PAGE
2

CSE 5311 Notes 5: Trees

(Last updated 6/4/13 4:12 PM)

What is the optimal way to organize a static tree for searching?

An optimal (static) binary search tree is significantly more complicated to construct than an optimal list.

1.
Assume access probabilities are known:

keys are
[image: image1.wmf]

[image: image2.wmf]
2.
Assume that levels are numbered with root at level 0. Minimize the expected number of comparisons to complete a search:

[image: image3.wmf]
3.
Example tree:

[image: image4.wmf]
4.
Solution is by dynamic programming:

Principle of optimality - solution is not optimal unless the subtrees are optimal.

Base case - empty tree, costs nothing to search.

[image: image5.wmf]

[image: image6.wmf]

Recurrence for finding optimal subtree:

[image: image7.wmf]

tries every possible root (“k”) for the subtree with keys
[image: image8.wmf]

[image: image9.wmf]

Left:

[image: image10.wmf]

Right:

[image: image11.wmf]

Root:

[image: image12.wmf]
[image: image13.wmf]
5.
Implementation: A k-family is all cases for
[image: image14.wmf]. k-families are computed in ascending order from 1 to n. Suppose
[image: image15.wmf]:

_0
1
2
3
4_
5

[image: image16.wmf]

[image: image17.wmf]

[image: image18.wmf]

[image: image19.wmf]

[image: image20.wmf]

[image: image21.wmf]

[image: image22.wmf]

[image: image23.wmf]

[image: image24.wmf]

[image: image25.wmf]

[image: image26.wmf]

[image: image27.wmf]

[image: image28.wmf]

[image: image29.wmf]

[image: image30.wmf]

[image: image31.wmf]

[image: image32.wmf]

[image: image33.wmf]

[image: image34.wmf]

[image: image35.wmf]

[image: image36.wmf]

Complexity:

[image: image37.wmf] space is obvious.
[image: image38.wmf] time from:

[image: image39.wmf]

where k is the number of roots for each
[image: image40.wmf] and
[image: image41.wmf] is the number of
[image: image42.wmf] cases

in family k.

6.
Traceback - besides having the minimum value for each
[image: image43.wmf], it is necessary to save the subscript for the optimal root for
[image: image44.wmf] as r[i][j].

This also leads to Knuth’s improvement:

Theorem: The root for the optimal tree
[image: image45.wmf] must have a key with subscript no less than the key subscript for the root of the optimal tree for
[image: image46.wmf] and no greater than the key subscript for the root of optimal tree
[image: image47.wmf]. (These roots are computed in the preceding family.)

Proof:

1.
Consider adding
[image: image48.wmf] and
[image: image49.wmf] to tree for
[image: image50.wmf]. Optimal tree for
[image: image51.wmf] must keep the same key at the root or use one further to the right.

[image: image52.wmf]

2.
Consider adding
[image: image53.wmf] and
[image: image54.wmf] to tree for
[image: image55.wmf]. Optimal tree for
[image: image56.wmf] must keep the same key at the root or use one further to the left.

[image: image57.wmf]
7.
Analysis of Knuth’s improvement.

Each
[image: image58.wmf] case for k-family will vary in the number of roots to try, but overall time is reduced to
[image: image59.wmf] by using a telescoping sum:

[image: image60.wmf]
n=7;

q[0]=0.06;

p[1]=0.04;

q[1]=0.06;

p[2]=0.06;

q[2]=0.06;

p[3]=0.08;

q[3]=0.06;

p[4]=0.02;

q[4]=0.05;

p[5]=0.10;

q[5]=0.05;

p[6]=0.12;

q[6]=0.05;

p[7]=0.14;

q[7]=0.05;

for (i=1;i<=n;i++)

 key[i]=i;

