
CSE 5311 Notes 8:  Disjoint Sets 
 
 
CLRS, Chapter 21 
 
Problem:  For an equivalence relation: 
 

1. Determine if two elements are equivalent (FIND), and 
 
2. Allows merging (UNION) of equivalence classes. 
 

Naive implementation - indicate subset for each element 
 

1 2 3 4 5 6 7 8

1 12 2 3 34 4  
 
Represents equivalence relation: 
 
 {1, 3} {2, 4} {5, 8} {6, 7} 
 
UNION takes O(n) time - can do much better!!!! 
 
Galler-Fischer Representation - Use trees (in an array) with just parent pointers 
 

 
1 2 3 4 5 6 7 8

1 12 2 5 57 7

3

1

4

2

8

5

6

7

 
 
 Trade-off: 
 
  Increase in time to check equivalence (FIND) 
 
    vs. 
 
  Simplicity in merging (UNION) - redirect one root to another, then apply heuristics to  

reduce depth 
 
UNION-BY-WEIGHT (size) 
 
Keep subtree size in root.  If integer tables, then negative value for pointer indicates that the root’s size 
(negated) is stored. 
 



 2 

 

1 2 3 4 5 6 7 8

-3 -21 3 7 77 -5

0 9

1 3 7

0 2 4 5 6 8

9

1 8  
 

Theorem:  For any node x with height 

! 

h Tx( )  in union-by-weight and size 

! 

s Tx( ) , 

! 

2
h Tx( )

" s Tx( ). 
 
Proof:  By induction 
 
 Single node (as initialized): 
 

  

! 

s Tx( ) =1 and h Tx( ) = 0

So, 2
h Tx( ) = 2

0
" s Tx( )

 

 
 Property holds before union and holds afterwards: 
 

! 

Suppose Tv  and Tw  are to be unioned.  WOLOG, s Tv( ) " s Tw( ).

2
h Tv( )

" s Tv( ) and 2
h Tw( )

" s Tw( )
 

 

v

Tv

w

TwT =

 
 

Show that 

! 

2
h T( )

" s T( ) : 
 

! 

2
h T( ) = 2

max 1+h Tv( ),h Tw( )( )
= max 2

1+h Tv( )
,2
h Tw( )" 

# 
$ 

% 

& 
' 

         (max 2s Tv( ),s Tw( )( )         2
h Tv( ) ( s Tv( ) and 2

h Tw( ) ( s Tw( )

         (max s T( ),s Tw( )( )             s Tv( ) ( s Tw( ) and s Tv( ) + s Tw( ) = s T( )

         (max s T( ),s T( )( ) = s T( )     s Tw( ) ( s T( )

 

 



 3 

Corollary:  

! 

h T( ) " log s T( )  
 
So, FINDs under union-by-weight take O(log n) 
 
 
UNION-BY-RANK (height) 
 
Keep subtree rank (height) in root. 
 

 
1 2 3 4 5 6 7 8

1 3-1 7 7 8-2 7

109

1 3 7

10 2 4 5 6 8

9

-1 1  
 

Theorem:  For any node x with rank 

! 

r Tx( )  in union-by-rank and size 

! 

s Tx( ) , 

! 

2
r Tx( )

" s Tx( )  
 
Proof: Very similar to union-by-weight. 

 
Corollary:  

! 

r T( ) " log s T( ) 
 
So, FINDs under union-by-rank take O(log n) 
 
PATH COMPRESSION 
 
After a FIND reaches a tree’s root, a second pass along the path makes every node point directly to the 
root. 
 

2

61

4

3

7

5

FIND(7)

2

1 4 6 7

5

3

 
 
 



 4 
Can easily combine with union-by-weight or union-by-rank. 
 
Under union-by-rank, path compression causes each rank to be just an upper bound on the height. 
 
In addition, the amortized cost of FIND and UNION will be nearly constant (inverse of extremely fast-
growing function). 
 
APPLICATIONS 
 
1. Kruskal’s Minimum Spanning Tree 
 
 Sort edges in ascending order. 
 
 Place each vertex in its own set. 
 
