
CSE 5311 Notes 4: Self-Organizing Linear Search

(Last updated 6/18/14 4:21 PM)

What is the optimal way to organize a static list for searching?

1. By decreasing access probability - optimal static/fixed ordering.

2. Key order - if misses will be “frequent”, to avoid searching entire list.

Other Considerations:

1. Access probabilities may change (or may be unknown).

2. Set of keys may change.

These lead to the pursuit of dynamically optimal (online) data structures whose adaptive behavior is

within a constant factor of an optimal (offline) strategy.

 Online - must process each request before the next request is revealed.

 Offline - given the entire sequence of requests before any processing. (“knows the future”)

ASIDE – THE SKI RENTAL PROBLEM (Reference: S. Phillips and J. Westbrook, “On-Line Algorithms:

Competitive Analysis and Beyond”)

Cost of skiing:

 Buy skis = $C

 Rent skis one time = $1

 You have never skied ⇒ You don’t know how many times (i) you will ski.

If you knew i . . .

 i ≤ C ⇒ Rent C ≤ i ⇒ Buy

So, the optimal (offline) strategy yields a cost of

€

min i,c().

Deterministic (online) strategy: Rent C – 1 times, then buy.

Cost for different scenarios:

 i < C C < i i = C

Maximum ratio of online to offline = Competitive Ratio

 2
Can CR be improved?

Let strategy

€

Aj be:

 Rent up to j - 1 times

 Buy on jth trip

Worst-case CR for a particular

€

Aj :

 j ≤ C: Suppose i = j

€

CR = i−1+C
i

2 ≤ CR ≤ C

 j > C: Suppose i = C

€

CR = j−1+C
C ≥ 2

But, the expected CR can be improved by randomizing the choice of j to weaken the adversary:

 Knows the algorithms (strategies)

 Knows the distribution for j

 Does not know j

 (S. Ben-David et.al., “On the Power of Randomization in Online Algorithms”)

Determining the optimal distribution (optimal mixed strategy from game theory):

 Let

€

Aj k() = cost of

€

Aj for skiing k times

€

π j= probability that

€

Aj is chosen

€

A1 1() A2 1() ! AC 1()
A1 2() A2 2() ! AC 2()
" " # "

A1 C() A2 C() ! AC C()

"

$
$
$
$

%

&

'
'
'
'

(π 1
(π 2
"
(π C

"

$
$
$
$

%

&

'
'
'
'

=

1
2
"
C

"

$
$
$
$

%

&

'
'
'
'

 Solve for

€

" π 1! " π C

 CR =

€

α = 1

π j
j=1

C
∑

€

" π j
j=1

C
∑ ≠1

&

'

(
(

)

*

+
+

 3

€

π j =α $ π j

Closed form:

€

α = 1

1+ 1
C−1()C−1

+1 ≈1.582 = e
e−1as C→∞

€

πi=α−1C
C
C−1()

i

CONCEPTS OF SELF-ORGANIZING LINEAR SEARCH

Have list adapt to give better performance.

Advantages:

 Simple to code.

 Convenient for situations with relatively small # of elements that does not justify more elaborate

mechanism.

 Useful for some user interfaces.

Access Distributions for Probabilistic Analysis:

 Uniform - Theoretically convenient

 80-20 (or 90-10) Rule

 Zipf - n items,

€

Pi = 1
iHn

,

€

Hn = 1
kk=1

n
∑

Since distribution may be unknown or changing, we are dealing with

 Locality (temporary heavy accesses)

 vs.

 Convergence (obtaining optimal ordering)

Implementation Approaches

 Move-to-front (good locality)

 Transpose (Slow to converge. Alternating request anomaly.)

 4
 Count - Number of accesses is stored in each record (or use CLRS problem 5-1 to reduce bits).

 Sort records in decreasing count order.

 Move-ahead-k: more aggressive than transpose

PROBABILISTIC ANALYSIS

Markov Model (iterative solver available on course webpage: soList.c)

 Permutation of list ⇔ state

 Operation on list ⇔ transition with probability

 Analysis:

1. System of linear equations ⇒ probability of being in each state

2. Probability of each state ⇒ expected # of probes for retrieval

Move-to-front on list with 2 elements and Zipf’s

€

P1 = 1
1H2

= 1
1 11+12()

= 23

P2 = 1
2H2

= 1
2 11+12()

= 13

1
2

2
12/3

2/3

1/3

1/3

1. Find probabilities for being in each of the two states.

€

Use P
1
2
"

$
%

&
' = 2

3P
1
2
"

$
%

&
' + 2

3P
2
1
"

$
%

&
' P

i
j
"

$
%

&
' is the probability of the list having element i before element j.

