
CSE 5311 Notes 7a: Priority Queues

(Last updated 6/7/13 1:06 PM)

Chart on p. 506, CLRS (binary, Fibonacci heaps)

MAKE-HEAP

INSERT

MINIMUM

EXTRACT-MIN

UNION (MELD/MERGE)

DECREASE-KEY

DELETE

Applications - sorting (?), scheduling, greedy algorithms, discrete event simulation

Ordered lists - Suitable if n is extremely small (some simulations)

Binary trees - O(log n) operations, but larger constant than binary heaps. O(n) for UNION.

Binary heap (review)

 Conceptual structure

 Ordering criteria

 Mapping to table

 O(log n) operations, except UNION

16

d-heap

 Generalizes binary heap with fan-out of d to get shallower structure.

 Similar details as binary heap for mapping to an array.

 Useful when many DECREASE-KEYs occur (example: Prim’s MST,

€

Θ E logV() - use d = |E| /|V|)

 2
General issue - single-valued nodes vs. nodes containing table (“sack”) with O(log n) values

 Table is in ascending priority order.

 Most operations operate locally on one table.

 If the first table element changes (minheap), then traditional heap processing occurs.

 Tree structure must be linked, i.e. mapping nodes to table is too slow.

Could be
part empty

Moret, B.M.E., and Shapiro, H.D., “An empirical assessment of algorithms for constructing a
minimal spanning tree”, in Computational Support for Discrete Mathematics, N. Dean and G.
Shannon, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science 15
(1994), 99–117.

LEFTIST HEAPS

Binary tree, heap ordered

Each node has null path length

 Either subtree empty ⇒ NPL = 0

 Otherwise NPL = 1 + min(left→NPL, right→NPL) (Empty tree - view NPL as -1)

Leftist property: left→NPL ≥ right→NPL at all nodes.

 Leftmost path length is O(n).

 Rightmost path length is O(log n).

 Leftist tree with r nodes on right path must have at least 2r - 1 nodes.

 (e.g. NPL is height of maximum embedded complete binary tree)

 Operations take O(log n) by avoiding left paths and emphasizing right paths.

 Occasionally, left and right subtrees must be swapped.

 3
Example: EXTRACT-MIN

1

6 3

12 7 10 8

18 24

33

37 18 21 14

23

17

26

0

0

0 0 0 0

0

0

0

0

01 1 1

12

2

 Root has item to return.

 Recursively, merge right paths of two subheaps (top-down) keeping same left children.

3

6

7

8

18

10

21 14

23

0

0

0

1

12

18 24

33

0

0

0

1

37
0

17

26
0

0

1

1

2

2

0

 Swap subtrees, bottom-up, if necessary to restore leftist property.

3
2

10

21 14

23

0

0

0

1
6

7

8

18

12

18 24

33

0

0

0

1

17

26
0

0

1

1

2

37
0

0

 4
UNION takes O(log n) time, so use to implement other operations.

BUT, DECREASE-KEY may involve a node Ω(n) away from root, so swapping through ancestors is too
slow.

1. Find node X via another data structure.

2. Cut X’s subtree away from parent.

3. Update NPL on former ancestors of X, swapping subtrees to restore leftist property.

 Decrease in NPL continues to propagate only when ancestor NPL decreases.

(Implies O(log n)) Ancestors in diagram are marked with before/after NPLs
for cutting away the leftmost leaf.

5

4

3

2

1/0

3/2

4/3

5/4

6/5

7

15

31

63

2/1

1

X

4. UNION X’s subtree and modified original tree.

BINOMIAL HEAPS (See CLRS problem 19-2)

Mergeable Heap - in O(log n) time

Based on Binomial Tree (with heap ordering) - |Br| = 2r

B0 = Br =

Br-1

Br-1
B1 = B2 = B3 =

 5

B4 =

Binomial Heap = Forest of Binomial Trees

 Each node includes priority, leftmost child, right sibling, parent, and degree.

