PAGE
8

CSE 5311 Notes 17: Computational Geometry

(Last updated 7/24/11 10:58 AM)
Fundamental Predicates
See http://www.cs.cmu.edu/~quake/robust.html or O’Rourke’s book for more details.

Twice the (signed) area of a triangle A(T) is given by:

[image: image1.wmf]

If positive, then points a, b, and c make a left turn (counter-clockwise).

If negative, then points a, b, and c make a right turn (clockwise).

If zero, then points a, b, and c are collinear.

Relationship of a point a to counter-clockwise circle of points b, c, and d.

[image: image2.wmf]
If the vertices
[image: image3.wmf] of a polygon are labeled counter-clockwise, the area is:

[image: image4.wmf]
Proximity
Closest points in 1-d space (1dclosest.c)

[image: image5.wmf]
1.
Find median of point set.

2.
Recursively determine closest pair on left side and right side.

3.
Check whether rightmost in left side and leftmost in right side are a closer pair than 2.

Worst-case:
[image: image6.wmf]
Closest points in 2-d space (2dclosest.c)

Brute-force:
[image: image7.wmf]
Divide-and-conquer:

[image: image8.wmf]
1.
Draw vertical line to divide into equal-size subsets.

2.
Recursively find closest pair for left and right sides. Let  be the smaller of the two distances.

3.
Find closest pair among points within  of the dividing line.

Since the point set is not random, details must assure that
[image: image9.wmf] behavior is avoided.

Base Case: If n (3 (or some other constant), use brute-force.

To support the “divides” and the seam processing, the set of points is preprocessed:

1.
Create array with points sorted by x-coordinate.

2.
Create second array with points sorted by y-coordinate. Also include cross-references to x-ordered array.

When a “divide” by a vertical line is needed, the first array is trivial to split and the second array is split by using the cross-references.

The y-ordered array facilitates finding the closest pair across the seam.

[image: image10.wmf]
For a given left-side seam point, the distances to at most six right-side seam points are needed.

[image: image11.wmf]
Convex Hulls
Determine smallest convex polygon that includes all points in a 2-d set.

Graham scan - Based on angular sweep w.r.t. the (leftmost) bottom point X and maintaining stack with convex hull.

1.
Find X.

2.
Sort by angle w.r.t. X. Comparisons by testing “turns” and breaking collinear cases by taking farthest point first.

3.
Push X and first two sweep points.

4.
for each point P in sorted order

while top-of-stack, next-to-top-of-stack, and P do not make a left turn

Discard top-of-stack (it’s not in convex hull)

Push P

[image: image12.wmf]
Jarvis march (rubberbanding or gift-wrapping)

Runs in
[image: image13.wmf] where h is the number of hull points

Good for cases like:

[image: image14.wmf]
Same initial point X as Graham scan.

Also need (leftmost) top point Y.

Each successive hull point is found by finding minimum angle WRT two previous points.

[image: image15.wmf]
Convex hull may be used to find the diameter of a set using
[image: image16.wmf] additional time.

Sweep-Line Algorithms
Simple example: Intersection of rectilinear rectangles

[image: image17.wmf]

Idea: Sweep a vertical line from left-to-right and store vertical cross-section (sweep-line status).

Preprocessing: Sort left and right edges by x-coordinate (event-point schedule).

Algorithm: Sweep across x dimension

Left edge: Check for intersection. Insert in interval tree (CLRS, 14.3)

Right edge: Delete from interval tree

Runs in
[image: image18.wmf] (m is max rects in tree)

Difficulty: What if two rectangles “touch”? Treat as intersecting or not by how ties are handled.

More significant example: 2-d closest pairs

Idea: Incrementally determine  for the leftmost k points. Maintain y-ordered BST of points

whose x-distance from point k + 1 is < .

Preprocessing: Sort points by x-coordinate.

Processing point k + 1:

1.
Delete BST points that are at least  to the left of point k + 1.

2.
Examine BST points that are no more than d below or above point k + 1 and check for improving d.

3.
Insert point k + 1 into BST. (If BST already has a point with same y-coordinate, replace it).

[image: image19.wmf]

Time:
[image: image20.wmf]

Reference: K. Hinrichs, J. Nievergelt, and P. Schorn, “Plane-Sweep Solves the Closest Pair

Problem Elegantly”, Information Processing Letters 26 (1988), 255-261.

Euclidean Minimum Spanning Trees
Voronoi Diagram - post office problem. Divides plane into convex regions, each containing points closest to some given point (blue lines).

Fortune’s Sweep-Line achieves
[image: image21.wmf] - applet

Delaunay Triangulation (has size , must include EMST edges)

Connects vertices for adjacent Voronoi regions (black lines between input points).

May transform an arbitrary triangulation to a DT in
[image: image22.wmf] time using flips based on incircle test

and the following property:

Three points are vertices of a Delaunay triangle iff the circle that passes through the three points

is empty.

[image: image23.wmf]
[image: image24.png]

[image: image25.png]

Aside: Twin/Half-Edge Data Structure (AKA Doubly-Connected Edge List - DCEL, V - E + F = 2)

Vertex #
Cooordinates
Incident Edge#
Face #
Edge

1
0 0 0
1
1
1

2
1 0 0
2
2
6

3
0 1 0
4
3
10

4
0 0 1
8
4
11

Origin

 Incident

Edge #
(Tail)
Twin
 Face
Next
Prev

1
1
2
 1
3
5

2
2
1
 3
10
12

3
2
4
 1
5
1

4
3
3
 4
11
8

5
3
6
 1
1
3

6
1
5
 2
7
9

7
3
8
 2
9
6

8
4
7
 4
4
11

9
4
10
 2
6
7

10
1
9
 3
12
2

11
2
12
 4
8
4

12
4
11
 3
2
10

[image: image26.png]

Aside: What do -

Determining whether three values in a set of integers add to 0

Determining whether there are three values from different sets of integers that add to 0

Determining whether no three points in a set are collinear

Determining whether no three lines in a set intersect

Determining the area of overlapping triangles in the plane

have in common? They are 3SUM-hard . . .

A. Gajentaan and M.H. Overmars, “On a Class of
[image: image27.wmf] Problems in Computational Geometry”, Computational Geometry: Theory and Applications 5 (1994), 165-185.

_1089301975.unknown

_1119454252.unknown

_1215612791.unknown

_1246862027.unknown

_1215612726.unknown

_1089302099.unknown

_1089303241.unknown

_1089302146.unknown

_1089302015.unknown

_1089301906.unknown

_1089301946.unknown

_1056900723.unknown