 Process each edge {x, y} in sorted order: 
 
  a=FIND(x) 
  b=FIND(y) 
  if a ≠ b 
   UNION(a,b) 
   Include {x, y} in MST 
 
2. Many parallel algorithms use similar ideas.  (See books by Ja Ja or Reif) 
 
3. Connected components. 
 
4. First-order unification / logic programming (ACM Computing Surveys 21:1, March 1989, fig. 4) 
 
5. Off-line least common ancestors (CLRS, p. 521) 
 
6. Find co-planar triangles in 3-d convex hull (Spring 2005 CSE 5392): 
 

 
 



CSE 5311 Notes 9:  Hashing 
 
 
CLRS, Chapter 11 
 
Review: 11.2:  Chaining - related to perfect hashing method 
 
  11.3:  Hash functions, skim universal hashing 
 
  11.4:  Open addressing 
 
COLLISION HANDLING BY OPEN ADDRESSING 
 
Saves space when records are small and chaining would waste a large fraction of space for links. 
 
Collisions are handled by using a probe sequence for each key – a permutation of the table’s subscripts. 
 
Hash function is h(key, i) where i is the number of reprobe attempts tried. 
 
Two special key values (or flags) are used:  never-used (-1) and recycled (-2).  Searches stop on never-
used, but continue on recycled. 
 
Linear Probing - h(key, i) = (key + i) % m 
 
 Properties: 
 

1. Probe sequences eventually hit all slots. 
 
2. Probe sequences wrap back to beginning of table. 
 
3. Exhibits lots of primary clustering (the end of a probe sequence coincides with another 

probe sequence): 
 
 i0  i1  i2  i3  i4  . . . ij  ij+1 . . . 
                             ij  ij+1  ij+2 . . . 
 
4. There are only m probe sequences. 
 
5. Exhibits lots of secondary clustering:  if two keys have the same initial probe, then their 

probe sequences are the same. 
 
What about using h(key, i) = (key + 2*i) % 101 or h(key, i) = (key + 50*i) % 1000? 
 
 
 
 
 
 



 2 
 
Suppose all keys are equally likely to be accessed.  Is there a best order for inserting keys? 

 

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Insert keys:  101, 171, 102, 103, 104, 105, 106

 
 
Double Hashing – h(key, i) = (h1(key) + i*h2(key)) % m 
 
 Properties: 
 

1. Probe sequences will hit all slots only if m is prime. 
 
2. m*(m – 1) probe sequences. 
 
3. Eliminates most clustering. 
 
Hash Functions: 
 
h1 = key % m 
 
a. h2 = 1 + key % (m – 1) 
 
b. h2 = 1 + (key/m) % (m – 1) 
 
c. Use last few bits of key as h2, but must avoid zero. 
 

UPPER BOUNDS ON EXPECTED PERFORMANCE FOR OPEN ADDRESSING 
 
Double hashing comes very close to these results, but analysis assumes that hash function provides 
all m! permutations of subscripts. 
 

1. Unsuccessful search with load factor of 

! 

" =
n

m
.  Each successive probe has the effect of decreasing 

table size and number of slots in use by one. 
 



 3 

m slots

Before
first

probe

n
slots

m-1 slots

After
first

probe

n-1
slots

x

m-2 slots

After
second
probe

n-2
slots

x

m-3 slots

After
third
probe

n-3
slots

x

x x

x

m-4 slots

After
fourth
probe

n-4
slots

x

x

x

x

 
 

a. Probability that all searches have a first probe  1 
 

b. Probability that search goes on to a second probe  

! 

" =
n

m
 

 

c. Probability that search goes on to a third probe  

! 

"
n #1

m #1
<"

n

m
<"2  

 

d. Probability that search goes on to a fourth probe  

! 

"
n #1

m #1

n # 2

m # 2
<"2

n # 2

m # 2
<"3 

. . . 
 
 Suppose the table is large.  Sum the probabilities for probes to get upper bound on expected number 

of probes: 
 

  

! 

"i

i=0

#
$ =

1

1%"
   (much worse than chaining) 

 
2. Inserting a key with load factor α 
 

a. Exactly like unsuccessful search 
 

b. 

! 

