root) = D0 = height of tree (or number of nodes if height is unknown). 
 
DYNAMIC TABLE GROWTH – CLRS 17.4 
 
Applies to tables with embedded free space. 
 
Periodic reorganization takes 

€ 

Θ n( ) time . . . 
 
Fixed vs. fractional growth and amortizing reorganization cost over all inserts 
 
 
 
Deletion issues 
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CLRS PROBLEM 17-2 – Making binary search dynamic 
 
Related to binomial heaps in Notes 7 
 
Representation of dictionary with n items 
 
Binary searches to find item 
 
Inserting an item in 

€ 

Θ logn( )  amortized time using ordered merges 
 
Deletion? 
 
 
APPLICATION OF POTENTIAL FUNCTION METHOD THIS SEMESTER . . . 
 
Comparison of online MTF lists to an (unknown) optimal strategy (Notes 4) 
 
Splay trees (Notes 5) 
 
Fibonacci heaps - a priority queue to improve algorithms such as Prim’s and Dijkstra’s (Notes 7) 
 
Union-find trees (Notes 8) - not detailed 
 
Push-relabel methods for maxflows (Notes 12) - not detailed 
 
KMP string search (Notes 15) - easy 


