CSE 5311 Notes 13: Depth-First Search

SEARCH STATUS

Vertex colors:

White - undiscovered

Gray - discovered, on stack

Black - all outgoing edges processed (and returned from recursion)

Discovery time (count) - time of changing white \Rightarrow gray

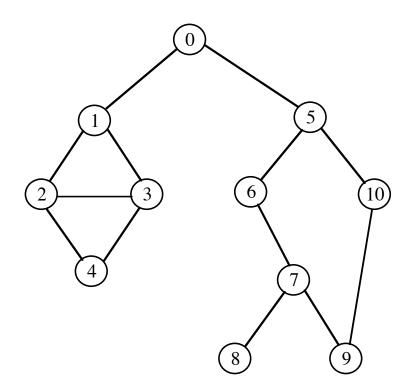
Finish time - time of changing gray ⇒ black

Undirected

Two edge types:

Tree \Rightarrow To undiscovered vertex

Back ⇒ To ancestor in DFS tree



DIRECTED

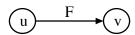
Four edge types:

Tree \Rightarrow To undiscovered vertex (white)

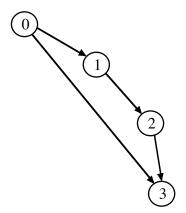
Back \Rightarrow To ancestor in DFS tree (gray)

Edges to black vertex

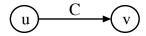
1. Forward



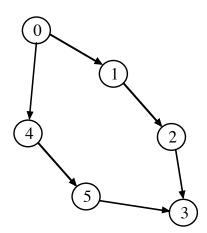
discovery(u) < discovery(v)

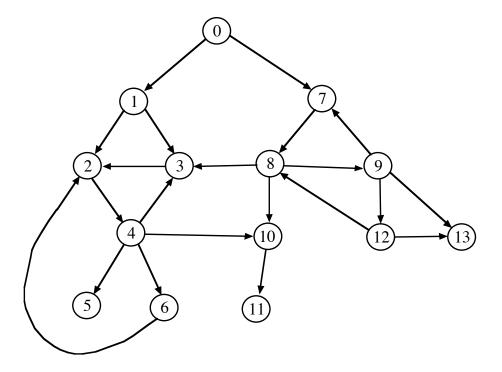


2. Cross



discovery(u) > discovery(v)





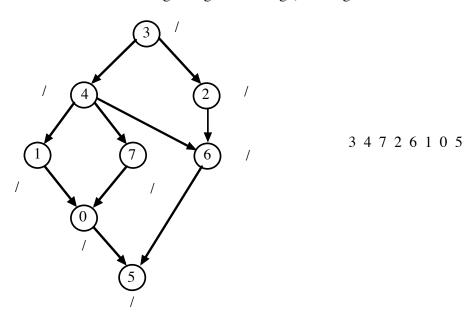
TOPOLOGICAL SORT OF A DIRECTED GRAPH (review)

Linear ordering of all vertices in a graph.

Vertex x precedes y in ordering if there is a path from x to y in graph.

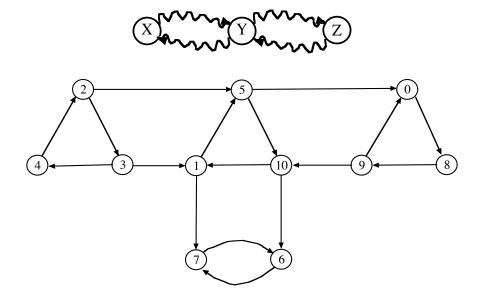
Apply DFS:

- 1. Back edge ⇔ graph has a cycle (no topological ordering).
- 2. When vertex turns black, insert at beginning of ordering (ordering is reverse of finish times).

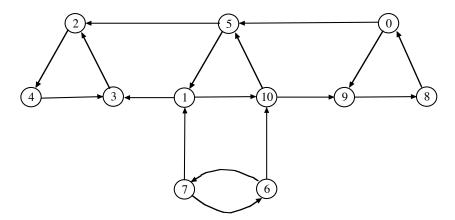


STRONGLY CONNECTED COMPONENTS (review)

Equivalence Relation – definition (reflexive, symmetric, transitive)



- 1. Perform DFS. When vertex turns black \Rightarrow insert at beginning of list.
- 2. Reverse edges.



3. Perform DFS, but each restart chooses the first white vertex in list from 1. Vertices discovered within the same restart are in the same strong component.

Observation: If there is a path from x to y and no path from y to x, then finish(x) > finish(y).

This implies that the reverse edge (y, x) corresponding to an original edge (x, y) without a "return path" will be a cross edge during 2^{nd} DFS. y will be in a SCC that has already been found.

