Skip Lists: A Probabilistic Alternative to

Balanced Trees

Skip lists are a data structure that can be used in place of balanced trees.
Skip lists use probabilistic balancing rather than strictly enforced balancing
and as a result the algorithms for insertion and deletion in skip lists are
much simpler and significantly faster than equivalent algorithms for

balanced trees.

William Pugh

Binary trees can be used for representing abstract data typesAlso giving every fourth node a pointer four aheBigj(re

such as dictionaries and ordered lists. They work well when

1c) requires that no more th&n/40+ 2 nodes be examined.

the elements are inserted in a random order. Some sequencd§every (2')th node has a pointei RAodes ahead-{gure 1d),
of operdions, such as inserting the elements in order, producehe number of nodes that must be eiad can be reduced to

degenerate data structures that give very poor performance.

fflog, nCiwhile only doubling the number of pointers. This

it were possible to randomly permute the list of items to be in-data structure could be used for fast seéagstbut insertion

serted, trees would work well with high probability for any in

and deletion would be impractical.

put sequence. In most cases queries must be answered on-line, A node that hak forward pointers is calledlavelk node.

so randomly permuting the input is impracti@&dlancedtree
algorithms re-arrange the tree as ofiers are performed to
maintain certain balance conditions and assure goddrper
mance.

Skip listsare a probabilistic alternative to balanced trees.
Skip lists are banced by consulting a rdom number gen

erator. Although skip lists have bad worst-case performance,

no input sequence consistently produces the worst-case per

If every (2)" node has a pointef Bodes ahead, then levels

of nodes are digbuted in a simple pattern: 50% are level 1,
25% are level 2, 12.5% are level 3 and so on. What would
happen if the levels of nodes were chosen randomly, but in the
same proportions (e.g., as in Figug?1A node'st forward
pointer, instead of pointing 2 nodes ahead, points to the

next node of levell or higher. Insertions or deletions would
require only local modifiations; the level of a node, chosen

formance (much like quicksort when the pivot element is cho randomly when the node isserted, need never change. Some

sen randomly). It is very unlikely a skip list data structure will
be signifcantly unbalanced (e.qg., for a dictionary of more
than 250 eéments, the chance that a search will take more
than 3 times the expected time is less than one in a million).
Skip lists have balance properties similar to that of search
trees built by random insertions, yet do najuiee insertions

to be random.

Balancing a data structure probabilistically is easier than
explicitly maintaining the balance. For many applications,
skip lists are a more natural representation than trees, also
leading to simpler algorithms. The simplicity of skip list algo-
rithms makes them easier to implement and provides signifi-
cant constant factor speedgrmvements over balanced tree
and self-adjusting tree algthms. Skip lists are also very
space efficient. They can easily be configured tpire an
average of /5 pointers per elment (or even less) and do not
require balance or priority infornti@an to be stored with each
node.

SKIPLISTS

arrangenents of levels would give poor execution times, but
we will see that such arrangements are rare. Because these
data strutures are linked lists with extra pointers that skip
over intermediate nodes, | named thekip lists

SKIPLIST ALGORITHMS

This section gives algorithms to search for, insert and delete

elements in a dictionary or symbol table. Bearchopera-

tion returns the contents of the value associated with the de

sired key offailure if the key is not present. Thesertopera-

tion associates a specified key with a new value (inserting the

key if it had not already been present). Dieeteoperation

deletes the specified key. It is easy to support additionat oper

ations such as “find the minimum key” or “find the next key”.
Each element is represented by a node, the level of which

is chosen randomly when the node is inserted without regard

for the number of elements in the data structurkevali

node has forward pointers, indexed 1 throughWe do not

need to store the level of a node in the node. Levels are

capped at some appropriate stamtMaxLevel Thelevelof a

We might need to examine every node of the list when searchist is the maximum level coently in the list (or 1 if the list is

ing a linked list Figure 1a). If the list is stored in sorted order

empty). Theheaderof a list has forward pointers at levels one

and every other node of the list also has a pointer to the nodehroughMaxLevel The forward pointers of the header at

two ahead it in the listHgure 1b), we have to examine no
more tharih/2[0+ 1 nodes (wherr is the length of the list).