 Tree roots are in a singly-linked list ordered by ascending degrees.

 Children are in a singly-linked list ordered by descending degrees (could also use ascending).

 (“Sack” idea can be used to reduce overhead from pointers)

Can’t have two Bi trees for any i ⇒ Use binary representation of n.

Representation is useful for combining 2 Bi trees:

B2 = B2 = B3 =

4

5 8

8

11

12 18

13

4

11 5 8

12 18 8

13

UNION of two binomial heaps

3 2 1 0 3 2 1 0

4

5 8

8

12

13

7 11

18

14

 6
Based on binary addition:

 0111 + 0011 =1010

Link B0 trees:

3 2 1 0 3 2 1 0

4

5 8

8

12

13

11

18

3 2 1 0

7

14

Link B1 trees:

3 2 1 0 3 2 1 0

4

5 8

8

12

13

11

18

3 2 1 0

7

14

Link B2 trees:

3 2 1 0 3 2 1 0

4

5 8

812

13

11

18

3 2 1 0

7

14

 7

Save B3 tree

3 2 1 0 3 2 1 0

4

5 8

812

13

11

18

3 2 1 0

7

14

Insertion into binomial heap?

Implementing EXTRACT-MIN

1. Scan tree roots for minimum key.

2. Decompose root of tree with minimum:

Br =

. . .Br-1 Br-2 B0

3. Treat fragments as binomial heap and UNION with remainder of original heap.

Example: Returns item 4 and decomposes the B3 tree

4

5 8

812

13

11

18

3 2 1 0

7

14

 8

3 2 1 0 3 2 1 0

7

14

5 8

812

13

11

18

3 2 1 0 3 2 1 0

7

14

5 8

812

13

11

18

3 2 1 0

3 2 1 0 3 2 1 0

7

14

5 8

812

13

11

18

3 2 1 0

3 2 1 0 3 2 1 0

7

14

5 8

8

12

13

11

18

3 2 1 0

Implementing DECREASE-KEY

 Simply do exchanges through ancestor chain until min-heap property has been restored.

 Suppose 13 is decreased to 6 in the previous example.

 9
Implementing DELETE

1. Auxiliary data structure (see CSE 2320 Notes 5 regarding dictionary) is used to find the node
to delete.

2. Use DECREASE-KEY to change priority to -∞.

3. Use EXTRACT-MIN to eliminate -∞.

Example: Delete 11.

7

14

5 8

8

11

12

6

18

3 2 1 0

7

14

8

8

6

12

5

18

3 2 1 0

-∞

6

12

18

8

8

7

14

3 2 1 0

5

Increase a key? What happens if obvious method is applied for key at root?

B4 =

 10
Binomial Heaps vs. Fibonacci Heaps

O(log n) actual costs O(1) amortized, except EXTRACT-MIN
 and DELETE (O(log n) amortized)

 DECREASE-KEY is “faster”

Strict structural properties Flexible structural properties
 (Allows laziness)

Analysis is straightforward Amortized analysis involves subtle
 arguments regarding constants
 for asymptotic notation (especially for
 EXTRACT-MIN and cascading cut)

FIBONACCI HEAPS

Maintains pointer to root of tree with smallest priority.

If DELETE and DECREASE-KEY do not occur, then structure is like a binomial heap with multiple Bk
trees. (Clean-up (“CONSOLIDATE”) occurs for EXTRACT-MIN and DELETE)

Otherwise:

1. A (k+1)-tree will be (initially) created from two k-trees, where k is number of children
(“degree”) for root.

2. If a k-tree root loses a subtree, it is simply reclassified as a (k-1)-tree (degree decreases).

3. A non-root node x may lose one subtree and be “marked”. If x loses another subtree, then x

will be cut away from its parent.