w[0][0]=0.060000

w[0][1]=0.160000

w[0][2]=0.280000

w[0][3]=0.420000

w[0][4]=0.490000

w[0][5]=0.640000

w[0][6]=0.810000

w[0][7]=1.000000

w[1][1]=0.060000

w[1][2]=0.180000

w[1][3]=0.320000

w[1][4]=0.390000

w[1][5]=0.540000

w[1][6]=0.710000

w[1][7]=0.900000

w[2][2]=0.060000

w[2][3]=0.200000

w[2][4]=0.270000

w[2][5]=0.420000

w[2][6]=0.590000

w[2][7]=0.780000

w[3][3]=0.060000

w[3][4]=0.130000

w[3][5]=0.280000

w[3][6]=0.450000

w[3][7]=0.640000

w[4][4]=0.050000

w[4][5]=0.200000

w[4][6]=0.370000

w[4][7]=0.560000

w[5][5]=0.050000

w[5][6]=0.220000

w[5][7]=0.410000

w[6][6]=0.050000

w[6][7]=0.240000

w[7][7]=0.050000

Counts - root trick 44 without root trick 77

Average probe length is 2.680000

trees in parenthesized prefix

c(0,0) cost 0.000000

c(1,1) cost 0.000000

c(2,2) cost 0.000000

c(3,3) cost 0.000000

c(4,4) cost 0.000000

c(5,5) cost 0.000000

c(6,6) cost 0.000000

c(7,7) cost 0.000000

c(0,1) cost 0.160000 1

c(1,2) cost 0.180000 2

c(2,3) cost 0.200000 3

c(3,4) cost 0.130000 4

c(4,5) cost 0.200000 5

c(5,6) cost 0.220000 6

c(6,7) cost 0.240000 7

c(0,2) cost 0.440000 2(1,)

c(1,3) cost 0.500000 3(2,)

c(2,4) cost 0.400000 3(,4)

c(3,5) cost 0.410000 5(4,)

c(4,6) cost 0.570000 6(5,)

c(5,7) cost 0.630000 7(6,)

c(0,3) cost 0.780000 2(1,3)

c(1,4) cost 0.700000 3(2,4)

c(2,5) cost 0.820000 4(3,5)

c(3,6) cost 0.800000 5(4,6)

c(4,7) cost 1.000000 6(5,7)

c(0,4) cost 1.050000 2(1,3(,4))

c(1,5) cost 1.130000 3(2,5(4,))

c(2,6) cost 1.210000 5(3(,4),6)

c(3,7) cost 1.290000 6(5(4,),7)

c(0,5) cost 1.490000 3(2(1,),5(4,))

c(1,6) cost 1.630000 5(3(2,4),6)

c(2,7) cost 1.810000 5(3(,4),7(6,))

c(0,6) cost 2.050000 3(2(1,),5(4,6))

c(1,7) cost 2.230000 5(3(2,4),7(6,))

c(0,7) cost 2.680000 5(2(1,3(,4)),7(6,))

3: c(0,2) + c(3,7) + w[0][7]

 0.44 1.29 1.0 = 2.73

4: c(0,3) + c(4,7) + w[0][7]

 0.78 1.0 1.0 = 2.78
5: c(0,4) + c(5,7) + w[0][7]

 1.05 0.63 1.0 = 2.68
[image: image61.wmf]
Splay Trees

Self-adjusting counterpart to AVL and red-black trees

Advantages - 1) no balance bits, 2) some help with locality of reference, 3) amortized complexity is same as AVL and red-black trees

Disadvantage - worst-case for operation is O(n)

Algorithms are based on rotations to splay the last node processed (x) to root position.

Zig-Zig:

[image: image62.wmf]
1.
Single right rotation at z.

2.
Single right rotation at y.

(+ symmetric case)

Zig-Zag:

[image: image63.wmf]
Double right rotation at z.

(+ symmetric case)

Zig: Applies ONLY at the root

[image: image64.wmf]
Single right rotation at y.

(+ symmetric case)

Insertion: Attach new leaf and then splay to root.

Deletion:

1.
Access node x to delete, including splay to root.

[image: image65.wmf]

2.
Access predecessor x’ in left subtree A and splay to root of left subtree.

3.
Take right subtree of x and make it the right subtree of x’.

Amortized Analysis of Splaying for Retrieval (aside):

Actual cost (rotations) is 2 for zig-zig and zig-zag, but 1 for zig.

S(x) = number of nodes in subtree with x as root (“size”)

r(x) = lg S(x) (“rank”)

[image: image66.wmf]

Examples:

[image: image67.wmf]

Now suppose that the leaf in the second example is retrieved. Two zig-zigs occur.

[image: image68.wmf]

[image: image69.wmf]

Another example of splaying. There will be a zig-zag and a zig.

[image: image70.wmf]

[image: image71.wmf]
Compute amortized complexity of individual steps and then the complete splaying sequence:

Lemma:
[image: image72.wmf]
Proof:
[image: image73.wmf]
Access Lemma:

Suppose
1) x is node being splayed

2) subtree rooted by x has

[image: image74.wmf]

then

[image: image75.wmf]
Proof: Proceeds by considering each of the three cases for splaying:

Zig-Zig:

[image: image76.wmf]

[image: image77.wmf]

[image: image78.wmf]

Lemma conditions are satisfied, so
[image: image79.wmf]. Applying logs to (and (gives:

[image: image80.wmf]

which may be rearranged as:

[image: image81.wmf]

Add this to (*) to obtain:

[image: image82.wmf]
Zig-Zag:

[image: image83.wmf]

[image: image84.wmf]

Lemma may be applied by observing that
[image: image85.wmf] and thus

[image: image86.wmf]

By lemma,
[image: image87.wmf]

[image: image88.wmf]

[image: image89.wmf]
Zig:

[image: image90.wmf]

[image: image91.wmf]
Bound on total amortized cost for an entire splay sequence:

[image: image92.wmf]
Asides:

If each node is assigned a positive weight and the size of node x, S(x), is the sum of the weights in the subtree, other results may be shown such as:

Static Optimality: Splay trees (online) perform within a constant factor of the optimal (static) binary search tree (offline) for a sequence of requests.