levels higher than the current maximum level of the list point
to NIL.

a [J{3[J6[7] A o[F{12 F~17] J~1d J~{21] J>[25] J+26] [NIL |

b L L *] L *] L *] Py ha | *]
G P

¢ : |] 9 : 17— = 21: 26— NIL
G A - E T A

d H ol |21 NIL
G L - e Ea

e 6 — el NIL
il]] 17— il
G B -

FIGURE 1 - Linked lists with additional pointers
Initialization the previous maximum level of the list, we update the maxi

An element NIL is allocated and given a key greater than anymum level of the list and initialize the appropriate portions of

legal key. All levels of all skip lists are terminated with NIL.
A new list is initialized so that the tthevelof the list is equal
to 1 and all forward pointers of the list's header point to NIL.
Search Algorithm

the update vector. After each deletion, we check if we have
deleted the maximum element of the list and if so, decrease
the maximum level of the list.

Choosing a Random L evel

We search for an element by traversing forward pointers that Initially, we discussed a probability distribution where half of

do not oveshoot the node containing the element being

the nodes that have levgbointers also have levetl point

searched for (Figure 2). When no more progress can be maders. To get away from magic constants, we say that a fraction

at the current level of forward pointers, the search moves

p of the nodes with levélpointers also have levetl point

down to the next level. When we can make no more progressers. (for our original discussiop,= 1/2). Levels are generated

at level 1, we must be immediately in front of the node that
contains the desired element (if it is in the list).
Insertion and Deletion Algorithms
To insert or delete a node, we simply search and splice, as
shown in Figure 3. Figure 4 gives algorithms faarion and
deletion. A vectoupdateis mairiained so that when the
search is complete (and we are ready to perform the splice),
updatdi] contains a pointer to the rightmost node of leal
higher that is to the left of the location of the inser
tion/deletion.

If an insertion generates a node with a level greater than

Search(list, searchKey)

x := list - header

-- loop invariant: x> key< searchKey

fori:=list-level downto 1 do
while x - forward[i]- key < searchKey do

X := X - forward][i]

-- X- key< searchKey x- forward[1] - key

X := X - forward[1]

if x-key = searchKey then return x - value
else return failure

FIGURE 2 - Skip list search algorithm

randomly by an algorithm equivalent to the one in Figure 5.
Levels are generated without reference to the number-of ele
ments in the list.

At what level do we start a search? Defining L(n)

In a skip list of 16 elements generated vth 1/2, we might

happen to have 9 elements of level 1, 3 elements of level 2, 3

elements of level 3 and 1 element of level 14 (this would be

very unlikely, but it could happen). How should we handle
this? If we use the standard algorithm and start our search at
level 14, we will do a lot of useless work.

Where should we start the search? Our analysis suggests
that ideally we would start a search at the lévethere we
expect 1p nodes. This happens wherr log;, n. Since we
will be refering frequently to this formula, we will usgn)
to denote log, .

There are a number of solutions to the problem of deciding
how to handle the case where there is an element with an
unusually large level in the list.

«[Don’t worry, be happySimply start a search at the highest
level present in the list. As we will see in our analysis, the
probability that the maximum level in a listoklements is
significantly larger thah.(n) is very small. Starting a
search at the maximum level in the list does not add more
than a small constant to the expected search time. This is
the approach used in the algorithms described in this paper.

Search pat

/ updatgi] — forward[i]

NND

\e)

25 NIL

[IENENES

EFEER

72]@?—& 19

original list, 17 to be inserte

21

»

| NIL

25

9

-

G-l A -

17

| ete[10 21

|26}~

list after insertion, updated pointers in g

FIGURE 3 - Pictorial description of steps involved in performing an insertion

« Use less than you are giveilthough an element may con
tain room for 14 pointers, we don’t need to use all 14. We

can choose to utilize only(n) levels. There are a number
of ways to implement this, but they all complicate the algo
rithms and do not noticeably improve performance, so this!
approach is not recommended.

