CSE 5311 Notes 3: Amortized Analysis

(Last updated 5/27/13 8:52 AM)

PROBLEM: Worst case for a *single* operation is too pessimistic for analyzing a *sequence* of operations.

ELEMENTARY EXAMPLES

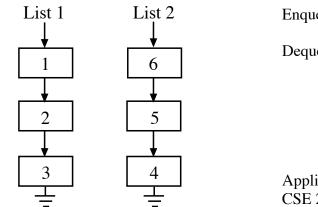
1. Stack operations with "multiple pop"

Usual push for a single entry - $\theta(1)$

Multi-pop for k entries - $\theta(k)$

Sequence of *n* operations takes $\theta(n)$ time.

2. Queue implemented with two lists/stacks (in a functional language)



Enqueue: At head of list 2 Dequeue: if list 1 is empty while list 2 not empty Remove head of list 2 Insert as head of list 1 Remove head of list 1

Application to maximum message length (see end of CSE 2320 Notes 10)

3. Incrementing a counter repetitively by 1 (CLRS, p. 461)

0 0 0 1 1 1 1 + 1

ANALYSIS

1. Aggregate Method

 $\frac{\sum \text{actual cost}}{\# \text{ of operations}} = \frac{\sum c_i}{n} = \hat{c}_i = \text{amortized cost}$

2. Accounting Method - For any sequence $\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$

Charge more for *early* operations in sequence to pay for *later* operations.

Consider queue with 2 lists:

Each item is touched 3 times

Charge 2 for enqueue

Charge 1 for dequeue

Each item in list 2 has a *credit* of 1. Credit is consumed in dequeue with empty list 1.

3. Potential Method - Preferred method

Concept:

Generalizes accounting method.

Tedious for initial designer, but hides details for others.

Map entire state of data structure to a *potential*. Captures "difficulty" of future operations.

Assuming a sequence of operations:

 c_i = actual cost of *i*th operation \hat{c}_i = amortized cost of *i*th operation D_{i-1} = data structure state before *i*th operation D_i = data structure state after *i*th operation

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

Total amortized cost for a sequence is:

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

Book: Multipop stack ($\Phi = \#$ of items on stack)

Binary counter ($\Phi = \#$ of ones)

Defining Φ is the hard part.

BINARY TREE TRAVERSALS - Slightly more involved than previous examples

Observation: Tree traversal on tree with n nodes requires 2n - 2 edges "touches"

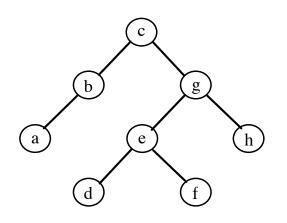
Operations: INIT: Finds first node in traversal

$$\hat{c}_1 = 0$$

SUCC(x): Finds successor of x
 $\hat{c}_i = 2$ for $2 \le i \le n$ (*n* exits tree)

Need Φ for inorder, postorder, and preorder

Example:



For INIT for *inorder*, must stop at a.

$$c_{1} = 2, \hat{c}_{1} = 0, \text{and } \hat{c}_{1} = c_{1} + \Phi(D_{1}) - \Phi(D_{0})$$

