Optimal Binary Search Trees

Contrast with optimal static ordering for lists.

1. Assume access probabilities are known:

keysare K1 <Ko <...<Kp

pi = probability of request for K

gj = probability of request with Kj < request < Kj+1

go = probability of request < K1
On = probability of request > Kp,

2. Assumethat levels are numbered with root at level 0. Minimize:

Z pj(lnternalj+1)+ Z q, (Extemd)

1<j<n O<ks<n
3. Exampletree:
0
p2

1 K

2p1 2p4
2 20 201 @

3p3 3p5

3 302 303 | |3g4 | | 305

4. Solution is by dynamic programming:
Principle of optimality - solution is not optimal unless the subtrees are optimal.

Base case - empty tree, costs nothing to search.

v

AL

gi+1 g-1

c(i,j) - cost of subtree with keys Kj+1, . . . K|
c(i,j) awaysincludes exactly pj+1, . . ., pj and g, . . ., g

c(i,i) = 0 - Base case, no keys, just misses for g (request between Kj and Kj+1)

Recurrence for finding optimal subtrees:

c(i,j) =w(i,j)+ min (c(i,k-1)+c(k,))
i <k<j

tries every possible root (**k’") for the subtree with keys Kj+1, . . . K]
W(i,j) =pj+1 + ...+ pj + g + ... +qj accounts for adding another probe for al keys:
Leftt pj+1+...+pk-1+0i+...+0k-1

Righ’[: pk+1+___+pj+qk+...+qj

Root: Pk

5. Implementation: A k-family isall casesfor c(i,i+k). k-familiesare
computed in ascending order from 1 to n.

Complexity: O(n2) spaceis obvious. O(n3) time from:

n

Z k(n+1-k)
k=1

where k is the number of roots for each c(i,i+k) and n + 1 - k is the number of
c(i,i+k) casesin family k.

6. Traceback - besides having the minimum value for each c(i}), it it necessary to save
the subscript for the optimal root for c(i,j) asr[i][j].

This aso leads to Knuth’ s improvement:

Theorem: Theroot for the optimal tree c(i,j) must have a key with subscript no less
than the key subscript for the root of the optimal tree for c(i,j-1) and no greater than
the key subscript for the root of optimal tree c(i+1,j). (These roots are computed in
the preceding family.)

Proof:

1. Consider adding pj and gj to tree for c(i,j-1). Optimal tree for c(i,j) must keep the
same key at the root or use one further to the right.

(N

2. Consider adding pj+1 and gj to treefor c(i+1,)). Optimal treefor c(i,j) must keep
the same key at the root or use one further to the left.

N\

7. Analysis of Knuth’s improvement.

Each c(i,j) case for k-family will vary in the number of rootsto try, but overall timeis
reduced to O(n2) by using a telescoping sum:

O rla[k]-rO]k-1]+1]
[] +]
n n-k n% r[2][1+K]-r[1][K] +1 E
Z Z (r[i + A [i +K]-r[i][i + k-1] +1) = Z [+ 5
k=2i=0 k=201 r[3][2+K]-r[2][1+k] +1 []
5 5
[d[n-k +2][n]-r[n-K][n-1] + 101
n
= Z (r[n-K +1][n]-r[0][K-1] +n-k+1)
k=2
n n
<Y (nk+n= § (2n-k +1) = O(n?)

k=2 k=2