« Fix the dicelf we generate a random level that is more than
one greater than the current maximum level in the list, we
simply use one plus the current maximum level in the list g
the level of the new node. In practice and intuitively, this
change seems to work well. However, it totally destroys ou
ability to andyze the resulting algorithms, since the level of
a node is no longer completely random. Programmers
should probably feel free to implement this, purists should
avoid it.

Deter mining MaxL evel

Since we can safely cap leveld &), we should choose

MaxLevel= L(N) (whereN is an upper bound on the number

of elements in a skip list). f = 1/2, usingMlaxLevel= 16 is

appropriate for data striures containing up tol elements.

ANALYSISOF SKIPLIST ALGORITHMS

The time required to execute tBearch, DeletandInsert
operations is dominated by the timgueed to search for the
appropriate element. For thesertandDeleteoperations,

there is an additional cost proportional to the level of the nod
being inserted or deleted. The timgueed to find an element
is proportional to the length of the search path, which is de-
termined by the p&trn in which elements with different
levels appear as we traverse the list.

Probabilistic Philosophy

The structure of a skip list is determined only by the number

randomLevel()
vl:=1
-- randong) that returns a random value [6...1)
while random() < p and Ivl < MaxLevel do
Ivl:=Ivl+1
return Ivl

Insert(list, searchKey, newValue)

=

local update[1..MaxLevel]
x := list» header
fori:=list-level downto 1 do
while x - forward[i]- key < searchKey do
X := X - forward][i]
-- X—key < searchKegX - forward[i] —key
updateli] := x
X := X - forward[1]
if x> key = searchKey then x - value := newValue
else
Ivl := randomLevel()
if Ivl > list > level then
fori:=list-level + 1 to Ivldo
update[i] := list— header
list— level := Ivl
x := makeNode(lvl, searchKey, value)
fori:=1to level do
X - forward[i] := update[i] - forward][i]
updateli] - forwardl[i] := x

Delete(list, searchKey)

e

local update[1..MaxLevel]
x := list- header
for i:=list-level downto 1 do
while x - forward[i]- key < searchKey do
X := X — forward][i]
updateli] := x
X := X - forward[1]
if x -~ key = searchKey then
fori:=1to list-level do
if updatel[i] - forward[i] # x then break
update[i] - forward[i] := x - forward][i]
free(x)
while list—level > 1 and
list — header - forward][list - level] = NIL do
list—level := list - level — 1

FIGURE 5 - Algorithm to calculate a random level

FIGURE 4 - Skip List insertion and deletion algorithms

elements in the skip list and thesvdts of consulting the ran Our assumption that the list is infinite is a giesstic as-
dom number generator. The sequence of operations that prosumption. When we bump into the header in our backwards
duced the current skip list does not matter. We assume-an acdclimb, we simply climb up it, without performing any left
versarial user does not have access to the levels of nodes; ward movements. This gives us arpapbound ofl{(n)-1)/
otherwise, he could create situations with worst-case runningon the expected length of the path that climbs from level 1 to
times by deleting all nodes that were not level 1. level L(n) in a list ofn elements.

The probabilities of poor running times for successive op We use this analysis go up to lel¢h) and use a diérent
erations on the same data sttuwe areNoT independent; two analysis technique for the rest of the journey. The number of
successive searches for the same element will both take ex leftward movements remaining is bounded by the number of

actly the same time. More will be said about this later. elements of levell(n) or higher in the entire list, which has an
Analysis of expected search cost expected value of f/
We analyze the search path backwardsglteng up and to We also move upwards from leudn) to the maximum

the left. Although the levels of nodes in the list are known andevel in the list. The probability that the maximum level of the
fixed when the search is fermed, we act as if the level of a list is a greater thakis equal to 1-(1p¥)", which is at most
node is being determined only when it is observed while npk. We can calculate the expected maximum level is at most
backtracking the search path. L(n) + 1/(1p). Putting our results together, we find

