
Alternatives to Two Classic Data Structures

Chris Okasaki
∗

United States Military Academy
West Point, NY

Christopher.Okasaki@usma.edu

ABSTRACT
Red-black trees and leftist heaps are classic data structures
that are commonly taught in Data Structures (CS2) and/or
Algorithms (CS7) courses. This paper describes alternatives
to these two data structures that may offer pedagogical ad-
vantages for typical students.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees

General Terms
Algorithms

Keywords
Red-black trees, maxiphobic heaps, leftist heaps

1. INTRODUCTION
The field of computer science changes so rapidly that few

of the topics we teach deserve the appellation “classic”. Two
common data structures that fall into that category are red-

black trees [5] and leftist heaps [6], both developed in the
1970’s. Classic data structures provide a welcome sense of
history to the computer science classroom, but, because such
data structures were rarely devised with an eye toward ped-
agogy, we should continue to look for alternatives that may
be pedagogically superior. This paper describes two such
alternatives.

The first alternative is not a new data structure per se,
but rather an alternative approach to inserting an element

∗This work was supported, in part, by the National Science
Foundation under grant CCR-0098288. The views expressed
in this paper are those of the author and do not reflect
the official policy or position of the United States Military
Academy, the Department of the Army, the Department of
Defense, or the U.S. Government.

This paper is authored by an employee of the United States Government and
is in the public domain.
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
ACM 1-58113-997-7/11/0002.

into a red-black tree. Our algorithm is simpler to under-
stand and dramatically simpler to code than the usual al-
gorithm found in textbooks [3, 9]. The second alternative
is a new data structure similar to leftist heaps. This new
data structure, called maxiphobic heaps, is simpler to design
than leftist heaps and hopefully offers greater insight into
the process of designing a non-trivial data structure. Both
alternatives are suitable for use in either Data Structures
(CS2) or Algorithms (CS7).

Our insertion algorithm for red-black trees has previously
been descibed in [7]. Maxiphobic heaps have previously been
described in [8]. However, both data structures were devised
and described in the context of functional programming lan-
guages. Unfortunately, few Data Structures or Algorithms
courses are taught in functional programming languages.
This paper adapts these data structures to an imperative
pseudocode that is compatible with all the major imper-
ative and object-oriented languages commonly used in the
classroom today, and explicitly considers their potential ped-
agogical benefits.

2. RED-BLACK TREES
Red-black trees and AVL trees [1] are probably the two

most widely taught forms of balanced binary search trees.
The algorithms and presentation of both are similar, involv-
ing left single rotations, left double rotations, right single
rotations, and right double rotations. Although easy to un-
derstand at a superficial level, both kinds of trees are ex-
tremely difficult for a beginner to implement. We describe
an alternative approach to insertion in a red-black tree that
replaces the four kinds of rotations with a single balancing
transformation, dramatically reducing the amount of code
needed to implement the insertion function.

Besides the usual search-tree ordering, red-black trees obey
several invariants related to the color of the nodes. Every
node is colored either red or black in such a way that

1. every red node has a black parent, and

2. every path from the root to a node with one or two
empty children contains the same number of black
nodes.

The trick is to maintain these color invariants when modi-
fying the tree.

To insert an element into a red-black tree, we create a
new node containing the element and attach it to the bot-
tom of the tree in the appropriate location to maintain the
search-tree ordering, exactly as if we were inserting into an
unbalanced binary search tree.



z

y

x

A B

C

D

z

x

A y

B C

D

y

x

A B

z

C D

x

A y

B z

C D

x

A z

y

B C

D

= red

= black

Figure 1: The four cases for balancing a red-black

tree.

Next we color the new node. If we color it red, we risk
violating the first color invariant. If we color it black, we risk
violating the second color invariant. However, note that the
first invariant is a local property and the second invariant is
a global property. In the hope that a local property will be
easier to fix than a global property, we color the new node
red.

If the parent of the new node is also red, then we have
violated the first color invariant and need to rearrange and
recolor the tree to restore the invariant. This is where rota-
tions are used in ordinary red-black trees. Instead of rota-
tions we use the following balancing transformation:

Take the red child, the red parent, and the (black)
grandparent and locally balance these three nodes
by making the smallest and largest nodes chil-
dren of the middle node. Then color the middle
node red and the other two nodes black. The
middle node is linked back into the tree in place
of the former black grandparent.

