PAGE
17

CSE 5311 Notes 7: Priority Queues

(Last updated 6/8/08 8:46 AM)

Chart on p. 456, CLRS (binary, binomial, Fibonacci heaps)

Make-Heap

Insert

Minimum

Extract-Min

Union (Meld/Merge)

Decrease-Key

Delete

Applications - sorting (?), scheduling, greedy algorithms, discrete event simulation

Ordered lists - Suitable if n is extremely small (some simulations)

Binary trees - O(log n) operations, but larger constant than binary heaps. O(n) for Union.

Binary heap (review)

Conceptual structure

Ordering criteria

Mapping to table

O(log n) operations, except Union

[image: image1.wmf]

d-heap

Generalizes binary heap with fan-out of d to get shallower structure.

Similar details as binary heap for mapping to an array.

Useful when many Decrease-Keys occur (example: Prim’s MST,
[image: image2.wmf] - use d = |E| /|V|)

General issue - single-valued nodes vs. nodes containing table (“sack”) with O(log n) values

Table is in ascending priority order.

Most operations operate locally on one table.

If the first table element changes (minheap), then traditional heap processing occurs.

Tree structure must be linked, i.e. mapping nodes to table is too slow.

[image: image3.wmf]
Leftist Heaps

Binary tree, heap ordered

Each node has null path length

Either subtree empty (NPL = 0

Otherwise NPL = 1 + min(left(NPL, right(NPL) (Empty tree - view NPL as -1)

Leftist property: left(NPL (right(NPL at all nodes.

Leftmost path length is O(n).

Rightmost path length is O(log n).

Leftist tree with r nodes on right path must have at least 2r - 1 nodes.

(e.g. NPL is height of maximum embedded complete binary tree)

Operations take O(log n) by avoiding left paths and emphasizing right paths.

Occasionally, left and right subtrees must be swapped.

Example: Extract-Min
[image: image4.wmf]

Root has item to return.

Recursively, merge right paths of two subheaps (top-down) keeping same left children.

[image: image5.wmf]

Swap subtrees, bottom-up, if necessary to restore leftist property.

[image: image6.wmf]
Union takes O(log n) time, so use to implement other operations.

BUT, Decrease-Key may involve a node ((n) away from root, so swapping through ancestors is too slow.

1.
Find node X via another data structure.

2.
Cut X’s subtree away from parent.

3.
Update NPL on former ancestors of X, swapping subtrees to restore leftist property.

Decrease in NPL continues to propagate only when ancestor NPL decreases.

(Implies O(log n)) Ancestors in diagram are marked with before/after NPL.

[image: image7.wmf]
4.
Union X’s subtree and modified original tree.

Binomial Heaps

Mergeable Heap - in O(log n) time

Based on Binomial Tree (with heap ordering) - |Br| = 2r
[image: image8.wmf]
[image: image9.wmf]
Binomial Heap = Forest of Binomial Trees

Each node includes priority, leftmost child, right sibling, parent, and degree.

Tree roots are in a singly-linked list ordered by ascending degrees.

Children are in a singly-linked list ordered by descending degrees (could also use ascending).

“Sack” idea can be used to reduce both space and time.

Can’t have two Bi trees for any i (Use binary representation of n.

Representation is useful for combining 2 Bi trees:

[image: image10.wmf]
Union of two binomial heaps

[image: image11.wmf]
Based on binary addition:

0111 + 0011 =1010

Link B0 trees:

[image: image12.wmf]
Link B1 trees:

[image: image13.wmf]
Link B2 trees:

[image: image14.wmf]
Save B3 tree

[image: image15.wmf]
Insertion into binomial heap?

Implementing Extract-Min
1.
Scan tree roots for minimum key.

2.
Decompose root of tree with minimum:

[image: image16.wmf]
3.
Treat fragments as binomial heap and Union with remainder of original heap.

Example: Returns item 4 and decomposes the B3 tree

[image: image17.wmf]

[image: image18.wmf]

[image: image19.wmf]

[image: image20.wmf]

[image: image21.wmf]
Implementing Decrease-Key

Simply do exchanges through ancestor chain until min-heap property has been restored.

Suppose 13 is decreased to 6 in the previous example.

Implementing Delete
1.
Auxiliary data structure (see CSE 2320 Notes 5 regarding dictionary) is used to find the node to delete.

2.
Use Decrease-Key to change priority to -(.

3.
Use Extract-Min to eliminate -(.

Example: Delete 11.

[image: image22.wmf]
Increase a key? What happens if obvious method is applied for key at root?

[image: image23.wmf]
Binomial Heaps
vs.
Fibonacci Heaps
O(log n) actual costs

O(1) amortized, except Extract-Min

and Delete (O(log n) amortized)

Decrease-Key is “faster”

Strict structural properties

Flexible structural properties

(Allows laziness)

Analysis is straightforward

Amortized analysis involves subtle

arguments regarding constants

for asymptotic notation (especially for

Extract-Min and cascading cut)

Fibonacci Heaps

Maintains pointer to root of tree with smallest priority.

If Delete and Decrease-Key do not occur, then structure is like a binomial heap with multiple Bk trees. (Clean-up (“Consolidate”) on Extract-Min and Delete)

Otherwise:

1.
A (k+1)-tree will be (initially) created from two k-trees, where k is number of children for root.

2.
If a k-tree root loses a subtree, it is simply reclassified as a (k-1)-tree.

3.
A non-root node x may lose one subtree and be “marked”. If x loses another subtree, then x will be detached from its parent.

