
CSE 5311 Notes 7a:  Priority Queues 
 

(Last updated 6/7/13 1:06 PM) 
 
Chart on p. 506, CLRS (binary, Fibonacci heaps) 
 

MAKE-HEAP 
 
INSERT 
 
MINIMUM 
 
EXTRACT-MIN 
 
UNION (MELD/MERGE) 
 
DECREASE-KEY 
 
DELETE 

 
Applications - sorting (?), scheduling, greedy algorithms, discrete event simulation 
 
Ordered lists - Suitable if n is extremely small (some simulations) 
 
Binary trees - O(log n) operations, but larger constant than binary heaps.  O(n) for UNION. 
 
Binary heap (review) 
 
 Conceptual structure 
 
 Ordering criteria 
 
 Mapping to table 
 
 O(log n) operations, except UNION 
 
 

16

 
d-heap 
 
 Generalizes binary heap with fan-out of d to get shallower structure. 
 
 Similar details as binary heap for mapping to an array. 
 
 Useful when many DECREASE-KEYs occur (example: Prim’s MST, 

€ 

Θ E logV( ) - use d = |E| /|V|) 
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General issue - single-valued nodes vs. nodes containing table (“sack”) with O(log n) values 
 
 Table is in ascending priority order. 
 
 Most operations operate locally on one table. 
 
 If the first table element changes (minheap), then traditional heap processing occurs. 
 
 Tree structure must be linked, i.e. mapping nodes to table is too slow. 
 

Could be
part empty

 
 

Moret, B.M.E., and Shapiro, H.D., “An empirical assessment of algorithms for constructing a 
minimal spanning tree”, in Computational Support for Discrete Mathematics, N. Dean and G. 
Shannon, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science 15 
(1994), 99–117. 

 
LEFTIST HEAPS 
 
Binary tree, heap ordered 
 
Each node has null path length 
 
 Either subtree empty ⇒ NPL = 0 
 
 Otherwise NPL = 1 + min(left→NPL, right→NPL) (Empty tree - view NPL as -1) 
 
Leftist property:  left→NPL ≥ right→NPL at all nodes. 
 
 Leftmost path length is O(n). 
 
 Rightmost path length is O(log n). 
 

  Leftist tree with r nodes on right path must have at least 2r - 1 nodes. 
 
  (e.g. NPL is height of maximum embedded complete binary tree) 
 
 Operations take O(log n) by avoiding left paths and emphasizing right paths. 
 
 Occasionally, left and right subtrees must be swapped. 
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Example:  EXTRACT-MIN 
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 Root has item to return. 
 
 Recursively, merge right paths of two subheaps (top-down) keeping same left children. 
 

3

6

7

8

18

10

21 14

23

0

0

0

1

12

18 24

33

0

0

0

1

37
0

17

26
0

0

1

1

2

2

0

 
 
 Swap subtrees, bottom-up, if necessary to restore leftist property. 

 
3
2

10

21 14

23

0

0

0

1
6

7

8

18

12

18 24

33

0

0

0

1

17

26
0

0

1

1

2

37
0

0

 
 



 4 
UNION takes O(log n) time, so use to implement other operations. 
 
BUT, DECREASE-KEY may involve a node Ω(n) away from root, so swapping through ancestors is too 
slow. 
 

1. Find node X via another data structure. 
 
2. Cut X’s subtree away from parent. 
 
3. Update NPL on former ancestors of X, swapping subtrees to restore leftist property. 
 
 Decrease in NPL continues to propagate only when ancestor NPL decreases. 

(Implies O(log n))  Ancestors in diagram are marked with before/after NPLs 
for cutting away the leftmost leaf. 
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4. UNION X’s subtree and modified original tree. 

 
 
BINOMIAL HEAPS (See CLRS problem 19-2) 
 
Mergeable Heap - in O(log n) time 
 

Based on Binomial Tree (with heap ordering) - |Br| = 2r 
 

B0 = Br =

Br-1 

Br-1 
B1 = B2 = B3 =
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B4 =

 
 
 
Binomial Heap = Forest of Binomial Trees 
 
 Each node includes priority, leftmost child, right sibling, parent, and degree. 
 
 Tree roots are in a singly-linked list ordered by ascending degrees. 
 
 Children are in a singly-linked list ordered by descending degrees (could also use ascending). 
 
 (“Sack” idea can be used to reduce overhead from pointers) 
 
Can’t have two Bi trees for any i ⇒ Use binary representation of n. 
 
Representation is useful for combining 2 Bi trees: 
 

B2 = B2 = B3 =
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UNION of two binomial heaps 
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Based on binary addition: 
 
 0111 + 0011 =1010 
 
Link B0 trees: 
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Link B1 trees: 
 

 

3 2 1 0 3 2 1 0

4

5 8

8

12

13

11

18

3 2 1 0

7

14

 
 
Link B2 trees: 
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Save B3 tree 
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Insertion into binomial heap? 
 