This balancing transformation is illustrated in Figure 1.
Students find this picture satisfying because all four cases
look like they are making the tree more balanced, whereas
the usual pictures of left and right single rotations do not
look like they are making any progress.

After the balancing transformation, we might still have
a violation of the first color invariant, because the middle
node, which is now red, might again have a red parent. How-
ever, note that the red-red violation is now closer to the root.
By repeating the balancing transformation, we will eventu-
ally eliminate the red-red violation or reach the root. (It
is worth exploring with students the consequences of trying
the opposite color scheme in the balancing transformation,
making the middle node black and the other two nodes red.
What happens in that scheme is that the algorithm some-
times falls into an infinite loop, repeatedly rotating the same
few nodes back and forth.)

-- a Tree node contains four fields:

-- Key, Color, Left, and Right

function Insert(K : Key, T : Tree) returns Tree is
T := Ins(K, T)
T.Color := BLACK -- always recolor root black

return T

function Ins(K : Key, T : Tree) returns Tree is
if T = null then

T := allocate a new Tree node
T.Key := K
T.Color := RED
T.Left := null
T.Right := null

elseif K < T.Key then
T.Left := ins(Key, T.Left)

elseif K > T.Key then
T.Right := ins(Key, T.Right)

else return T -- K is already in T

-- check for red child and red grandchild

if IsRed(T.Left) and IsRed(T.Left.Left) then
T := Balance(T.Left.Left, T.Left, T,

T.Left.Left.Right, T.Left.Right)
elseif IsRed(T.Left) and IsRed(T.Left.Right) then

T := Balance(T.Left,T.Left.Right,T,
T.Left.Right.Left,T.Left.Right.Right)

elseif IsRed(T.Right) and IsRed(T.Right.Left) then
T := Balance(T, T.Right.Left, T.Right,

T.Right.Left.Left, T.Right.Left.Right)
elseif IsRed(T.Right) and IsRed(T.Right.Right) then

T := Balance(T, T.Right, T.Right.Right,
T.Right.Left, T.Right.Right.Left)

return T

function Balance(X : Tree, Y : Tree, Z : Tree,
B : Tree, C : Tree) returns Tree is

X.Right := B
Y.Left := X
Y.Right := Z
Z.Left := C
X.Color := BLACK
Y.Color := RED
Z.Color := BLACK
return Y

function IsRed(T : Tree) returns Boolean is
return T != null and T.Color = RED

Figure 2: Pseudocode for insertion into a red-black

tree.

Notice that the first color invariant implies that the root
must be black because it has no parent. If the root becomes
red as a result of the balancing transformation, we simply
color it black. In practice, it is easier to always color the
root black than to check whether the root has become red.
Pseudocode for the complete insertion algorithm is shown
in Figure 2.

If you compare this code to a typical textbook presen-
tation of red-black trees, such as [3], you will immediately
be struck by how short this code is compared to an ordi-
nary implementation. Most of this savings is from replacing
the four separate kinds of rotations with a single transfor-
mation. In addition, ordinary implementations of red-black
trees check whether the sibling of the red parent is also red.
In such cases, these implementations recolor several of the
nodes without rearranging them. Our implementation com-



pletely ignores the color of the sibling node, further reducing
the amount of code required.

Although the resulting code is quite compact compared to
other implementations, the density of the balancing code in
the second half of the Ins function can be rather daunting
at first glance. However, comparing the code side-by-side
with the picture in Figure 1 makes it easy to sort out the
.Left’s and .Right’s. Two more comments on this code are
in order. First, the reason that we only check for red nodes
in Ins, instead of also verifying that T is black, is that we
are guaranteed that T is black if its child and grandchild are
both red, because there will be at most one red node with a
red parent at a time. Second, the reason we do not need to
pass the A and D subtrees from Figure 1 into the balance

function is that they are guaranteed to already be in the
right places (to the left of X and the right of Z, respectively).

We omit the analysis showing that insertion into a red-
black tree takes O(log N) time, because it is identical to the
analysis for ordinary red-black trees, found in many text-
books [3, 9].