At any particular point in the climb, we are at a situation

similar to situatiora in Figure 6 — we are at i€ forward Total expected cost to climb out of a listoélements

pointer of a nod& and we have no knowledge about the <L(n)/p+1/(1-p)
levels of nodes to the left afor about the level of, other which isO(log n).
than that the level of must be at least Assume the is not Number of comparisons

the header (the is equivalent to assuming the list extends in Our result is an analysis of the “length” of the search path.
finitely to the left). If the level ok is equal td, then we are i The number of comparisons required is one plus the length of

situationb. If the level ofxis greater thai, then we are in the search path (a comparison is performed for each position

situationc. The probability that we are in sitiian cisp. Each in the search path, the “length” of the search path is the num-

time we are in situation, we climb up a level. L&E(k) = the ber of hops between positions in the search path).

expected cost (i.e, length) of a search path that climis up Probabilistic Analysis

levels in an infinite list: It is also possible to analyze the probability distribution of
c0)=0 search costs. The probabilistic analysis is somewhat more

complicated (see box). From the probabilistic analysis, we can

C(K) = (1) (cost in situatior) +p (cost in situatiorr) calculate an upper bound on the piuliy that the actual cost

By substituting and simplifying, we get: of a search exceeds thepexted cost by more than a specified
ratio. Some results of this analysis are shown in Figure 8.
C(k) = (1-p) (1 +CK) +p (L +C(k-1)) Choosng p Y J
C(k) = 1/p + C(k-1)

Table 1 gives the relative times and space requirements for

Ck) =kip different values op. Decreasing also irtreases the variabil

Need to climb k
levels from here

E%»

situation a
probability = 1-p / probablhty p

» P

) situation b
Still need to climb k s1tuat10n c

levels from here

?

Need to climb
only k-1 levels
from here

FIGURE 6 - Possible situations in backwards traversal of the search path

ity of running times. If 1p is a power of 2, it will be easy to Normalized search Avg. # of pointers
generate a random level from a stream of random bits- (it re p times {.e., normalized per node
quires an average of (I9d/p)/(1-p) random bits to generate a L(n/p) (e, Y1 -p)
random level). Since some of the constant overheads are re [@ 1 5

lated toL(n) (rather tharlL(n)/p), choosingp = 1/4 (rather than [@ 0.94 158

1/2) slightly improves the constant factors of the speed of thd [[W 1' " 1'33'“
algorithms as well. | suggest that a value of 1/4 be useal for [@ 133 1'14“'
unless the variability of running times is a primary concern, if [UWG 2' " 1'07"'
which casep should be 1/2. T

Sequences of operations
The expected total time for a sequence of operations is equal
to the sum of the expected times of each of the operations in
the sequence. Thus, the expected time for any sequente of Constant factors
searches in a data structure that contaieements i©(m

log n). However, the pattern of searches affects the probabilitconStant factors can make a significant difference in the
S ' . . ractical application of an algorithm. This is particularly true
distribution of the actual time to perform the entire sequence ¥) P g P Y

of operations for sub-linear algorithms. For example, assume that algo
’ . L rithms A andB both requiréD(log n) time to process a query,
If we search for the same item twice in the same data q (logn) P query

A tht thatB is twice as fast aA: in the time algothm A takes to
structure, both searches will take exactly the same amount o

. rocess a query on a data set of sizalgorithmB can pre
time. Thus the variance of the total time will be four times thep query &g P

variance of a single search. If the search times for two ele cess a query on a data set of size
. 9 o S There are two important but qualitatively different contri
ments are independent, the aace of the total time is equal

: o butions to the constant factors of an algorithm. First, the in-
to the sum of the vaances of the individual searches. 9

Searching for the same element over and over again maxi herent complexity of the algorithm places a lower bound on
; g for 9 any implementation. Self-adjusting trees are continuously re-
mizes the variance.

arranged as searches ard@aned; this imposes a sigrgéint
ALTERNATIVE DATA STRUCTURES overhead on any implementation of self-adjusting trees. Skip
Balanced trees (e.g., AVL trees [Knu73] [Wir76]) and self

list algarithms seem to have very low inherent constant-factor
adjusting trees [ST85] can be used for the same problems asovetheads: the inner loop of the deletion algorithm for skip
skip lists. All three techniques have performance bounds of iSts compiles to just six instructions on the 68020.