$$0 = 2 + \Phi(D_{1}) - 0$$

$$c$$

$$g$$

$$x \rightarrow a$$

$$-2$$

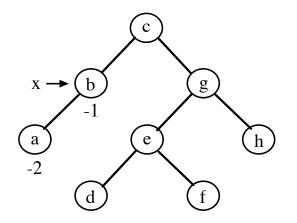
$$d$$

$$f$$

SUCC(a) = b

$$c_2 = 1, \hat{c}_2 = 2, \text{and } \hat{c}_2 = c_2 + \Phi(D_2) - \Phi(D_1)$$

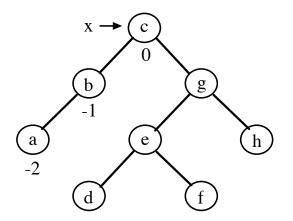
$$2 = 1 + \Phi(D_2) - (-2)$$



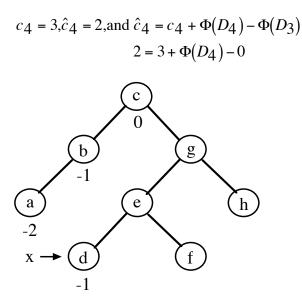
SUCC(b) = c

$$c_3 = 1, \hat{c}_3 = 2, \text{and } \hat{c}_3 = c_3 + \Phi(D_3) - \Phi(D_2)$$

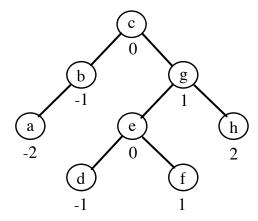
 $2 = 1 + \Phi(D_3) - (-1)$



SUCC(c) = d



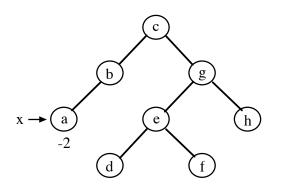
In general: rank, r(x), of node x is r(root) = 0, $r(x \rightarrow left) = r(x) - 1$, $r(x \rightarrow right) = r(x) + 1$



For INIT for *postorder*, must stop at a.

$$c_1 = 2, \hat{c}_1 = 0, \text{and } \hat{c}_1 = c_1 + \Phi(D_1) - \Phi(D_0)$$

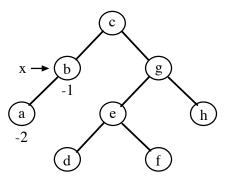
 $0 = 2 + \Phi(D_1) - 0$



SUCC(a) = b

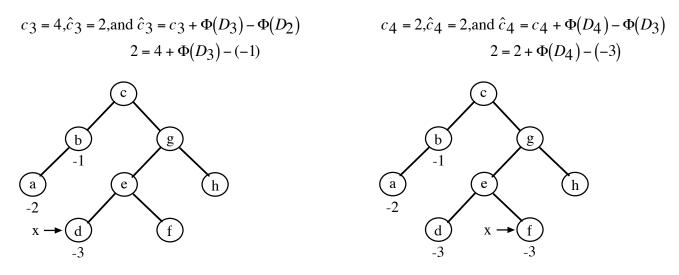
$$c_2 = 1, \hat{c}_2 = 2, \text{and } \hat{c}_2 = c_2 + \Phi(D_2) - \Phi(D_1)$$

 $2 = 1 + \Phi(D_2) - (-2)$

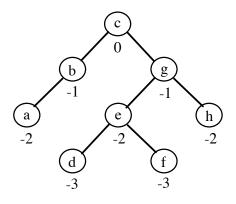


SUCC(b) = d

SUCC(d) = f



In general: rank, r(x), of node x is r(root) = 0, $r(x \rightarrow left) = r(x) - 1$, $r(x \rightarrow right) = r(x) - 1$



For *preorder* (not shown): rank, r(x), of node x is r(root) = 0, $r(x \rightarrow left) = r(x) + 1$, $r(x \rightarrow right) = r(x) + 1$

Aside: If non-negative ranks/potential are desired (e.g. for inorder and postorder),

then make $r(root) = D_0$ = height of tree (or number of nodes if height is unknown).

DYNAMIC TABLE GROWTH - CLRS 17.4

Applies to tables with embedded free space.

Periodic reorganization takes $\Theta(n)$ time . . .

Fixed vs. fractional growth and amortizing reorganization cost over all inserts

Deletion issues

CLRS PROBLEM 17-2 – Making binary search dynamic

Related to binomial heaps in Notes 7

Representation of dictionary with *n* items

Binary searches to find item

Inserting an item in $\Theta(\log n)$ amortized time using ordered merges

Deletion?

APPLICATION OF POTENTIAL FUNCTION METHOD THIS SEMESTER ...

Comparison of online MTF lists to an (unknown) optimal strategy (Notes 4)

Splay trees (Notes 5)

Fibonacci heaps - a priority queue to improve algorithms such as Prim's and Dijkstra's (Notes 7)

Union-find trees (Notes 8) - not detailed

Push-relabel methods for maxflows (Notes 12) - not detailed

KMP string search (Notes 15) - easy