CSE 5311 Notes 5: Trees
(Last updated 6/4/13 4:12 PM)

What is the optimal way to organize a static tree for searching?
An optimal (static) binary search tree is significantly more complicated to construct than an optimal list.
1. Assume access probabilities are known:

keysare K| <Kp <--- <Ky,

p; = probability of request for K;

g; = probability of request with K; < request < K,
qo = probability of request < K

gy = probability of request > K,

2. Assume that levels are numbered with root at level 0. Minimize the expected number of
comparisons to complete a search:

n n
> pj (KeyLevel(j) + 1) + quMissLevel(j)
j=1 j=0

3. Example tree:

3 392 3493 3q4 395

4. Solution is by dynamic programming:
Principle of optimality - solution is not optimal unless the subtrees are optimal.

Base case - empty tree, costs nothing to search.

c(i,j) — cost of subtree with keys K; 1, --,Kj
c(i,j) always includes exactly pj,1--,pj and gj,-+.q

c(i.i) =0 - Base case, no keys, just misses for g; (request between K; and Kj 1)
Recurrence for finding optimal subtree:

c(i,j)=w(i,j)+ _n]lcin (c(ik=1)+c(k.j))
I<K<]

tries every possible root (“k”) for the subtree with keys K;,1,+-.K j

w(i, j) = Pi+] +*+ Pj +qj+-+qj accounts for adding another probe for all keys in subtree :
Left: pjp1+-+ Pk-1+Gi +-qk-1

Right: ppyj+-+pj+qk+-q;

Root: pg

5. Implementation: A k-family is all cases for c(i,i + k). k-families are computed in ascending order
from 1 to n. Suppose n=35:

0 1 2 3 4 S

c(0,0) C(O,l) c(0,2) c(0,3) c(0,4) c(O,S)

c(l,l) c(1,2) c(1,3) c(1,4) c(1,5)

c(22) ¢(23) c(24) c(25)

c(33) c(34) <(35)

c(44) c(4.5)

c(5,5)

Complexity: O(nz) space is obvious. O(n?’) time from:

Sk(n+1-k)
k=1

where k is the number of roots for each c(i,i + k) and n +1-k is the number of c(i,i + k) cases
in family k.

6. Traceback - besides having the minimum value for each c(i, j) , 1t is necessary to save the subscript
for the optimal root for c(i, j) as r[i][j].

This also leads to Knuth’s improvement:

Theorem: The root for the optimal tree c(i o]) must have a key with subscript no less than the key
subscript for the root of the optimal tree for c(i J = 1) and no greater than the key subscript for the
root of optimal tree c(i +1, j) . (These roots are computed in the preceding family.)

Proof:

1. Consider adding p j and ¢ j to tree for c(i, Jj- 1). Optimal tree for c(i, j) must keep the same key
at the root or use one further to the right.

2. Consider adding p;,| and g; to tree for c(i +1,/). Optimal tree for c(i,j) must keep the same
key at the root or use one further to the left.

7. Analysis of Knuth’s improvement.

Each c(i, j) case for k-family will vary in the number of roots to try, but overall time is reduced to

O(nz) by using a telescoping sum:

r[1][k]-r[O]k -1]+1

v ; r[2][1+ k] - 1] k] +1
(i+1]i+ k] -[ii+ k-1]+1)= 3 +

0 k=2l 32+ k]- 2]+ K] +1
r[n -k+ 1][n] - r[n - k][n - 1] +1

n

M3
|

=21i

(r[n -k+ 1][11]— r[O][k—l]+ n-k+ 1)

M

A

(n—0+n—k+1)=

T Tas
[\®)

(2n -k+ 1) = O(nz)

\®]
b
I

[\

n=7;
qg[01=0.06;
p[11=0.04;
g[1]1=0.06;
p[2]1=0.06;
qg[2]1=0.06;
p[31=0.08;
qg[31=0.06;
pl(41=0.02;
q[41=0.05;
p[51=0.10;
qg[5]1=0.05;
p[6]1=0.12;
qg[61=0.05;
pl[71=0.14;
qg[71=0.05;
for (i=1;i<=n;i++)
key[i]=1i;