Observation: Suppose

1. x is any node in a Fibonacci heap, and

2. ci is the ith child attached to x (not indicated in data structure).

then ci has at least i - 2 children.

Proof:

1. ci had at least i - 1 children when attached to x.

2. It could have lost 1 child (assume it is for the largest subtree).

 11
Minimum trees for each rank by cutting away from trees built by INSERTs and an EXTRACT-MIN:

Most recently attached is always pruned
Original Pruned
Rank Rank Height Nodes
0 0 0 1
1 0 0 1
2 1 1 2
3 2 1 3
4 3 2 5
5 4 2 8
6 5 3 13
7 6 3 21
8 7 4 34
9 8 4 55
10 9 5 89
11 10 5 144
12 11 6 233
13 12 6 377
14 13 7 610
15 14 7 987
16 15 8 1597
17 16 8 2584
18 17 9 4181
19 18 9 6765
20 19 10 10946
21 20 10 17711
22 21 11 28657
23 22 11 46368
24 23 12 75025
25 24 12 121393
26 25 13 196418
27 26 13 317811
28 27 14 514229
29 28 14 832040
30 29 15 1346269
31 30 15 2178309
Ratio is 1.618034

 12
Minimum trees for each height by cutting away along longest path:

Second most recent is sometimes pruned to preserve longest path
Original Pruned
Rank Rank Height Nodes
0 0 0 1
1 0 1 2
2 1 2 3
3 2 3 5
4 3 4 8
5 4 5 13
6 5 6 21
7 6 7 34
8 7 8 55
9 8 9 89
10 9 10 144
11 10 11 233
12 11 12 377
13 12 13 610
14 13 14 987
15 14 15 1597
16 15 16 2584
17 16 17 4181
18 17 18 6765
19 18 19 10946
20 19 20 17711
21 20 21 28657
22 21 22 46368
23 22 23 75025
24 23 24 121393
25 24 25 196418
26 25 26 317811
27 26 27 514229
28 27 28 832040
29 28 29 1346269
30 29 30 2178309
31 30 31 3524578
Ratio is 1.618034

 13
Simple Example

*

*

4

5 8

14

8

11

4

12 18

13

7

€

Φ S() = pt•# of trees + pm • # of marks

Actual cost (

€

ci) for each operation is stated asymptotically. Implementation-dependent constants bound
the actual cost of each operation and influence the values of

€

pt (traditionally valued 1) and

€

pm
(traditionally valued 2).

UNION of two Fibonacci heaps

1. Append one list of trees to another.

2. Set pointer to new minimum key.

O(1) actual and amortized. (No change in Φ.)

INSERT

1. Create single node Fibonacci heap.

2. UNION

O(1) actual and amortized. (Φ goes up by

€

pt .)

EXTRACT-MIN

1. Remove minimum node (a root).

2. Append subtrees to list.

3. Much like binomial queue, use “accumulator” of pointers to CONSOLIDATE so that there is no

more than one tree whose root has k children. (Root list is not ordered.) Initialization cost
per accumulator entry is d (traditionally valued 1).

 Like binomial tree, two k-trees combine to give a (k+1)-tree. Combining cost is e

(traditionally valued 1). Roots that become children will be set unmarked.

4. Must determine new minimum root.

Actual cost is d•log n + e•#of trees = O(log n + # of trees). O(log n) amortized.

 14

*

*

4

5 8

14

8

11

4

12 18

13

7

 Remove minimum and decompose:

*

*

5 8

14

8

11

4

12 18

13

7
3 2 1 0

 Process first tree:

*

*

5

8

14

8

11

4

12 18

13

7
3 2 1 0

 Process next tree:

*

*

5 8

14

8

11

4

12 18

13

7
3 2 1 0

 Process next tree:

*

*

5 8

148

11

4

12 18

13

7
3 2 1 0

 15
Process next tree:

*

5

8

148

11

4

12 18

13

7
3 2 1 0

 Final tree:

*

5 8

148

11

4

12 18

13

7

3 2 1 0

€

ˆ C i = Ci +Φ Si() −Φ Si−1()
Ci = d • logn + e • initial # of trees - 1 + # of derived subtrees()

=Ο(initial # of trees + D(n))
D(n) = max # of children for any node in structure, including roots
 (worst case is one tree in structure)
Φ Si−1() = pt • initial # of trees + pm • initial # of marked nodes

Φ Si() ≤ pt D n() +1() + pm • initial # of marked nodes

 (D n() +1 is due to nodes with 0 ... D n() children)
ˆ C i ≤ d • logn + e • initial # of trees - 1 + # of derived subtrees() + pt D n() +1() − pt • initial # of trees

=Ο(D(n)) if pt ≥ e
 Skim section 19.4, D(n) is logarithmic in n

 16
DECREASE-KEY and DELETE ⇒ Lose binomial heap properties

 Based on cascading cut at X (that has a parent):

 Clear mark on X // X is not necessarily marked
 P := parent(X)
 Break (cut) link from X to P
 X := P
 P := parent(X)
 while P ≠ nil

if X is marked
 Break (cut) link from X to P
 Clear mark on X // X definitely is marked
 X := P
 P := parent(X)
 else
 Set mark on X // X cannot be the root
 P := nil

2

4

5

9

10

12

*

*

X

2

4

5910

12

*

 DECREASE-KEY

Not based on swaps (as done for binary and binomial heaps), but similar to leftist heaps

1. Decrease key value.

2. If node has parent and key < parent’s key
 Perform cascading cut at key’s node

3. Check if key is lowest in structure

Actual cost is Ο(log n) based on the number of cuts. Ο(1) amortized

 17
DELETE

1. DECREASE-KEY value to -∞.

2. EXTRACT-MIN

 EXTRACT-MIN dominates actual cost.

€

Ο logn() amortized.

Amortized Cost of Cascading Cut

 Suppose c is the number of cuts.

€

ci = fc =Ο c() f is the actual cost of cutting a node (traditionally valued 1)
Φ Si() ≤ pt • # trees + c() + pm #marked nodes− c + 2()
Φ Si−1() = pt•# trees + pm • # marked nodes
ˆ c i = fc + ptc + pm −c + 2() = c f + pt − pm() + 2pm =Ο 1() if pm ≥ f + pt

The -c + 2 upper bound on the change in marked nodes is based on the following observations
about the c cuts that occur:

1. The first cut loses a mark only when the initial node X is marked.

2. Cuts 2 through c - 1 must lose a mark.

3. The last cut loses a mark only when the parent node is the root.

A

B

C

X A

B

C

*

*

A

B

X A

B

 c = 1, change in marked nodes is -c + 2 ≥ 0 c = 1, change in marked nodes is -c + 2 ≥ 0

A

B

C

X

D

E

*

*

*

A

B

C

D

E

*

A

B

C

X

D

E

*

*

*

A

B

C

D

E

*

 c = 4, change in marked nodes is -c + 2 = -2 c = 5, change in marked nodes is -c + 2 ≥ -4

 18
Degenerate Fibonacci Heap

MAKE-FIB-HEAP
FIB-HEAP-INSERT(20)
FIB-HEAP-INSERT(19)
FIB-HEAP-INSERT(18)
EXTRACT-MIN
FIB-HEAP-INSERT(17)
FIB-HEAP-INSERT(16)
FIB-HEAP-INSERT(15)
EXTRACT-MIN
DELETE(17)
FIB-HEAP-INSERT(14)
FIB-HEAP-INSERT(13)
FIB-HEAP-INSERT(12)
EXTRACT-MIN
DELETE(14)
FIB-HEAP-INSERT(11)
FIB-HEAP-INSERT(10)
FIB-HEAP-INSERT(9)
EXTRACT-MIN
DELETE(11)