 
 
 
Implementing EXTRACT-MIN 
 

1. Scan tree roots for minimum key. 
 
2. Decompose root of tree with minimum: 
 

 

Br =

. . .Br-1 Br-2 B0  
 
3. Treat fragments as binomial heap and UNION with remainder of original heap. 

 
Example:  Returns item 4 and decomposes the B3 tree 
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Implementing DECREASE-KEY 
 
 Simply do exchanges through ancestor chain until min-heap property has been restored. 
 
 Suppose 13 is decreased to 6 in the previous example. 
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Implementing DELETE 
 

1. Auxiliary data structure (see CSE 2320 Notes 5 regarding dictionary) is used to find the node 
to delete. 

 
2. Use DECREASE-KEY to change priority to -∞. 
 
3. Use EXTRACT-MIN to eliminate -∞. 
 

Example:  Delete 11. 
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Increase a key?  What happens if obvious method is applied for key at root? 
 

 

B4 =
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Binomial Heaps  vs.  Fibonacci Heaps 
 
O(log n) actual costs  O(1) amortized, except EXTRACT-MIN 
  and DELETE (O(log n) amortized) 
 
  DECREASE-KEY is “faster” 
 
Strict structural properties  Flexible structural properties 
  (Allows laziness) 
 
Analysis is straightforward  Amortized analysis involves subtle 
  arguments regarding constants 
  for asymptotic notation (especially for 
  EXTRACT-MIN and cascading cut) 

 
 
FIBONACCI HEAPS 
 
Maintains pointer to root of tree with smallest priority. 
 

If DELETE and DECREASE-KEY do not occur, then structure is like a binomial heap with multiple Bk 
trees.  (Clean-up (“CONSOLIDATE”) occurs for EXTRACT-MIN and DELETE) 
 
Otherwise: 
 

1. A (k+1)-tree will be (initially) created from two k-trees, where k is number of children 
(“degree”) for root. 

 
2. If a k-tree root loses a subtree, it is simply reclassified as a (k-1)-tree (degree decreases). 
 
3. A non-root node x may lose one subtree and be “marked”.  If x loses another subtree, then x 

will be cut away from its parent. 
 
Observation:  Suppose 
 

1. x is any node in a Fibonacci heap, and 
 

2. ci is the ith child attached to x (not indicated in data structure). 
 

then ci has at least i - 2 children. 
 
Proof: 
 

1. ci had at least i - 1 children when attached to x. 
 
2. It could have lost 1 child (assume it is for the largest subtree). 
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Minimum trees for each rank by cutting away from trees built by INSERTs and an EXTRACT-MIN: 
 

 

 
 
Most recently attached is always pruned 
Original Pruned 
Rank     Rank   Height Nodes 
0        0      0      1 
1        0      0      1 
2        1      1      2 
3        2      1      3 
4        3      2      5 
5        4      2      8 
6        5      3      13 
7        6      3      21 
8        7      4      34 
9        8      4      55 
10       9      5      89 
11       10     5      144 
12       11     6      233 
13       12     6      377 
14       13     7      610 
15       14     7      987 
16       15     8      1597 
17       16     8      2584 
18       17     9      4181 
19       18     9      6765 
20       19     10     10946 
21       20     10     17711 
22       21     11     28657 
23       22     11     46368 
24       23     12     75025 
25       24     12     121393 
26       25     13     196418 
27       26     13     317811 
28       27     14     514229 
29       28     14     832040 
30       29     15     1346269 
31       30     15     2178309 
Ratio is 1.618034  
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Minimum trees for each height by cutting away along longest path: 
 

  
 

 
 
Second most recent is sometimes pruned to preserve longest path 
Original Pruned 
Rank     Rank   Height Nodes 
0        0      0      1 
1        0      1      2 
2        1      2      3 
3        2      3      5 
4        3      4      8 
5        4      5      13 
6        5      6      21 
7        6      7      34 
8        7      8      55 
9        8      9      89 
10       9      10     144 
11       10     11     233 
12       11     12     377 
13       12     13     610 
14       13     14     987 
15       14     15     1597 
16       15     16     2584 
17       16     17     4181 
18       17     18     6765 
19       18     19     10946 
20       19     20     17711 
21       20     21     28657 
22       21     22     46368 
23       22     23     75025 
24       23     24     121393 
25       24     25     196418 
26       25     26     317811 
27       26     27     514229 
28       27     28     832040 
29       28     29     1346269 
30       29     30     2178309 
31       30     31     3524578 
Ratio is 1.618034 
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Simple Example 
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€ 

Φ S( ) =  pt•#  of trees +  pm •  #  of marks 
 
Actual cost (

€ 

ci) for each operation is stated asymptotically.  Implementation-dependent constants bound 
the actual cost of each operation and influence the values of 

€ 

pt  (traditionally valued 1) and 

€ 

pm  
(traditionally valued 2). 
 
UNION of two Fibonacci heaps 
 

1. Append one list of trees to another. 
 
2. Set pointer to new minimum key. 
 
O(1) actual and amortized.  (No change in Φ.) 