Observation:

1.
x is any node in Fibonacci heap.

2.
ci is the ith child attached to x (not indicated in data structure).

then ci has at least i - 2 children.

Proof:

1.
ci had at least i - 1 children when attached to x.

2.
It could have lost 1 child (assume it is for the largest subtree).

Minimum trees for each rank by pruning:

[image: image24.wmf]
[image: image25.wmf]
Most recently attached is always pruned

Original Pruned

Rank Rank Height Nodes

0 0 0 1

1 0 0 1

2 1 1 2

3 2 1 3

4 3 2 5

5 4 2 8

6 5 3 13

7 6 3 21

8 7 4 34

9 8 4 55

10 9 5 89

11 10 5 144

12 11 6 233

13 12 6 377

14 13 7 610

15 14 7 987

16 15 8 1597

17 16 8 2584

18 17 9 4181

19 18 9 6765

20 19 10 10946

21 20 10 17711

22 21 11 28657

23 22 11 46368

24 23 12 75025

25 24 12 121393

26 25 13 196418

27 26 13 317811

28 27 14 514229

29 28 14 832040

30 29 15 1346269

31 30 15 2178309

Ratio is 1.618034

Minimum trees for each height by modified pruning along longest path:

[image: image26.wmf]
[image: image27.wmf]
Second most recent is sometimes pruned to preserve longest path

Original Pruned

Rank Rank Height Nodes

0 0 0 1

1 0 1 2

2 1 2 3

3 2 3 5

4 3 4 8

5 4 5 13

6 5 6 21

7 6 7 34

8 7 8 55

9 8 9 89

10 9 10 144

11 10 11 233

12 11 12 377

13 12 13 610

14 13 14 987

15 14 15 1597

16 15 16 2584

17 16 17 4181

18 17 18 6765

19 18 19 10946

20 19 20 17711

21 20 21 28657

22 21 22 46368

23 22 23 75025

24 23 24 121393

25 24 25 196418

26 25 26 317811

27 26 27 514229

28 27 28 832040

29 28 29 1346269

30 29 30 2178309

31 30 31 3524578

Ratio is 1.618034

Simple Example

[image: image28.wmf]

[image: image29.wmf]
Actual cost (
[image: image30.wmf]) for each operation is stated asymptotically. Implementation-dependent constants bound the actual cost of each operation and influence the values of
[image: image31.wmf] (traditionally valued 1) and
[image: image32.wmf] (traditionally valued 2).

Union of two Fibonacci heaps

1.
Append one list of trees to another.

2.
Set pointer to new minimum key.

O(1) actual and amortized. (No change in (.)

Insert

1.
Create single node Fibonacci heap.

2.
Union
O(1) actual and amortized. ((goes up by
[image: image33.wmf].)

Extract-Min

1.
Remove minimum node (a root).

2.
Append subtrees to list.

3.
Much like binomial queue, use “accumulator” of pointers to Consolidate so that there is no more than one tree whose root has k children. (Root list is not ordered.) Initialization cost per accumulator entry is d (traditionally valued 1).

Like binomial tree, two k-trees combine to give a (k+1)-tree. Combining cost is e (traditionally valued 1).

4.
Must determine new minimum root.

Actual cost is d•log n + e•#of trees = O(log n + # of trees). O(log n) amortized.

[image: image34.wmf]

Remove minimum and decompose:

[image: image35.wmf]

Process first tree:

[image: image36.wmf]

Process next tree:

[image: image37.wmf]

Process next tree:

[image: image38.wmf]
Process next tree:

[image: image39.wmf]

Final tree:

[image: image40.wmf]

[image: image41.wmf]
Decrease-Key and Delete (Lose binomial heap properties

Based on cascading cut at X (that has a parent):

Clear mark on X

 // X is not necessarily marked

P := parent(X)

Break (cut) link from X to P

X := P

P := parent(X)

while P (nil

if X is marked

Break (cut) link from X to P

Clear mark on X

// X definitely is marked

X := P

P := parent(X)

else

Set mark on X

// X cannot be the root

P := nil

[image: image42.wmf]

Decrease-Key

Not based on swaps (as done for binary and binomial heaps), but similar to leftist heaps

1.
Decrease key value.

2.
If node has parent and key < parent’s key

Perform cascading cut at key’s node

3.
Check if key is lowest in structure

Actual cost is (log n) based on the number of cuts. (1) amortized

Delete

1.
Decrease-Key value to -(.

2.
Extract-Min

Extract-Min dominates actual cost.
[image: image43.wmf] amortized.

Amortized Cost of Cascading Cut

Suppose c is the number of cuts.

[image: image44.wmf]
The -c + 2 upper bound on the change in marked nodes is based on the following observations

about the c cuts that occur:

1.
The first cut loses a mark only when the initial node X is marked.

2.
Cuts 2 through c - 1 must lose a mark.

3.
The last cut loses a mark only when the parent node is the root.

[image: image45.wmf]

[image: image46.wmf]

c = 1, change in marked nodes is -c + 2 (0

c = 1, change in marked nodes is -c + 2 (0

[image: image47.wmf]

[image: image48.wmf]

c = 4, change in marked nodes is -c + 2 = -2

c = 5, change in marked nodes is -c + 2 (-4

_1115865209.unknown

_1115957432.unknown

_1116222000.unknown

_1116222036.unknown

_1116221940.unknown

_1115957417.unknown

_1115865158.unknown

_1115865195.unknown

_1085890313.unknown