w[0]1[0]=0.060000 c(5,6) cost 0.220000 6
w[0][1]=0.160000 c(6,7) cost 0.240000 7
w[0][2]=0.280000 c(0,2) cost 0.440000 2(1,)
w[0][3]=0.420000 c(1,3) cost 0.500000 3(2,)
w[0][4]=0.490000 c(2,4) cost 0.400000 3(,4)
w[0][5]=0.640000 c(3,5) cost 0.410000 5(4,)
w[0][6]=0.810000 c(4,6) cost 0.570000 6(5,)
w[0][7]=1.000000 c(5,7) cost 0.630000 7(6,)
w[1][1]=0.060000 c(0,3) cost 0.780000 2(1,3)
w[1][2]=0.180000 c(1l,4) cost 0.700000 3(2,4)
w[1][3]=0.320000 c(2,5) cost 0.820000 4(3,5)
w[1][4]=0.390000 c(3,6) cost 0.800000 5(4,6)
w[1][5]=0.540000 c(4,7) cost 1.000000 6(5,7)
w[1][6]=0.710000 c(0,4) cost 1.050000 2(1,3(,4))
w[1][7]=0.900000 c(1,5) cost 1.130000 3(2,5(4,))
w[2][2]=0.060000 c(2,6) cost 1.210000 5(3(,4),6)
w[2][3]=0.200000 c(3,7) cost 1.290000 6(5(4,),7)
w[2][4]=0.270000 c(0,5) cost 1.490000 3(2(1,),5(4,))
w[2][5]=0.420000 c(1,6) cost 1.630000 5(3(2,4),6)
w[2][6]=0.590000 c(2,7) cost 1.810000 5(3(,4),7(6,))
w[2][7]=0.780000 c(0,6) cost 2.050000 3(2(1,),5(4,6))
w[3][31=0.060000 c(1,7) cost 2.230000 5(3(2,4),7(6,))
w[3]1[4]=0.130000 c(0,7) cost 2.680000 5(2(1,3(,4)),7(6,))
w[3]1[5]=0.280000

w[3][6]=0.450000 3: ¢(0,2) + c(3,7) + w[0][7]
w[3][7]=0.640000 0.44 1.29 1.0 =2.73
w[4][4]=0.050000

w[4][5]=0.200000 4: c(0,3) + c(4,7) + w[0][7]
w[4][6]=0.370000 0.78 1.0 1.0 = 2.78
w[4][7]1=0.560000

w[5][5]=0.050000 5: c(0,4) + c(5,7) + w[0][7]
w[5][6]=0.220000 1.05 0.63 1.0 = 2.68

w[5][7]1=0.410000
w[6][6]=0.050000
w[6][7]1=0.240000 5
w[7]1[7]1=0.050000
Counts - root trick 44 without root
trick 77
Average probe length is 2.680000 2 7

trees in parenthesized prefix
c(0,0) cost 0.000000
c(l,1) cost 0.000000

0

c(2,2) cost 0.000000
c(3,3) cost 0.000000
c(4,4) cost 0.000000
c(5,5) cost 0.000000
c(6,6) cost 0.000000
c(7,7) cost 0.000000
c(0,1) cost 0.160000 1 41
c(l,2) cost 0.180000 2
c(2,3) cost 0.200000 3
c(3,4) cost 0.130000 4
c(4,5) cost 0.200000 5

SPLAY TREES
Self-adjusting counterpart to AVL and red-black trees

Advantages - 1) no balance bits, 2) some help with locality of reference, 3) amortized complexity is
same as AVL and red-black trees

Disadvantage - worst-case for operation is O(n)

Algorithms are based on rotations to splay the last node processed (x) to root position.

Zig-7ig: 1. Single right rotation at z.
(2) (X
2. Single right rotation at y.
O 0 |
(+ symmetric case)
() A A (2)
AN AR A
Zig-Zag:

(2) (X Double right rotation at z.
(¥) A ©) (+ symmetric case)
N TALA A

Zig: Applies ONLY at the root

(y) (X) Single right rotation at y.
+ symmetric case
y A A 8 - |
AR ARA

Insertion: Attach new leaf and then splay to root.

Deletion:

1. Access node x to delete, including splay to root.

(%) (X 3

- X —

&

2. Access predecessor x’ in left subtree A and splay to root of left subtree.
3. Take right subtree of x and make it the right subtree of x’.

Amortized Analysis of Splaying for Retrieval (aside):
Actual cost (rotations) is 2 for zig-zig and zig-zag, but 1 for zig.

S(x) = number of nodes in subtree with x as root (“size”

r(x) =1g S(x) (“rank™)

Now suppose that the leaf in the second example is retrieved. Two zig-zigs occur.

S Cj = 3 C; + D After) - D(Before) =4 +532-69=242 =<1+ 3lgn = 7.96

Another example of splaying. There will be a zig-zag and a zig.

S Cj =3 C; + D After) - D(Before) =3+9.98-9.17 =381 =1+ 31gn =10.51

Compute amortized complexity of individual steps and then the complete splaying sequence:
Lemma: If >0, >0, a+ =<1, then lga +1gp <-2.

Proof: Iga +1gB =lgaf. affis maximized when a =8 = %, so max(lgo +1gf) =-2.

Access Lemma:
Suppose 1) x is node being splayed
2) subtree rooted by x has
Si-1(x) and r;_1(x) before ith step

Si(x) and r;(x) after ith step

then C; = 3r3(x) - 35_1(x), except last step which has C; =1+ 35;(x) = 3r_1 ().