the same order. A choice among these schemes involves sev S€cond, if the algorithm is complex, programmers are de
eral factors: the diffiulty of implementing the algorithms, terred from implementing optimizations. Forenple, bal-

constant factors, type of bound (amortized, probabilistic or anced tree algorithms are normally described using recursive
worst-case) and performance on a non-uniforribligion of insert and delete procedures, since that is the most simple and

queries. intuitive method of dscribing the algorithms. A recursive in-
Implementation difficulty sert or delete paedure incurs a procedure call overhead. By

For most applications, implementers generally agree skip list&!Sing non-recwsive insert and delete procedures, some of this

are significantly easier to implement than either balanced tre?verhead can be eliminated. However, the complexity of non
algorithms or self-adjusting tree algorithms. recursive algorithms for insertion and deletion in a balanced

tree is intimidating and this complexity deters most program-
mers from eliminating recursion in these routines. Skip list al-

TABLE 1 — Relative search speed and space rageints,
depending on the value pf

1
10t
10?
103

104
—— p=1/4,n=25¢ 5 Prob.
—— p=1/4,n= 4,09 10
—— D = 1/4,n = 65,53‘ 10“6
— p=1/2,n=25¢€ =
— = 1/2,n=4,09¢ 1C
——)= 1/2,n = 65,53t 10'8
- : : | : : : Tond
1.0 2.0 3.0

Ratio of actual cost to expected cost

FIGURE 8 - This graph shows a plot of an upper bound on the probability of a search taking substantially longer than expect
The vertical axis show the probability that the length of the search path for a search exceeds the average length by more th
ratio on the horizontal axis. For example, ior 1/2 andn = 4096, the probability that the search path will be more than three

times the expected length is less than one in 200 million. This graph was calculated using our probabilistic upper bound

Implementation Search Time Insertion Time Deletion Time
Skip lists 0.051 msec (1.0) 0.065 msec (1.0) 0.059 msec (1.0)
non-recursive AVL treeg 0.046 msec (0.91) 0.10 msec (1.55) 0.085 msec (1.46)
recursive 2—3 trees 0.054 msec (1.05) 0.21 msec (3.2) 0.21 msec (3.65)
Self-adjusting trees:
top-down splaying 0.15 msec (3.0) 0.16 msec (2.5) 0.18 msec (3.1)
bottom-up splaying 0.49 msec (9.6) 0.51 msec (7.8) 0.53 msec (9.0)

Table 2 - Timings of implementations of different algorithms

gorithms are already non-recursive and they are simple ments takes more than 5 times the expected time is about 1 in
enough that programmers are not deterred from performing 1018,
optimizations. Non-uniform query distribution

Table 2 compares the performance of implementations of Self-adjusting trees have the property that they adjust to non-
skip lists and four other techniques. All implementations wereuniform query distributions. Since skip lists are faster than
optimized for efficiency. The AVL tree algithms were writ- self-adjusting trees by a significant constant factor when a
ten by James Macropol of Contel and based on those in uniform query distribution is encotered, self-adjusting trees
[Wir76]. The 2—3 tree algorithms are based on those presenteate faster than skip lists only for highly skewed distributions.
in [AHUB83]. Several other egting balanced tree packages We could attempt to devise self-adjusting skip lists. However,
were timed and found to be much slower than the results pre there seems little practical motivation to tamper with the sim
sented below. The self-adjusting tree algorithms are based omplicity and fast performance of skip lists; in an applma
those preented in [ST85]. The times in this table reflect the where highly skewed distributions are expected, either self-
CPU time on a Sun-3/60 to perform an operation in a data adjusting trees or a skip list augmented by a cache may be
structure containing® elements with integer keys. The val- preferable [Pug90].