1

1"#
 probes 

 
3. Successful search 
 

a. Searching for a key takes as many probes as inserting that particular key. 
 
b. Each inserted key increases the load factor, so the inserted key number i + 1 is expected 
 to take no more than 
 



 4 

 

! 

1

1"
i

m

=
m

m " i
 probes 

 
c. Find expected probes for n consecutively inserted keys (each key is equally likely to be 

requested): 
 

 

! 

1

n

m

m " i
i=0

n"1
# =

m

n

1

m " i
i=0

n"1
#       Sum is 

1

m
+

1

m "1
+ ...+

1

m " n +1

                 =
m

n

1

i
i=m"n+1

m

#

                 $
m

n

1

x
m"n

m

% dx      Upper bound on sum for decreasing function.  CLRS, p. 1067 (A.12)

                 =
m

n
lnm " ln m " n( )( ) =

1

&
ln

m

m " n
=

1

&
ln

1

1"&
= "

1

&
ln 1"&( )

 

 
BRENT’S REHASH - On-the-fly reorganization of a double hash table 
 
During insertion, moves no more than one other key to avoid usual penalty on recently inserted keys. 
 
Expected probes for successful search ≤ 2.5.  (Assumes uniform access probabilities.) 
 
Insertion is more expensive, but typically needs only three accesses per key to balance. 
 
Unsuccessful search performance is the same. 
 
void insert (int keyNew, int r[]) 
{ 
int i, ii, inc, init, j, jj, keyOld; 
 
init = hashfunction(keyNew); 
inc = increment(keyNew); 
for (i=0;i<=TABSIZE;i++) 
{ 
  printf("trying to add just %d to total of probe lengths\n",i+1); 
  for (j=i;j>=0;j--) 
  { 
    jj = (init + inc * j) % TABSIZE; 
    keyOld = r[jj]; 
    ii = (jj + increment(keyOld) * (i - j)) % TABSIZE; 
    printf("i=%d j=%d jj=%d ii=%d\n",i,j,jj,ii); 
    if (r[ii] == (-1)) 
    { 
      r[ii] = keyOld; 
      r[jj] = keyNew; 
      n++; 
      return; 
    } 
  } 
} 
} 



 5 

i   j   i-j    
0   0    0
1   1    0
    0    1
2   2    0
    1    1
    0    2
3   3    0
    2    1
    1    2
    0    3 
     .
     .
     .

keyNew

keyOld

j probes

i-j probes

-1

 
 
PERFECT HASHING (CLRS 11.5) 
 
Static key set 
 
Obtain O(1) hashing (“no collisions”) using: 
 

1. Preprocessing (constructing hash functions) 
 
   and/or 
 
2. Extra space (makes success more likely) - want cn, where c is small 

 
Many informal approaches - typical application is table of reserved words in a compiler. 
 
11.5 approach: 
 

1. Suppose n keys and m = n2 slots.  Randomly assigning keys to slots gives prob. < 0.5 of any 
collisions. 

 
2. Use two-level structure (in one array): 
 
0

n-1

j . . .

nj
nj a b

nj2 slots

(see CLRS, p. 234)

 
 
 

! 

E n j
2[ ]" < 2n , but there are three other values for 

! 

n j >1 and one other value when 

! 

n j "1. 

 



