PAGE  
2

CSE 5311 Notes 5:  Trees

(Last updated 6/4/13 4:12 PM)

What is the optimal way to organize a static tree for searching?

An optimal (static) binary search tree is significantly more complicated to construct than an optimal list.

1.
Assume access probabilities are known:


keys are 
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2.
Assume that levels are numbered with root at level 0.  Minimize the expected number of comparisons to complete a search:
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3.
Example tree:
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4.
Solution is by dynamic programming:


Principle of optimality - solution is not optimal unless the subtrees are optimal.


Base case - empty tree, costs nothing to search.
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Recurrence for finding optimal subtree:
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tries every possible root (“k”) for the subtree with keys 
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Left:
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Right:
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Root:
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5.
Implementation:  A k-family is all cases for 
[image: image14.wmf].  k-families are computed in ascending order from 1 to n.  Suppose 
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Complexity:

[image: image37.wmf] space is obvious.  
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where k is the number of roots for each 
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[image: image41.wmf] is the number of 
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in family k.

6.
Traceback - besides having the minimum value for each 
[image: image43.wmf], it is necessary to save the subscript for the optimal root for 
[image: image44.wmf] as r[i][j].


This also leads to Knuth’s improvement:


Theorem:  The root for the optimal tree 
[image: image45.wmf] must have a key with subscript no less than the key subscript for the root of the optimal tree for 
[image: image46.wmf] and no greater than the key subscript for the root of optimal tree 
[image: image47.wmf].  (These roots are computed in the preceding family.)


Proof:


1.
Consider adding 
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[image: image50.wmf].  Optimal tree for 
[image: image51.wmf] must keep the same key at the root or use one further to the right.
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2.
Consider adding 
[image: image53.wmf] and 
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[image: image55.wmf].  Optimal tree for 
[image: image56.wmf] must keep the same key at the root or use one further to the left.
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7.
Analysis of Knuth’s improvement.


Each 
[image: image58.wmf] case for k-family will vary in the number of roots to try, but overall time is reduced to 
[image: image59.wmf] by using a telescoping sum:



[image: image60.wmf]
n=7;

q[0]=0.06;

p[1]=0.04;

q[1]=0.06;

p[2]=0.06;

q[2]=0.06;

p[3]=0.08;

q[3]=0.06;

p[4]=0.02;

q[4]=0.05;

p[5]=0.10;

q[5]=0.05;

p[6]=0.12;

q[6]=0.05;

p[7]=0.14;

q[7]=0.05;

for (i=1;i<=n;i++)

  key[i]=i;

w[0][0]=0.060000

w[0][1]=0.160000

w[0][2]=0.280000

w[0][3]=0.420000

w[0][4]=0.490000

w[0][5]=0.640000

w[0][6]=0.810000

w[0][7]=1.000000

w[1][1]=0.060000

w[1][2]=0.180000

w[1][3]=0.320000

w[1][4]=0.390000

w[1][5]=0.540000

w[1][6]=0.710000

w[1][7]=0.900000

w[2][2]=0.060000

w[2][3]=0.200000

w[2][4]=0.270000

w[2][5]=0.420000

w[2][6]=0.590000

w[2][7]=0.780000

w[3][3]=0.060000

w[3][4]=0.130000

w[3][5]=0.280000

w[3][6]=0.450000

w[3][7]=0.640000

w[4][4]=0.050000

w[4][5]=0.200000

w[4][6]=0.370000

w[4][7]=0.560000

w[5][5]=0.050000

w[5][6]=0.220000

w[5][7]=0.410000

w[6][6]=0.050000

w[6][7]=0.240000

w[7][7]=0.050000

Counts - root trick 44 without root trick 77

Average probe length is 2.680000

trees in parenthesized prefix

c(0,0) cost 0.000000 

c(1,1) cost 0.000000 

c(2,2) cost 0.000000 

c(3,3) cost 0.000000 

c(4,4) cost 0.000000 

c(5,5) cost 0.000000 

c(6,6) cost 0.000000 

c(7,7) cost 0.000000 

c(0,1) cost 0.160000 1

c(1,2) cost 0.180000 2

c(2,3) cost 0.200000 3

c(3,4) cost 0.130000 4

c(4,5) cost 0.200000 5

c(5,6) cost 0.220000 6

c(6,7) cost 0.240000 7

c(0,2) cost 0.440000 2(1,)

c(1,3) cost 0.500000 3(2,)

c(2,4) cost 0.400000 3(,4)

c(3,5) cost 0.410000 5(4,)

c(4,6) cost 0.570000 6(5,)

c(5,7) cost 0.630000 7(6,)

c(0,3) cost 0.780000 2(1,3)

c(1,4) cost 0.700000 3(2,4)

c(2,5) cost 0.820000 4(3,5)

c(3,6) cost 0.800000 5(4,6)

c(4,7) cost 1.000000 6(5,7)

c(0,4) cost 1.050000 2(1,3(,4))

c(1,5) cost 1.130000 3(2,5(4,))

c(2,6) cost 1.210000 5(3(,4),6)

c(3,7) cost 1.290000 6(5(4,),7)

c(0,5) cost 1.490000 3(2(1,),5(4,))

c(1,6) cost 1.630000 5(3(2,4),6)

c(2,7) cost 1.810000 5(3(,4),7(6,))

c(0,6) cost 2.050000 3(2(1,),5(4,6))

c(1,7) cost 2.230000 5(3(2,4),7(6,))

c(0,7) cost 2.680000 5(2(1,3(,4)),7(6,))