 P
2
1
"

$
%

&
' = 1

3P
1
2
"

$
%

&
' + 1

3P
2
1
"

$
%

&
'

and 1= P
1
2
"

$
%

&
' + P

2
1
"

$
%

&
'

to obtain P
1
2
"

$
%

&
' = 2

3 P
2
1
"

$
%

&
' = 1

3

 5
2. Expected # of probes =

€

P
1
2
"

$
%

&
' 1•P1 + 2•P2() + P

2
1
"

$
%

&
' 1•P2 + 2•P1()

= 23 1• 23 + 2• 13() + 13 1• 13 + 2• 23() = 139

Can generalize to get large, sparse system of equations for any n and any distribution. Consider n=3.

1. Find probabilities for being in each of the 3!=6 states.

€

Use P
i
j
k

"

$
$ $

%

&

'
' '

= piP
i
j
k

"

$
$ $

%

&

'
' '

+ piP
j
i
k

"

$
$ $

%

&

'
' '

+ piP
j
k
i

"

$
$ $

%

&

'
' '
 for five of the six states

and 1= P
1
2
3

"

$
$ $

%

&

'
' '

+ P
1
3
2

"

$
$ $

%

&

'
' '

+ P
2
1
3

"

$
$ $

%

&

'
' '

+ P
2
3
1

"

$
$ $

%

&

'
' '

+ P
3
1
2

"

$
$ $

%

&

'
' '

+ P
3
2
1

"

$
$ $

%

&

'
' '

to obtain the probability of being in each of the six states.

2. Expected # of probes =

€

P
1
2
3

"

$
$ $

%

&

'
' '
1•P1 + 2•P2 + 3•P3() + P

1
3
2

"

$
$ $

%

&

'
' '
1•P1 + 2•P3 + 3•P2() + P

2
1
3

"

$
$ $

%

&

'
' '
1•P2 + 2•P1 + 3•P3()

+P
2
3
1

"

$
$ $

%

&

'
' '
1•P2 + 2•P3 + 3•P1() + P

3
1
2

"

$
$ $

%

&

'
' '
1•P3 + 2•P1 + 3•P2() + P

3
2
1

"

$
$ $

%

&

'
' '
1•P3 + 2•P2 + 3•P1()

Rivest obtained closed form for move-to-front

€

Expected # of probes = 1
2 +

PiPj
Pi+Pj1≤i≤n

1≤ j≤n

∑

For uniform probabilities (all

€

Pi = 1n), the closed form gives:

€

1
2 + n2

1
n•1n
1
n+ 1n

= 12 + n
2 = n+1

2

(Aside: For Zipf’s, gives 40% more probes than optimal static ordering.)

 6
ANALYSIS OF COUNT STRATEGY VS. OPTIMAL FIXED/STATIC ORDER

1. Suppose all elements are equally likely (uniform distribution).

 Q. Worst case sequence?

 A. Rotate requests such that last list element is always requested.

 Q. Compare expected number of probes per request.

 A. Count uses n probes

 Optimal fixed uses

€

n+1
2 probes Count = 2 • Optimal - 1

2. Suppose

€

P1 ≥ P2 ≥ P3 ≥! ≥ Pn

 Suppose total number of requests is m:

€

mP1 ≥ mP2 ≥ mP3 ≥! ≥ mPn

 Q. Worst case sequence?

 A. Example: m=1000 n=4 P1=0.4 P2=0.3 P3=0.2 P4=0.1

 400 300 200 100

 300 200 100 0

 200 100 0 0

 100 0 0 0

 1. Perform

€

mnPn requests cycling among all n elements (n probes each).

 2. Perform

€

m n −1() Pn−1 − Pn() requests cycling among n - 1 elements (n - 1 probes each).

 3. Perform

€

m n − 2() Pn−2 − Pn−1() requests cycling among n - 2 elements (n - 2 probes each).

. . .
 Q. Compare expected number of probes per request.

 A. Optimal fixed has expected probes =

€

iPi
i=1

n
∑

 7
 Count uses twice the expected number of probes as the optimal fixed order in the worst case,
 so Count is statically optimal (within a constant of the optimal fixed ordering):

€

Total Probes = mn2Pn + Pi − Pi+1()
i=1

n−1
∑ i2m

Expected Probes = n2Pn + Pi − Pi+1()
i=1

n−1
∑ i2 = Pii

2

i=1

n
∑ − Pi i −1()2

i=2

n
∑

 = Pii
2

i=1

n
∑ − Pi i

2 − 2i +1$
%
& '

(
)

i=2

n
∑

 = Pi 2i −1()
i=1

n
∑ = 2 iPi

i=1

n
∑ − Pi

i=1

n
∑ = 2 •optimal −1

Count is not dynamically optimal (not guaranteed to be within a constant of the best offline strategy).