 6 
Brent’s method - about 1.8 million keys 
 
0.909999 l.f. double=2.646082 brent=1.858524 CPU 23.436005 
0.919999 l.f. double=2.745343 brent=1.893388 CPU 24.563019 
0.929999 l.f. double=2.859402 brent=1.932261 CPU 25.894732 
0.939999 l.f. double=2.992969 brent=1.976763 CPU 27.540789 
0.949999 l.f. double=3.153377 brent=2.029128 CPU 29.725117 
0.959999 l.f. double=3.352963 brent=2.093167 CPU 32.841255 
0.969999 l.f. double=3.614963 brent=2.177511 CPU 38.089577 
Retrievals took 8.176472 secs 
Worst case probes is 90 
Probe counts: 
Number of keys using 1 probes is 932302 
Number of keys using 2 probes is 449570 
Number of keys using 3 probes is 201999 
Number of keys using 4 probes is 96512 
Number of keys using 5 probes is 49356 
Number of keys using 6 probes is 26496 
Number of keys using 7 probes is 14911 
Number of keys using 8 probes is 9126 
Number of keys using 9 probes is 5610 
Number of keys using 10 probes is 3728 
Number of keys using 11 probes is 2595 
Number of keys using 12 probes is 1774 
Number of keys using 13 probes is 1234 
Number of keys using 14 probes is 878 
Number of keys using 15 probes is 738 
Number of keys using 16 probes is 507 
Number of keys using 17 probes is 439 
Number of keys using 18 probes is 356 
Number of keys using 19 probes is 282 
Number of keys using 20 probes is 234 
Number of keys using 21 probes is 198 
Number of keys using 22 probes is 164 
Number of keys using 23 probes is 139 
Number of keys using 24 probes is 119 
Number of keys using 25 probes is 92 
Number of keys using 26 probes is 65 
Number of keys using 27 probes is 75 
Number of keys using 28 probes is 73 
Number of keys using 29 probes is 52 
Number of keys using >=30 probes is 378 
 
 

CLRS Perfect Hashing - 2 million keys 
 
malloc'ed 24000000 bytes 
realloc for 25277908 more bytes 
final structure will use 16.638954 bytes per key 
Subarray statistics: 
Number with 0 keys is 734741 
Number with 1 keys is 737974 
Number with 2 keys is 366899 
Number with 3 keys is 122234 
Number with 4 keys is 30648 
Number with 5 keys is 6287 
Number with 6 keys is 1041 
Number with 7 keys is 160 
Number with 8 keys is 13 
Number with 9 keys is 1 
Number with 10 keys is 2 
Number with 11 keys is 0 
Number with 12 keys is 0 
Number with 13 keys is 0 
Number with >=14 keys is 0 
Time to build perfect hash structure 48.047688 
Time to retrieve each key once 17.372749 
 



 7 
RIVEST’S OPTIMAL HASHING 
 
Application of the assignment problem (weighted bipartite matching) 
 
 m rows 
 
 n columns (m ≤ n) 
 
 Positive weights 
 
 Choose an entry in each row of M such that: 
 
  No column has two entries chosen. 
 
  The sum of the chosen entries is minimized. 
 
 Solved using the Hungarian method. 
 
Minimizing expected number of probes by placement of keys to be retrieved by a specific open 
addressing technique: 
 

 Static set of m keys for table with n slots.  Key i has probability Pi. 
 
 Follow probe sequence for key i:  

  

! 

Si1,Si2,L,Sim . 
 
 Assign weight 

! 

jPi  to 

! 

MiSij
.  (Remaining entries get ∞.) 

 
 Solve resulting assignment problem (e.g. Hungarian method in 

! 

" m
2
n

# 
$ 
% & 

' 
(  time). 

 
 If 

! 

Mij  is chosen, then store key i at slot j. 
 
Minimizing worst-case number of probes: 
 
 No probabilities needed. 
 
 Similar approach to expected case, but now assign 

! 

m
j  to 

! 

MiSij
. 

 
  Any matching that uses a smaller maximum j must have a smaller total weight: 
 

! 

m
j

+ other costs > m •m
j"1 

 
  Wide range of magnitudes will be inconvenient in using Hungarian method, but 
  result will not skip over elements of a probe sequence. 
 



 8 
 Also possible to use binary search on instances of (unweighted) bipartite matching: 
 

low = 1 
high = m                      // Can also hash all m keys to get a better upper bound 
while low ≤ high 
 k = (low + high)/2 
 Generate instance of bipartite matching that connects each key to k-prefix of that key’s 

probe sequence. 
 Attempt to find matching with m edges. 
 if successful 
  high = k - 1 
  Save this matching since it may be the final solution. 
 else 
  low = k + 1 
< low is the worst-case number of probes needed> 
Iteratively patch solution so that no elements of any probe sequence are skipped over. 
 
Generating instance of bipartite matching as maximum flow problem (unit capacity edges): 
 

S T

0

1

.

.

.

.

.

.

n-1

Keys

Slots

.

.

.

.

.

.

m

1

2

i

Si1

Si2

Sik

.

.

.

 


