Optimal Binary Search Trees

Contrast with optimal static ordering for lists.

1. Assume access probabilities are known:
keys are $K_{1}<K_{2}<\ldots<K_{n}$
$\mathrm{p}_{\mathrm{i}}=$ probability of request for K_{i}
$\mathrm{q}_{\mathrm{i}}=$ probability of request with $\mathrm{K}_{\mathrm{i}}<$ request $<\mathrm{K}_{\mathrm{i}+1}$
$\mathrm{q}_{0}=$ probability of request $<\mathrm{K}_{1}$
$\mathrm{q}_{\mathrm{n}}=$ probability of request $>\mathrm{K}_{\mathrm{n}}$
2. Assume that levels are numbered with root at level 0 . Minimize:

$$
\sum_{1 \leq \mathrm{j} \leq \mathrm{n}} \mathrm{p}_{\mathrm{j}}\left(\text { Internal }_{\mathrm{j}}+1\right)+\sum_{0 \leq \mathrm{k} \leq \mathrm{n}} \mathrm{q}_{\mathrm{k}}\left(\text { External }_{\mathrm{k}}\right)
$$

3. Example tree:

4. Solution is by dynamic programming:

Principle of optimality - solution is not optimal unless the subtrees are optimal.
Base case - empty tree, costs nothing to search.

$\mathrm{c}(\mathrm{i}, \mathrm{j})$ - cost of subtree with keys $\mathrm{K}_{\mathrm{i}+1}, \ldots \mathrm{~K}_{\mathrm{j}}$
$c(\mathrm{i}, \mathrm{j})$ always includes exactly $\mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}$ and $\mathrm{q}_{\mathrm{i}}, \ldots, \mathrm{q}_{\mathrm{j}}$
$c(i, i)=0$ - Base case, no keys, just misses for q_{i} (request between K_{i} and K_{i+1})

Recurrence for finding optimal subtrees:

$$
c(i, j)=w(i, j)+\min _{i<k \leq j}(c(i, k-1)+c(k, j))
$$

tries every possible root (' k '") for the subtree with keys $\mathrm{K}_{\mathrm{i}+1}, \ldots \mathrm{~K}_{\mathrm{j}}$
$\mathrm{w}(\mathrm{i}, \mathrm{j})=\mathrm{p}_{\mathrm{i}+1}+\ldots+\mathrm{p}_{\mathrm{j}}+\mathrm{q}_{\mathrm{i}}+\ldots+\mathrm{q}_{\mathrm{j}}$ accounts for adding another probe for all keys:
Left: $\quad \mathrm{p}_{\mathrm{i}+1}+\ldots+\mathrm{p}_{\mathrm{k}-1}+\mathrm{q}_{\mathrm{i}}+\ldots+\mathrm{q}_{\mathrm{k}-1}$
Right: $\mathrm{p}_{\mathrm{k}+1}+\ldots+\mathrm{p}_{\mathrm{j}}+\mathrm{q}_{\mathrm{k}}+\ldots+\mathrm{q}_{\mathrm{j}}$
Root: p_{k}

5. Implementation: A k-family is all cases for $\mathrm{c}(\mathrm{i}, \mathrm{i}+\mathrm{k})$. k -families are computed in ascending order from 1 to n .

Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space is obvious. $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time from:

$$
\sum_{k=1}^{n} \mathrm{k}(\mathrm{n}+1-\mathrm{k})
$$

where k is the number of roots for each $\mathrm{c}(\mathrm{i}, \mathrm{i}+\mathrm{k})$ and $\mathrm{n}+1-\mathrm{k}$ is the number of $\mathrm{c}(\mathrm{i}, \mathrm{i}+\mathrm{k})$ cases in family k .
6. Traceback - besides having the minimum value for each $c(i, j)$, it it necessary to save the subscript for the optimal root for $\mathrm{c}(\mathrm{i}, \mathrm{j})$ as $\mathrm{r}[\mathrm{i}][\mathrm{j}]$.

This also leads to Knuth's improvement:
Theorem: The root for the optimal tree $\mathrm{c}(\mathrm{i}, \mathrm{j})$ must have a key with subscript no less than the key subscript for the root of the optimal tree for $c(i, j-1)$ and no greater than the key subscript for the root of optimal tree $c(i+1, j)$. (These roots are computed in the preceding family.)

Proof:

1. Consider adding p_{j} and q_{j} to tree for $\mathrm{c}(\mathrm{i}, \mathrm{j}-1)$. Optimal tree for $\mathrm{c}(\mathrm{i}, \mathrm{j})$ must keep the same key at the root or use one further to the right.

2. Consider adding $\mathrm{p}_{\mathrm{i}+1}$ and q_{i} to tree for $\mathrm{c}(\mathrm{i}+1, \mathrm{j})$. Optimal tree for $\mathrm{c}(\mathrm{i}, \mathrm{j})$ must keep the same key at the root or use one further to the left.

3. Analysis of Knuth's improvement.

Each $\mathrm{c}(\mathrm{i}, \mathrm{j})$ case for k -family will vary in the number of roots to try, but overall time is reduced to $\mathrm{O}\left(\mathrm{n}^{2}\right)$ by using a telescoping sum:

$$
\begin{aligned}
& \left.\sum_{k=2}^{n} \sum_{i=0}^{n-k}(r[i+1][i+k]-r[i][i+k-1]+1)=\sum_{k=2}^{n} \left\lvert\, \begin{array}{c}
r[2][1+k]-r[1][k]+1 \\
+ \\
r[3][2+k]-r[2][1+k]+1 \\
+\ldots+ \\
+[n-k+1][n]-r[n-k][n-1]+1
\end{array}\right.\right) \\
& =\sum_{k=2}^{n}(r[n-k+1][n]-r[0][k-1]+n-k+1) \\
& \leq \sum_{k=2}^{n}(n+n-k+1)=\sum_{k=2}^{n}(2 n-k+1)=O\left(n^{2}\right)
\end{aligned}
$$

