
Optimal Binary Search Trees

Contrast with optimal static ordering for lists.

1. Assume access probabilities are known:

keys are K1 < K2 < . . . < Kn

pi = probability of request for Ki
qi = probability of request with Ki < request < Ki+1
q0 = probability of request < K1
qn = probability of request > Kn

2. Assume that levels are numbered with root at level 0. Minimize:

∑ pj(Internalj + 1)

1≤ j ≤ n

+ ∑ qk(Externalk)

0≤ k≤ n

3. Example tree:

K1

K2

K3

K4

K52q0 2q1

3q2 3q3 3q4 3q5

2p1

p2

3p3

2p4

3p5

0

1

2

3

4. Solution is by dynamic programming:

Principle of optimality - solution is not optimal unless the subtrees are optimal.

Base case - empty tree, costs nothing to search.

pi+1 pj

qi

qi+1 qj-1

qj

c(i,j) - cost of subtree with keys Ki+1, . . . Kj

c(i,j) always includes exactly pi+1, . . ., pj and qi, . . ., qj

c(i,i) = 0 - Base case, no keys, just misses for qi (request between Ki and Ki+1)

Recurrence for finding optimal subtrees:

c(i,j) = w(i,j) + min
i < k≤ j

(c(i,k -1) +c(k,j))

tries every possible root (‘‘k’’) for the subtree with keys Ki+1, . . . Kj

w(i,j) =pi+1 + . . . + pj + qi + . . . +qj accounts for adding another probe for all keys:

Left: pi+1 + . . . + pk-1 + qi + . . . +qk-1

Right: pk+1 + . . . + pj + qk + . . . +qj

Root: pk

c(i,k-1) c(k,j)

k

5. Implementation: A k-family is all cases for c(i,i+k). k-families are
computed in ascending order from 1 to n.

Complexity: O(n2) space is obvious. O(n3) time from:

∑
n

k(n+1-k)

k = 1

where k is the number of roots for each c(i,i+k) and n + 1 - k is the number of
c(i,i+k) cases in family k.

6. Traceback - besides having the minimum value for each c(i,j), it it necessary to save
the subscript for the optimal root for c(i,j) as r[i][j].

This also leads to Knuth’s improvement:

Theorem: The root for the optimal tree c(i,j) must have a key with subscript no less
than the key subscript for the root of the optimal tree for c(i,j-1) and no greater than
the key subscript for the root of optimal tree c(i+1,j). (These roots are computed in
the preceding family.)

Proof:

1. Consider adding pj and qj to tree for c(i,j-1). Optimal tree for c(i,j) must keep the
same key at the root or use one further to the right.

Ki+1 Kj-1

2. Consider adding pi+1 and qi to tree for c(i+1,j). Optimal tree for c(i,j) must keep
the same key at the root or use one further to the left.

Ki+2 Kj

7. Analysis of Knuth’s improvement.

Each c(i,j) case for k-family will vary in the number of roots to try, but overall time is
reduced to O(n2) by using a telescoping sum:

∑
n

∑
n-k

(r[i +1][i +k]-r[i][i + k-1] +1)

i = 0k = 2

= ∑
n

r[1][k] -r[0][k -1] + 1

+

r[2][1+k]-r[1][k] + 1

+

r[3][2+ k]-r[2][1+ k] +1

+ ... +

r[n-k +1][n]-r[n -k][n-1] +1

k = 2

= ∑
n

(r[n-k + 1][n]-r[0][k -1] + n-k+1)

k = 2

≤ ∑
n

(n+n-k+ 1)

k = 2

= ∑
n

(2n-k +1)

k = 2

= O(n2)