But the elusive goal remains:

Dynamic Optimality Conjecture: Splay trees (online) perform within a constant factor of the optimal (dynamic) binary search tree (offline) for a sequence of requests.

In principle, this may be attacked like “MTF is dynamically optimal”. Many difficulties arise . . .

Potential Function: Minimum number of rotations to transform a BST into another BST?

Transformation: Suppose a BST with n nodes has keys 1 . . . n. Construct the regular (n+2)-gon with vertices 0, 1, 2, . . ., n+1. If the BST has a subtree with root i, minimum key
[image: image93.wmf], and maximum key
[image: image94.wmf], then include edges
[image: image95.wmf] and
[image: image96.wmf]. Also, include edge
[image: image97.wmf]. These edges give a triangulated polygon.

(A bound of
[image: image98.wmf] as been shown: http://erikdemaine.org/papers/Tango_FOCS2004/)

A BST rotation corresponds to “flipping” the diagonal of a quadrilateral:

[image: image99.wmf]

May also rotate the original BST left at 1 and right at 5.

CSE 5311 Notes 6: Skip Lists

(Last updated 6/4/13 4:12 PM)

A randomized data structure with performance characteristics similar to treaps, i.e. another alternative to balanced binary search trees.

Paper available at ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf.

Advantages:

Simple algorithms, especially for ordered retrieval

Highly likely to perform as well as balanced trees.

Less space:

No balance bits.

Can be tuned to use fewer pointers per node (on average).

Disadvantages:

Doesn’t handle extreme changes in number of records well.

Bad worse case (similar to hashing), but depends on random generator rather than data.

Burden on memory management due to varying size nodes.

[image: image100.png]QTR EC o OC g BT g DT o FC o TC o M g HIC o FHC 00

EEack

iEFmER

a4

Facy F-Ea

-G

E‘m—h“"m—h

&
;

iEFac?| EXDERach

Design Decision :

Probability 0 < p (0.5 (0.25 typical) for determining number of pointers in a new node:

[image: image101.wmf] = probability of a node having at least k pointers

[image: image102.wmf]

Characteristics:

Low p (Fewer pointers in structure

 Increased search time (always expected to be logarithmic).

High p (More pointers in structure

 Decreased search time

_1085318859.unknown

_1147868177.unknown

_1147868267.unknown

_1147868292.unknown

_1147868310.unknown

_1147868395.unknown

_1305723319.unknown

_1147868301.unknown

_1147868275.unknown

_1147868282.unknown

_1147868231.unknown

_1147868250.unknown

_1147868259.unknown

_1147868241.unknown

_1147868194.unknown

_1147868202.unknown

_1147868209.unknown

_1147868185.unknown

_1147868133.unknown

_1147868151.unknown

_1147868163.unknown

_1147868170.unknown

_1147868142.unknown

_1137692698.unknown

_1147868109.unknown

_1147868124.unknown

_1147868099.unknown

_1085319577.unknown

_1085319634.unknown

_1085401907.unknown

_1085319608.unknown

_1085319078.unknown

_1085319298.unknown

_1010812537.unknown

_1085242768.unknown

_1085243071.unknown

_1085243161.unknown

_1085243230.unknown

_1085284571.unknown

_1085284592.unknown

_1085243265.unknown

_1085243190.unknown

_1085243076.unknown

_1085243120.unknown

_1085242973.unknown

_1085243043.unknown

_1085242879.unknown

_1010850717.unknown

_1010932796.unknown

_1010937938.unknown

_1011849740.unknown

_1010932873.unknown

_1010851374.unknown

_1010851672.unknown

_1010853714.unknown

_1010851491.unknown

_1010851150.unknown

_1010850317.unknown

_1010850455.unknown

_1010850573.unknown

_1010850336.unknown

_1010848905.unknown

_1010849041.unknown

_1010849956.unknown

_1010848637.unknown

_1010501652.unknown

_1010502215.unknown

_1010810807.unknown

_1010812438.unknown

_1010502237.unknown

_1010502067.unknown

_1010502089.unknown

_1010501688.unknown

_1010500868.unknown

_1010501027.unknown

_1010501488.unknown

_1010500961.unknown

_1010500394.unknown

_1010500457.unknown

_1010498167.unknown