Takes $\Theta(V + E)$ time.

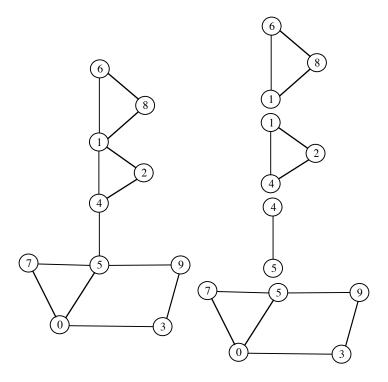
BICONNECTED COMPONENTS

An undirected graph is biconnected if removing any single vertex does not disconnect the graph.

Bicomponent = a maximal subgraph that is biconnected

The bicomponents of a graph are characterized by the articulation points.

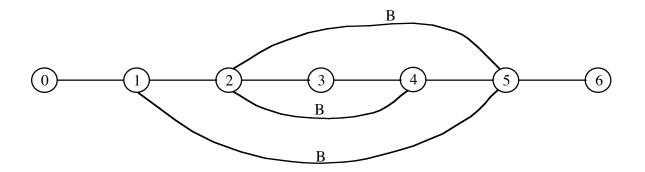
Any two vertices in a bicomponent (with > two vertices) are in a simple cycle.



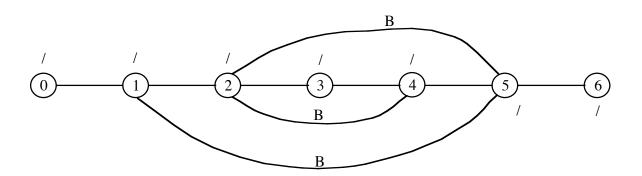
Use of DFS

If a DFS subtree does not have a back edge to a proper ancestor of the root, then

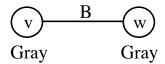
- 1. the root is an articulation point and
- 2. all edges since the last articulation point are in the same bicomponent. (Use a stack.)



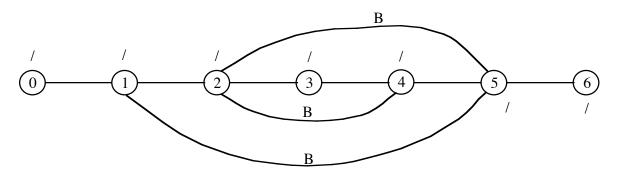
1. Use usual DFS to number vertices with discovery time. (Push each edge on stack.)



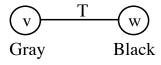
2. For each vertex, maintain the *earliest* vertex "cycled back to". (Initialize to discovery time.)



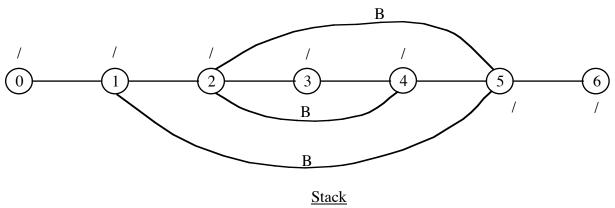
back[v] = min(back[v], discovery[w]);

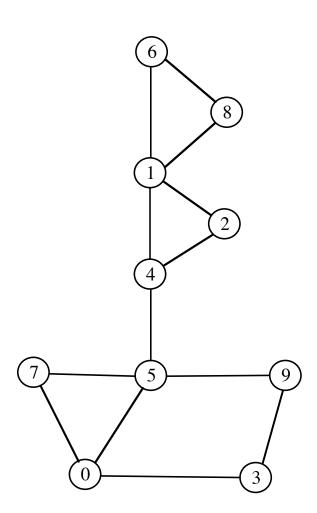


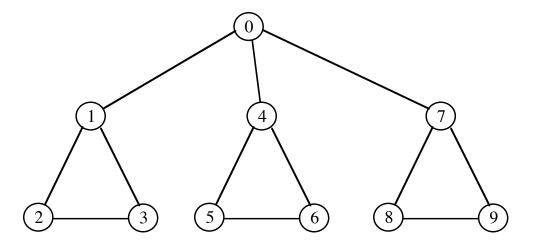
3. When returning on a tree edge (v, w), check for alternate path to vertex before v.



```
if back[w] >= discovery[v]
    v is an articulation point
    Pop edges until (v, w) has been popped
else
    back[v] = min(back[v],back[w]);
```







Since 0 started the DFS and it has	 it is an	articulation	point.
			-

What if $\{3, 5\}$ and $\{6, 8\}$ are present?