ues in parenthesis show the results relative to the skip list time
The times for isertion and deletion do not include the time ~ADDITIONAL WORK ON SKIPLISTS

for memory manageent (e.g, irC programs, calls tmalloc I have described a set of algorithms that allow multiple pro

andfree). cessors to concurrently update a skip list in shared memory
Note that skip lists perform more comparisons than other [PUg89a]. This algorithms are much simpler than concurrent

methods (the skip list algorithms presented here require an Palanced tree algorithms. They allow an unlimited number of

average of.(n)/p + 1/(1-p) + 1 comparisons). For tests using readers and busy writers in a skip list of elements with

real numbers as keys, skip lists were slightly slower than the VerY little lock contention.

non-recursive AVL tree algorithms and search in a skip list Using skip lists, it is easy to do most (all?) the sorts of op-

was slightly slower than search in a 2-3 tree (insertion and ~erations you might wish to do with a kated tree such as use

deldion using the skip list algorithms was still faster than us- Search fingers, mer%e skip lists and allow ranking aijoers

ing the recursive 23 tree algorithms). If comparisons are ver{-d-, determine thlé element of a skip list) [Pug89b].

expensive, it is possible to change the algorithms so thatwe ~ T0m Papadakis, lan Munro and Patricio Poblette [PMP90]

never compare the search key against the key of a node mor82ve done an exact analysis of the expected search time in a

than once during a search. For 1/2, this produces an upper skip list. The uper bound described in this paper is close to

bound on the expected number of comparisons of 7/2 + their exact bound; the techniques they needed to use to derive
3/2lbg@. This modification is discussed in [Pug89b]. an exact analysis are very complicated and sophisticated.
Type of performance bound Their exact analysis shows that for 1/2 andp = 1/4, the

These three classes of algorithm have different kinds ef per UPP€r bound given in this paper on the expected cost of a
formance bounds. Balanced trees have worst-case time search is not more than 2 comparisons more than the exact
bounds, self-adjusting trees have amortized time bounds andéxpected cost. o .

skip lists have probabilistic time bounds. With self-adjusting I have adapted idea of probabilistic balancing to some

trees, an individual operation can taB) time, but the time other problems a_rising both in data structures and in-incre
bound always holds over a long sequence of operations. For Mental computation [PT88]. We can generate the level of a
skip lists, any operation or sequence of operations can take Node based on the result of applying a hash function to the
longer than expected, although the probability of any opera- €lément (as opposed to using a random number generator).
tion taking signifeantly longer than expected is negligible. ~ This results in a scheme where for anySehere is a unique

In certain real-time applications, we must be assured that data struture that represengsand with high probability the
an operation will complete within a certain time bound. For ~data structure is approximately balanced. If we combine this
such applications, self-adjusting trees may be undesirable, idea with arapplicative(i.e., persistent) probabilistically bal_-
since they can take significantly longer on an individual oper @nced data structure and a scheme such as hashed-consing
ation than expected (e.g., an individual search carQéRe [AII7§] vyhich allows constant-time structural eqqality tests of
time instead oD(log n) time). For real-time systems, skip appllcaltlve data structures, we geta number of interesting
lists may be usable if an adequate safety margin is provided: Properties, such as constant-time equality tests for the repre-
the chance that a search in a skip lists containing 1000 ele- Sentations of sequences. This scheme also has a number of

applications for incremeal computation. Since skip lists are

somewhat awkward to make applicative, a probabilistically
balancedreescheme is used.

RELATED WORK

James Discroll pointed out that R. Sprugnoli suggested a
method of randomly balancing search trees in 1981 [Spr81].
With Sprugnoli’s approach, the state of the data structure is
not independent of the sequence of operations which built it. [PMP90]
This makes it much harder or impossible to formally analyze

his algorithms. Sprugnoli gives empirical evidence that his al-
gorithm has good expected performance, but no theoretical r
sults.

A randomized data structure for ordered sets is described
in [BLLSS86]. However, a search using that data structure re-
quiresO(n/?) expected time. [Pug89a]

Cecilia Aragon and Raimund Seidel describe a probabilis
tically balanced search trees scheme [AC89]. They discuss
how to adapt their data structure to non-uniform query distri [Pug89b]
butions.