3: c(0,2) + c(3,7) + w[0][7]

   0.44     1.29     1.0    = 2.73

4: c(0,3) + c(4,7) + w[0][7]

   0.78     1.0      1.0    = 2.78
5: c(0,4) + c(5,7) + w[0][7]

   1.05     0.63     1.0    = 2.68
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Splay Trees

Self-adjusting counterpart to AVL and red-black trees

Advantages - 1) no balance bits, 2) some help with locality of reference, 3) amortized complexity is same as AVL and red-black trees

Disadvantage - worst-case for operation is O(n)

Algorithms are based on rotations to splay the last node processed (x) to root position.

Zig-Zig:
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1.
Single right rotation at z.

2.
Single right rotation at y.

(+ symmetric case)

Zig-Zag:
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Double right rotation at z.

(+ symmetric case)

Zig:  Applies ONLY at the root
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Single right rotation at y.

(+ symmetric case)

Insertion:  Attach new leaf and then splay to root.

Deletion:



1.
Access node x to delete, including splay to root.
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2.
Access predecessor x’ in left subtree A and splay to root of left subtree.



3.
Take right subtree of x and make it the right subtree of x’.

Amortized Analysis of Splaying for Retrieval (aside):



Actual cost (rotations) is 2 for zig-zig and zig-zag, but 1 for zig.



S(x) = number of nodes in subtree with x as root (“size”)



r(x) = lg S(x) (“rank”)
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Examples:
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Now suppose that the leaf in the second example is retrieved.  Two zig-zigs occur.
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Another example of splaying.  There will be a zig-zag and a zig.
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Compute amortized complexity of individual steps and then the complete splaying sequence:

Lemma:  
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Proof:  
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Access Lemma:


Suppose
1) x is node being splayed





2) subtree rooted by x has
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then
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Proof:  Proceeds by considering each of the three cases for splaying:

Zig-Zig:
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Lemma conditions are satisfied, so 
[image: image79.wmf].  Applying logs to ( and ( gives:
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which may be rearranged as:
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Add this to (*) to obtain:
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Zig-Zag:
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Lemma may be applied by observing that 
[image: image85.wmf] and thus
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By lemma, 
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Zig:
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Bound on total amortized cost for an entire splay sequence:
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Asides:

If each node is assigned a positive weight and the size of node x, S(x), is the sum of the weights in the subtree, other results may be shown such as:

Static Optimality:  Splay trees (online) perform within a constant factor of the optimal (static) binary search tree (offline) for a sequence of requests.

But the elusive goal remains:

Dynamic Optimality Conjecture:  Splay trees (online) perform within a constant factor of the optimal (dynamic) binary search tree (offline) for a sequence of requests.

In principle, this may be attacked like “MTF is dynamically optimal”.  Many difficulties arise . . .

Potential Function:  Minimum number of rotations to transform a BST into another BST?

Transformation:  Suppose a BST with n nodes has keys 1 . . . n.  Construct the regular (n+2)-gon with vertices 0, 1, 2, . . ., n+1.  If the BST has a subtree with root i, minimum key 
[image: image93.wmf], and maximum key 
[image: image94.wmf], then include edges 
[image: image95.wmf] and 
[image: image96.wmf].  Also, include edge 
[image: image97.wmf].  These edges give a triangulated polygon.

(A bound of 
[image: image98.wmf] as been shown:  http://erikdemaine.org/papers/Tango_FOCS2004/)


A BST rotation corresponds to “flipping” the diagonal of a quadrilateral:


[image: image99.wmf]

May also rotate the original BST left at 1 and right at 5.

CSE 5311 Notes 6:  Skip Lists

(Last updated 6/4/13 4:12 PM)

A randomized data structure with performance characteristics similar to treaps, i.e. another alternative to balanced binary search trees.

Paper available at ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf.

Advantages:



Simple algorithms, especially for ordered retrieval



Highly likely to perform as well as balanced trees.



Less space:





No balance bits.





Can be tuned to use fewer pointers per node (on average).

Disadvantages:



Doesn’t handle extreme changes in number of records well.



Bad worse case (similar to hashing), but depends on random generator rather than data.



Burden on memory management due to varying size nodes.
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Design Decision :



Probability 0 < p ( 0.5 (0.25 typical) for determining number of pointers in a new node:




[image: image101.wmf] = probability of a node having at least k pointers
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Characteristics:





Low p ( Fewer pointers in structure





                Increased search time (always expected to be logarithmic).





High p ( More pointers in structure





                 Decreased search time
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