3. MAXIPHOBIC HEAPS
A common failing in the way we teach data structures

and algorithms is presenting finished products rather than
guiding students through the algorithmic design steps nec-
essary to reach that product. For example, presentations of
red-black trees (including our own!) commonly conjure the
red-black invariants out of thin air. As a second example,
consider leftist heaps [6]. Leftist heaps are simple to under-
stand, simple to code, and simple to analyze, but students
typically regard the leftist height invariant as “magic”. They
see how to proceed once they are given the height invariant,
but do not see how they could have come up with the height
invariant on their own. Maxiphobic heaps are an alternative
to leftist heaps that retain the good qualities of leftist heap,
but without the “magic”.

Maxiphobic heaps, like leftist heaps, are a form of priority
queue. Elements can be inserted into a heap, and the min-
imum element in a heap can be inspected or removed. In
addition, two heaps can be merged into a single heap. Like
leftist heaps, a maxiphobic heap is represented as a binary
tree in heap order, meaning that the value at each node is
never bigger than the values at any of its descendants. In
addition, each node is annotated with the size of the subtree
rooted at that node. Unlike leftist heaps, maxiphobic heaps
place no restrictions on the shape of the binary tree—a max-
iphobic heap can be arbitrarily unbalanced in any direction.

Except for merge, the operations on maxiphobic heaps
are trivial. The minimum element in a heap-ordered tree
is always the root, so to find the minimum element in a
maxiphobic heap, we simply return the value at the root.
To delete the minimum element, we simply delete the root
and merge its two subtrees. To insert an element, we create
a singleton tree containing the new element and merge it
with the existing tree. Given the idea of heap-ordered trees
and the existence of a merge function, students can readily
come up with these algorithms on their own, although they
may need a little coaxing to think of implementing insertion
using merge.

Only the merge operation remains. To merge two maxi-
phobic heaps, we first compare their roots. The smaller root
becomes the root of the combined tree. Now we reach the
crucial step. Having decided on the new root, we next need

-- a Heap node contains four fields:

-- Value, Size, Left, and Right

function FindMin(H : Heap) returns Value is
if H = null then error
else return H.Value

function DeleteMin(H : Heap) returns Heap is
if H = null then error
else return Merge(H.Left, H.Right)

function Insert(V : Value, H : Heap) returns Heap is
NewH := allocate a new Heap node
NewH.Value := V
NewH.Size := 1
NewH.Left := null
NewH.Right := null
return Merge(H, NewH)

function Merge(H1 : Heap, H2 : Heap) returns Heap is
if H1 = null then return H2
if H2 = null then return H1

-- force H1 to have smaller root

if H2.Value < H1.Value then Swap(H1, H2)

-- calculate size of merged tree

H1.Size := Size(H1) + Size(H2)

-- get the three subtrees

A := H1.Left
B := H1.Right
C := H2

-- force A to be biggest of the three subtrees

if Size(B) > Size(A) then Swap(A,B)
if Size(C) > Size(A) then Swap(A,C)

-- rebuild tree

H1.Left := A
H1.Right := Merge(B, C)
return H1

function Size(H : Heap) returns Integer is
if H = null then return 0
else return H.Size

Figure 3: Pseudocode for maxiphobic heaps.

to determine the two subtrees of the new root. However, we
currently have three candidate subtrees vying for those two
spots: the tree that lost the comparison of the roots and the
two existing subtrees of the winning root. We must some-
how reduce these three subtrees into two by (recursively)
merging two of them together. But which two should we
merge?

Working through a few examples with trees of different
sizes and shapes leads students to the following insight: we
should always merge the two smallest of the three trees,
leaving the largest of the three untouched (hence the name
maxiphobic, meaning “biggest avoiding”, although this name
should probably not be introduced until after the students
have had a chance to wrestle with the merge algorithm). A
pseudocode implementation of maxiphobic heaps appears in
Figure 3.

The key point here is that students can come up with this
all-important design decision with only the gentlest of prod-
ding from the instructor. They are left with a sense of em-



powerment, a feeling that they too are capable of designing

data structures, rather than merely implementing somebody
else’s design. In comparison, the height invariant of leftist
heaps is usually handed down by the instructor or textbook
author without any insight into how or why Knuth came up
with that invariant.1 Students are passive spectators in the
design process, rather than active participants.