SOURCE CODE AVAILABILITY
Skip list source code libraries for both C and Pascal are avail-

[Knu73]

{PTao]

able for anonymousgtfrom ri msy. und. edu. [Pug90]
CONCLUSIONS
From a theoretical point of view, there is no need for skip [Spr81]

lists. Balanced trees can do everything that can be done with
skip lists and have good worst-case time bounds (unlike skip [ST85]
lists). However, implementing balanced trees is an exacting
task and as a result balanced tree ritlgms are rarely imple-
mented except as part of a prograimg assignment in a data [Wir76]
structures class.

Skip lists are a simple data structure that can be used in
place of balanced trees for most applications. Skip lists algo
rithms are very easy to implement, extend and modify. Skip
lists are about as fast as highly optimized balanced tree algo
rithms and are substantially faster than casually implemented
balanced tree algorithms.

ACKNOWLEDGEMENTS

Thanks to the referees for their helpful comments. Special
thanks to all those people who supplied enthusiasm and en
couragement during the years in which | struggled to get this
work published, especially Alan Demers, Tim Teitelbaum and
Doug Mcllroy. This work was partially supported by an

AT&T Bell Labs Fellowship and by NSF grant CER

8908900.

REFERENCES

[AC89] Aragon, Cecilia and Raimund Seidel, Randomized
Search Tree®Rroceedings of the 30th Ann. IEEE Symp
on Foundations of Computer Scienpp 540-545,
October 1989.

[AHU83] Aho, A., Hopcroft, J. and Ullman, Data Structures
and Algorithms Addison-Wesley Publishing Company,
1983.

[AlI78] John Allen.Anatomy of LISPMcGraw Hill Book

Company, NY, 1978.

[BLLSS86] Bentley, J., F. T. Leighton, M.F. Lepley, D. Stanat and

J. M. SteeleA Randomized Data Structure For
Ordered SetsVIIT/LCS Technical Memo 297, May
1986.

Knuth, D. “Sorting and SearchingThe Art of

Computer Programming/ol. 3, Addison-Wesley
Publishing Company, 1973.

Papadakis, Thomas, lan Munro and Patricio Poblette,
Exact Analysis of Expected Search Cost in Skip Lists,
Tech Report # ???7?, Dept. of Computer Science, Univ.
of Waterloo, January 1990.

Pugh, W. and T. Teitelbaum, “Incremental Computation
via Function Caching,Proc. of the Sixteenth
conference on the Principles of Programming
Languages1989.

Pugh, W.Concurrent Maintenance of Skip Lisfech
Report TR-CS-2222, Dept. of Computer Science,
University of Maryland, College Park, 1989.

Pugh, W.Whatever you might want to do using
Balanced Trees, you can do it faster and more simply
using Skip ListsTech Report CS—-TR-2286, Dept. of
Computer Science, University of Maryland, College
Park, July 1989.

Pugh, W. Slow Optimally Balanced Search Strategies
vs. Cached Fast Uniformly Balanced Search Strategies,
to appear innformation Processing Letters

Sprugnoli, R. Randomly Balanced Binary Trees,
Calcolo, V17 (1981), pp 99-117.

Sleator, D. and R. Tarjan “Self-Adjusting Binary Search
Trees,”Journal of the ACMYol 32, No. 3, July 1985,

pp. 652-666.

Wirth, N. Algorithms + Data Structures = Programs,
Prentice-Hall, 1976.

PROBABILISTIC ANALYSIS
In addition to analyzing the expected performance of skip

Probabilistic analysis of search cost
The number of leftward movements we need to make before

lists, we can also analyze the probabilistic performance of skize move up a level (in an infinite list) has a rtagabinomial

lists. This will allow us to calculate the probability that an
operation takes longer than a sfiied time. This analysis is

distribution: it is the number of failures (situatidsis) we see
before we see the first success (situatioim a series of

based on the same ideas as our analysis of the expected costndependent random trials, where the probability of success is

so that analysis should be understood first.

A random variabléhas a fixed but unpredictable value and

a predictable probability distribution and averag i$ a
random variable, ProbX[= I denotes the probability that
equalgt and Prob{X > tldenotes the probability that is
greater tham. For example, iX is the number obtained by
throwing a unbiased die, Prok{& 3 } = 1/2.