Proof: Proceeds by considering each of the three cases for splaying:

Zig-7ig:

(Y} A A (¥
(X) A A (2)

)+ 1i(
=2+ 13(y) + 1i(2) = i1 (%) = 1< () ri(x) = ri-1(2)
<2+ 7(y) + 1i(2) - 211 (x) ri-1(%) s ri-1(y)
() =2475(x) +1i(2) - 27321 (x) i(y) = ri(x)

Let o = Si_l(x) , P= Si(z; ,a>0,>0,a+f= M <1. (yis absent from numerator)

Si(x)
Lemma conditions are satisfied, so lga +1g8 <-2. Applying logs to o and f§ gives:
ri_l(x) + rl(z) - 2ri(x) <-2
which may be rearranged as:
0= 273(x) = i (x) - 13(2) =2
Add this to (*) to obtain:

Ci = 3r(x) = 3r-1(x)

=2+ r(x)+r;(y) + rj(z) = i=1(x) = r;_1(y) = ri—1(z) Potential changes only in this subtree
=2+1i(y) + 1i(2) = ric1(x) = ri-1 () ri(x) = -1 (2)
(%) =2+73(y)+7i(z) - 211 (x) ri-1(x) = 121 (y)

Lemma may be applied by observing that Si(y) + Si(z) < Si(x) and thus

FOMe
By lemma, lg(28 ;) + lg(;’((i))) <2

Zig:

—r;_1(x)-ri—1(y) Potential changes only in this subtree
) ri-1(y) =7i(x)

) i(v) = ri(x)
(

<1+ 3r(x) - 3r;_1(x) ri-1(x) = ri(x)

11

Bound on total amortized cost for an entire splay sequence:

Sei="Seiv G
i=1 i=1
m—l
< 2(3;’1(x) - 3rl-_1(x)) +14 3 (x) = 3r—1(x)
i=1

= 31-1(x) = 3y (x) + 1+ 3135, (x) = 3131 (%)
=1+ 3ry(x) - 3 (x)
<1+ 3n,(x)

=1+3lgn since x is the root after the final rotation
Asides:

If each node is assigned a positive weight and the size of node x, S(x), is the sum of the weights in the
subtree, other results may be shown such as:

Static Optimality: Splay trees (online) perform within a constant factor of the optimal (static) binary
search tree (offline) for a sequence of requests.

But the elusive goal remains:

Dynamic Optimality Conjecture: Splay trees (online) perform within a constant factor of the
optimal (dynamic) binary search tree (offline) for a sequence of requests.

In principle, this may be attacked like “MTF is dynamically optimal”. Many difficulties arise . . .
Potential Function: Minimum number of rotations to transform a BST into another BST?

Transformation: Suppose a BST with n nodes has keys 1 . .. n. Construct the regular (n+2)-gon
with vertices 0, 1,2, .. .,n+1. If the BST has a subtree w1th root 7, minimum key mln() and

maximum key max() then include edges {z mm 1} and {z max + 1} Also, include edge
{O,n + 1}. These edges give a triangulated polygon.

(A bound of O(loglogn) as been shown:
http://erikdemaine.org/papers/Tango FOCS2004/)

A BST rotation corresponds to “flipping” the diagonal of a quadrilateral:

(2 @

Rotate Left Rotate Right

6@ s

May also rotate the original BST left at 1 and right at 5.

12

CSE 5311 Notes 6: SKkip Lists
(Last updated 6/4/13 4:12 PM)

A randomized data structure with performance characteristics similar to treaps, i.e. another alternative to
balanced binary search trees.

Paper available at ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf.
Advantages:
Simple algorithms, especially for ordered retrieval
Highly likely to perform as well as balanced trees.
Less space:
No balance bits.
Can be tuned to use fewer pointers per node (on average).
Disadvantages:
Doesn’t handle extreme changes in number of records well.
Bad worse case (similar to hashing), but depends on random generator rather than data.

Burden on memory management due to varying size nodes.

e AES HE S OE S FE S FE S ME s HE o HE o e i

L

b

-
*%
B 26—

NIL

?[0

?]o
S =]
?[0
=
l

iy

?IPIO

ol NIL
_—

vle
vlele
I

Lelelele) Lelele) Lols

b
E FoeX
FoeH

d e 21+ NIL
6 b~ i 17 : T e g
G T -
‘I e . 2[4 o NI
- -s 9 b 171 -
CmHC o BE S HE S ME S [S I o {26

Design Decision :

Probability 0 < p < 0.5 (0.25 typical) for determining number of pointers in a new node:

pk -1 probability of a node having at least k pointers

1

i—p = Expected number of pointers (used) in each node. (geometric sum)
Characteristics:
Low p = Fewer pointers in structure

Increased search time (always expected to be logarithmic).

High p = More pointers in structure

Decreased search time