After designing the merge algorithm with students, an
easy analysis verifies that merge runs in O(log N) time, and
therefore so do insert and deleteMin. For merge, N is the
combined number of values in the two heaps being merged.
Because the biggest of the three subtrees is avoided at each
step, and that tree contains at least (N − 1)/3 values, it is
easy to see that

T (N) ≤ T (2N/3) + O(1)

The solution to this recurrence relation is O(log
3/2

N) =
O(log N).

Finally, note that “size” in maxiphobic heaps can be in-
terpreted as either number of nodes or height of the tree.
Either interpretation leads to a successful solution, so go
with whichever one students come up with. The pseudocode
in Figure 3 assumes a number-of-nodes interpretation, but
changing to a height interpretation requires changing a sin-
gle line of code (the size calculation of the merged tree
in merge). Taking a number-of-nodes interpretation makes
maxiphobic heaps similar to weighted leftist heaps [2], whereas
a height interpretation makes them more similar to ordinary
leftist heaps.

4. DISCUSSION
The data structures described in this paper offer several

pedagogical advantages over their classical brethren. Our
algorithm for insertion into red-black trees is significantly
simpler than the usual insertion algorithms, so much so that
implementing the insertion algorithm from scratch becomes
a feasible task for a typical student. Our second data struc-
ture, maxiphobic heaps, offers greater insight into the de-
sign process than leftist heaps, without sacrificing simplic-
ity in other areas. We believe that these alternatives could
be seamlessly added to many instances of Data Structures
(CS2) or Algorithms (CS7) courses, particularly those aimed
at students of average or below average ability.

On the other hand, there may be some pedagogical disad-
vantages for courses aimed at highly talented students. Such
a course might want to present deletion from red-black trees
in addition to insertion. Our balancing transformation does
not extend to deletion, so traditional rotation-based dele-
tion algorithms would need to be used. If both insertion
and deletion are to be presented, then it may be preferable
to use traditional rotations for both.

For maxiphobic heaps, the elimination of the leftist height
invariant may diminish the opportunity to impress upon top
students the vital role of such invariants in the design of
advanced data structures. If the design and use of such
complex invariants is considered a significant objective, then
leftist heaps may indeed be preferable, provided substantial

1Ironically, the original data structure by Crane [4] upon
which Knuth based leftist heaps, was more similar to max-
iphobic heaps, except that it avoided the bigger of the two
subtrees of the winning root, even if the losing tree was big-
ger still.

attention is paid to the motivation and development of the
height invariant.

5. SOURCE CODE
Source code for red-black trees and maxiphobic heaps in

a variety of languages is available on the World Wide Web
at the author’s web site:
http://www.eecs.usma.edu/personnel/okasaki/sigcse05/

6. ACKNOWLEDGEMENTS
Thanks to Jean Blair and John Hill for their feedback on

an earlier draft of this paper.

7. REFERENCES
[1] G. M. Adel’son-Vel’skĭı and E. M. Landis. An

algorithm for the organization of information. Soviet

Mathematics–Doklady, 3(5):1259–1263, Sept. 1962.
English translation of Russian orginal appearing in
Doklady Akademia Nauk SSSR, 146:263-266.

[2] S. Cho and S. Sahni. Weight-biased leftist trees and
modified skip lists. ACM Journal of Experimental

Algorithmics, 1998. Article 2.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press, 2001.

[4] C. A. Crane. Linear lists and priority queues as

balanced binary trees. PhD thesis, Computer Science
Department, Stanford University, Feb. 1972. Available
as STAN-CS-72-259.

[5] L. J. Guibas and R. Sedgewick. A dichromatic
framework for balanced trees. In IEEE Symposium on

Foundations of Computer Science, pages 8–21, Oct.
1978.

[6] D. E. Knuth. Searching and Sorting, volume 3 of The

Art of Computer Programming. Addison-Wesley, 1973.

[7] C. Okasaki. Red-black trees in a functional setting.
Journal of Functional Programming, 9(4):471–477, July
1999.

[8] C. Okasaki. Fun with binary heap trees, pages 1–16.
Palgrave MacMillan, 2003.

[9] M. A. Weiss. Data Structures & Algorithm Analysis in

Java. Addison-Wesley, 1998.