It is often preferable to find simple upper bounds on values
whose exact value is difficult to calculate. To discuss upper

bounds on rasiom variables, we need tofohe a partial or-
dering and equality on the probability distributions of non-
negative random variables.

Definitions (=prob and<prop). LetX andY be non-negative
independent random variables (typicayandY would
denote the time to execute algorithAgsandAy). We define
X <prob Y to be true if and only if for any valugthe
probability thatX exceeds is less than the probability thét
exceedg. More formally:

X =prop Y iff O't, Prob{X >t} = Prob{ Y >t} and
X <prob Yiff O't, Prob{X>t} <Prob{Y>t}. m

For example, the graph in Figure 7shows the pribiba
distribution of three random variabl¥sY andZ. Since the
probability distribution curve foX is conpletely under the
curves forY andZ, X <prop Y andX <prop Z. Since the
probability curves for Y and Z intersect, neithetprop Z nor
Z <prop Y- Since the expected value of a random varizhte
simply the area under the curve Prob$ t}, if X<propY
then the average &fis less than or equal to the averag¥.of

We make use of two probability distributions:
Definition (binomial distributions— B(t, p)). Lett be a
non-negative integer anglbe a probability. The teri(t, p)
denotes a random variable equal to the number aksses
seen in a series tindependent random trials where the
probability of a success in a trialgsThe average and
variance oB(t, p) aretp andtp(1 — p) respetively. m
Definition (negative binomial distributions — N8 p)). Lets
be a non-negative integer apdbe a probability. The term
NB(s p) denotes a random variable equal to the number of
failures seen before s success in a series of random
independent trials where the probéibf a success in a trial
is p. The average and varianceNi¥(s, p ares(1-p)/p and
s(1-p)/p? respectivelym

1+

Prob{X>1t}
— Prob{Y>t}
— Prob{z>1}

Prob

0 t

FIGURE 7 — Plots of three probability distributions

p. Using the probabilistic notation introduced above:

Cost to climb one level in an infinite list
=prob 1+ NB(1, p).

We can sum the costs of climbing each level to get the
total cost to climb up to levél(n):

Cost to climb to levelL(n) in an infinite list
Zprob (L(N) —1) +NB({L(n) -1, p).

Our assumption that the list is infinite is a pessimistic
assumption:

Cost to climb to level(n) in a list ofn elements
<prob (L(n) — 1) +NB(L(n) — 1,p).

Once we have climbed to levefn), the number of
leftward movements is bounded by the number ofelds of
level L(n) or greater in a list af elements. The number of
elements of levell(n) or greater in a list af elements is a
random variable of the forfd(n,d/np).

Let M be a random variable corresponding to the
maximum level in a list ofi elements. The probability that the
level of a node is greater tharis pX, so Prob{M >k} = 1—
(199" < npk. Sincenp = LM and Prob{NB(1, 1) + 1 >
i} = p, we get an probabilistic upper bound\d& ., L) +
NB(1, 1 —p) + 1. Note that the averageldh) + NB(1, 1 —f)

+ 1isL(n) + 1/(1-p).

This gives a probabilistic upper bound on the cost once we
have reached levéln) of B(n,[@/np) + (L(n) + NB(1, 1 —p) +
1) —O(n). Combining our results to get a probabilistic upper
bound on the total length of the search path (i.e., cost of the
entire search):

total cost to climb out of a list of elements
<prob (L(N) — 1) +NB(L(n) — 1,p) + B(n, 1hp)
+NB(1,1-p) +1

The expected value of our upper bound is equal to

(L) -1) + () - A p)/p+ 1p +p/(1-p) + 1
=L(n)/p+ 1/(1-p),

which is the same as our previously calculated upper bound
on the expected cost of a search. The variance of our upper
bound is

(L(n) — D)(ER/P? + (1 - 1hp)/p + pl(1-)?
< (I-pIL()/p? + pl(1-)? + (2p-1)Ip?.
Figure 8 show a plot of an upper bound on the probability

of an actual search taking substantially longer than average,
based on our probabilistic upper bound.