 
INSERT 
 

1. Create single node Fibonacci heap. 
 
2. UNION 
 
O(1) actual and amortized.  (Φ goes up by 

€ 

pt .) 
 
EXTRACT-MIN 
 

1. Remove minimum node (a root). 
 
2. Append subtrees to list. 
 
3. Much like binomial queue, use “accumulator” of pointers to CONSOLIDATE so that there is no 

more than one tree whose root has k children.  (Root list is not ordered.)  Initialization cost 
per accumulator entry is d (traditionally valued 1). 

 
 Like binomial tree, two k-trees combine to give a (k+1)-tree.  Combining cost is e 

(traditionally valued 1).  Roots that become children will be set unmarked. 
 
4. Must determine new minimum root. 
 
Actual cost is d•log n + e•#of trees = O(log n + # of trees).  O(log n) amortized. 
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 Remove minimum and decompose: 
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 Process first tree: 
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 Process next tree: 
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 Process next tree: 
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Process next tree: 
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 Final tree: 
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€ 

ˆ C i = Ci +Φ Si( ) −Φ Si−1( )
Ci = d • logn + e • initial #  of trees -  1 +  #  of derived subtrees( )

=Ο(initial #  of trees +  D(n))
D(n) =  max #  of children for any node in structure, including roots
             (worst case is one tree in structure)
Φ Si−1( ) =  pt • initial #  of trees +  pm •  initial #  of marked nodes

Φ Si( ) ≤ pt D n( ) +1( ) + pm •  initial #  of marked nodes

             (D n( ) +1 is due to nodes with 0 ... D n( ) children)
ˆ C i ≤ d • logn + e • initial #  of trees -  1 +  #  of derived subtrees( ) + pt D n( ) +1( ) − pt • initial #  of trees

=Ο(D(n))  if pt ≥ e
    Skim section 19.4, D(n) is logarithmic in n
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DECREASE-KEY and DELETE ⇒ Lose binomial heap properties 
 
 Based on cascading cut at X (that has a parent): 
 
 Clear mark on X     // X is not necessarily marked 
 P := parent(X) 
 Break (cut) link from X to P 
 X := P 
 P := parent(X) 
 while P ≠ nil 

if X is marked 
   Break (cut) link from X to P 
   Clear mark on X  // X definitely is marked 
   X := P 
   P := parent(X) 
  else 
   Set mark on X   // X cannot be the root 
   P := nil 
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 DECREASE-KEY 
 

Not based on swaps (as done for binary and binomial heaps), but similar to leftist heaps 
 
1. Decrease key value. 
 
2. If node has parent and key < parent’s key 
  Perform cascading cut at key’s node 
 
3. Check if key is lowest in structure 
 
Actual cost is Ο(log n) based on the number of cuts.  Ο(1) amortized 
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DELETE 
 
1. DECREASE-KEY value to -∞. 
 
2. EXTRACT-MIN 

 
 EXTRACT-MIN dominates actual cost.  

€ 

Ο logn( ) amortized. 
 
Amortized Cost of Cascading Cut 
 
 Suppose c is the number of cuts. 
 

 

€ 

ci = fc =Ο c( )      f  is the actual cost of cutting a node (traditionally valued 1)
Φ Si( ) ≤  pt • #  trees +  c( ) + pm #marked nodes− c + 2( )
Φ Si−1( ) =  pt•#  trees +  pm •  # marked nodes
ˆ c i = fc + ptc + pm −c + 2( ) = c f + pt − pm( ) + 2pm =Ο 1( )  if pm ≥ f + pt

 

 
The -c + 2 upper bound on the change in marked nodes is based on the following observations 
about the c cuts that occur: 
 
1. The first cut loses a mark only when the initial node X is marked. 
 
2. Cuts 2 through c - 1 must lose a mark. 
 
3. The last cut loses a mark only when the parent node is the root. 
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 c = 1, change in marked nodes is -c + 2 ≥ 0  c = 1, change in marked nodes is -c + 2 ≥ 0 
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 c = 4, change in marked nodes is -c + 2 = -2  c = 5, change in marked nodes is -c + 2 ≥ -4 
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Degenerate Fibonacci Heap 
 
MAKE-FIB-HEAP 
FIB-HEAP-INSERT(20) 
FIB-HEAP-INSERT(19) 
FIB-HEAP-INSERT(18) 
EXTRACT-MIN 
FIB-HEAP-INSERT(17) 
FIB-HEAP-INSERT(16) 
FIB-HEAP-INSERT(15) 
EXTRACT-MIN 
DELETE(17) 
FIB-HEAP-INSERT(14) 
FIB-HEAP-INSERT(13) 
FIB-HEAP-INSERT(12) 
EXTRACT-MIN 
DELETE(14) 
FIB-HEAP-INSERT(11) 
FIB-HEAP-INSERT(10) 
FIB-HEAP-INSERT(9) 
EXTRACT-MIN 
DELETE(11) 
 
 
 
 
 
 