MOVE-TO-FRONT (MTF) ONLINE STRATEGY VS. OPTIMAL OFFLINE STRATEGY

(Similar to CLRS problem 17-5. From D.D.Sleator and R.E. Tarjan, “Amortized Efficiency of List
Update and Paging Rules”, CACM 28 (2), Feb. 1985,
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2786.2793)

Key Differences:

 MTF is given requests one-at-a-time and thus applies an “obvious” online strategy

 1) Go down the list to the requested item

 2) Bring it to the front of the list

OPT is given the entire sequence of accesses (e.g. offline) before any searching or adjustments
are applied. (There is no charge for the computation to determine the actions. This “robot
scheduling” problem is NP-hard [1].)

For a request, the following “models” the cost of the processing that occurs

1) Go down the list to the requested item (charge 1 unit per item examined)

2) Optionally, bring requested item closer to the front of the list (no charge, “free”)

3) Optionally, perform “paid” transpositions on adjacent elements (charge 1 unit each)

Picker

. . .1 2 3 n
FedEx

Bins

 8
From amortized complexity:

€

ˆ c i = ci +Φ i() −Φ i −1()

ci
i=1

m
∑ +Φ m() −Φ 0() = ˆ c i

i=1

m
∑

If Φ m() −Φ 0() is never negative, then an upper bound on ˆ c i
i=1

m
∑ is an upper bound on ci

i=1

m
∑ .

Potential Function Used to Compare Two Strategies:

To simplify the analysis, assume both strategies start with same list. The lists may differ while
processing the sequence.

The potential (Φ) is the number of inversions in the MTF list with respect to the OPT list. (i.e.
count the number of pairs whose order is different in the two lists.) Intuitively, this is the cost
for MTF to correct its list to correspond to OPT.

Example: Lists 2, 3, 4, 5, 1 and 3, 5, 4, 1, 2 have 5 inversions.

Defining Φ this way gives Φ(0) = 0 and Φ(i) ≥ 0, so

€

Φ m() −Φ 0() is never negative .

To compare MTF to OPT (without detailing OPT), the amortized cost (

€

ˆ c i) of each MTF operation is
bounded by the actual cost of the corresponding OPT operation.

Before processing ACCESS to some X

MTF

OPT

1

1

n

n

“West” “East”

X

X

k

j

|W| + |WE| |E| + |EW|

|W| + |EW| |E| + |WE|

W = Items “west” of X in both lists E = Items “east” of X in both lists

WE = Items west of X in MTF, but east of X in OPT

EW = Items east of X in MTF, but west of X in OPT

 9
Observations:

 |W| + |EW| + 1 = j (i) From OPT diagram

 k = |W| + |WE| + 1 From MTF diagram

 k - 1 - |WE| = |W| (ii) Algebra on previous step

 k - |WE| + |EW| = j Add (i) and (ii), then simplify

 k - |WE| ≤ j From previous step and fact that |EW| ≥ 0

Amortized cost of ACCESS of X (by MTF)

 Search + |W| new inversions - |WE| lost inversions

 k + (k - 1 - |WE|) - |WE| = 2(k - |WE|) - 1 ≤ 2j - 1

BUT, OPT list also changes (but details are not needed)

MTF

OPT

1

1

n

n

X

X

k

j

f free transpositions

p paid transpositions

k-1 moved right

•

•

 Actual cost of OPT = j + p

 “Correction” to Δ in Φ ≤ -f for lost inversions + p for new inversions

So, after accessing and updating both lists, the amortized cost of MTF ACCESS is

€

ˆ c i ≤ k + k - 1 - |WE| - |WE| - f + p ≤ 2j - 1 - f + p ≤ 2j - 1 + 2p ≤ 2OPT - 1

Based on the observation that

€

an upper bound on ˆ c i
i=1

m
∑ is an upper bound on ci

i=1

m
∑ , MTF is dynamically

optimal.

 10
[1] C. Ambühl, “Offline List Update is NP-Hard”, Lecture Notes in Computer Science 1879,
Springer-Verlag, 2000.

Aside: Randomization may be used to obtain strategies with better competitive ratios.

BIT:

 Every list element has a bit that is set randomly.

 Each ACCESS complements bit, but only does MTF if bit is 1.

Achieves expected CR ≤ 1.75. Other methods achieve 1.6.

(Recent related paper: S. Angelopoulos and P. Schweitzer, “Paging and List Update under Bijective
Analysis”, JACM 60, 2, 2013,
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2450142.2450143.)

