
Splay Trees

Self-adjusting counterpart to AVL and red-black trees

Advantages - 1) no balance bits, 2) some help with locality of reference, 3) amortized complexity is same as 
AVL and red-black trees

Disadvantage - worst-case for operation is O(n)

Algorithms are based on use of rotations to splay the last node processed (x) to root position.
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1. Single right rotation at z.
2. Single right rotation at y.
    (+ symmetric case)

Zig-Zag:
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Double right rotation at z.
(+ symmetric case)

Zig:  Applies ONLY at the root
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Single right rotation at y.
(+ symmetric case)



Insertion:  Attach new leaf and then splay to root.

Deletion:

1. Access node x to delete, including splay to root.
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2. Access predecessor x’ in left subtree A and then splay to root of left subtree.

3. Take right subtree of x and make it the right subtree of x’

Amortized Analysis of Splaying for Retrieval:

Actual cost (rotations) is 2 for zig-zig and zig-zag, but 1 for zig.

S(x) = number of nodes in subtree with x as root (‘‘size’’)

r(x) = log2 S(x) (‘‘rank’’)

Φ(T) = ∑ r(x)

x ∈ T

Examples:
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Now suppose that the leaf in the second example is retrieved.  Two zig-zigs occur.
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∑^Ci = ∑Ci+ Φ(After) -Φ(Before) = 4 + 5.32 -6.9 = 2.42 ≤ 1 + 3log2n

Another example of splaying.  There will be a zig-zag and a zig.
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3.17 =9.17Φ

∑^Ci = ∑Ci+ Φ(After) -Φ(Before) = 3 + 9.98 -9.17 = 3.81 ≤ 1 + 3log2n = 10.51

Compute amortized complexity of individual steps and then complete splaying sequence:

Lemma:  If α > 0, β > 0, α + β ≤ 1, then log2 α + log2 β ≤ -2.

Proof:  log2 α + log2 β = log2 αβ.  αβ is maximized when α = β = 1/2, so max (log2 α + log2 β) = -2.

Access Lemma:

Suppose 1)  x is node being splayed

2)  subtree rooted by x has

Si-1(x) and ri-1(x) before ith step

Si(x) and ri(x) after ith step

then ^Ci ≤ 3ri(x) - 3ri-1(x), except last step which has ^Ci ≤ 1 + 3ri(x) - 3ri-1(x)

Proof:  Proceeds by considering each of the three cases for splaying:



Zig-Zig:
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^Ci = Ci + Φ(Ti) - Φ(Ti-1)

= 2 + ri(x) + ri(y) + ri(z) - ri-1(x) - ri-1(y) - ri-1(z) Potential only changes in this subtree

= 2 + ri(y) + ri(z) - ri-1(x) - ri-1(y) ri(x) = ri-1(z)

≤ 2 + ri(y) + ri(z) - 2ri-1(x) ri-1(x) ≤ ri-1(y)

(*) ≤ 2 + ri(x) + ri(z) - 2ri-1(x) ri(y) ≤ ri(x)

Let α =
Si- 1(x)

Si(x)
, β =

Si(z)

Si(x)
. α > 0, β >0. α + β =

Si-1(x) + Si(z)

Si(x)
≤1. (y is absent from numerator)

Lemma conditions are satisfied , so log2 α + log2 β ≤ -2.  Applying logs to α and β gives:

ri-1(x) + ri(z) - 2ri(x) ≤ -2

which may be rearranged as:

0 ≤ 2ri(x) - ri-1(x) - ri(z) - 2

Add this to (*) to obtain:

^Ci ≤ 3ri(x) - 3ri-1(x)

Zig-Zag:
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^Ci = Ci + Φ(Ti) - Φ(Ti-1)

= 2 + ri(x) + ri(y) + ri(z) - ri-1(x) - ri-1(y) - ri-1(z) Potential only changes in this subtree

= 2 + ri(y) + ri(z) - ri-1(x) - ri-1(y) ri(x) = ri-1(z)

(**) ≤ 2 + ri(y) + ri(z) - 2ri-1(x) ri-1(x) ≤ ri-1(y)

Lemma may be applied by observing that Si(y) + Si(z) ≤ Si(x) and thus

Si(y)

Si(x)
+

Si(z)

Si(x)
≤ 1

By lemma, log2( )Si(y)

Si(x)
+log2( )Si(z)

Si(x)
≤ -2

ri(y) + ri(z) - 2ri(x) ≤ -2

ri(y) + ri(z) ≤ 2ri(x) - 2 which can substitute into (**)

^Ci ≤ 2 + 2ri(x) - 2 - 2ri-1(x)

= 2ri(x) - 2ri-1(x)

≤ 3ri(x) - 3ri-1(x) Since ri-1(x) ≤ ri(x)

Zig:
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^Ci = Ci + Φ(Ti) - Φ(Ti-1)

= 1 + ri(x) + ri(y) - ri-1(x) - ri-1(y) Potential only changes in this subtree

= 1 + ri(y) - ri-1(x) ri-1(y) = ri(x)

≤ 1 + ri(x) - ri-1(x) ri(y) ≤ ri(x)

≤ 1 + 3ri(x) - 3ri-1(x) ri-1(x) ≤ ri(x)



Total amortized cost for an entire splay sequence:

∑
m

^Ci
i = 1

= ∑
m-1

^Ci
i = 1

+ ^Cm

≤ ∑
m-1

( )3r
i
(x)-3r

i-1
(x)

i = 1

+ 1 + 3r
m

(x) -3r
m-1

(x)

= 3r
m- 1

(x)- 3r
0
(x) + 1 +3r

m
(x)-3r

m-1
(x)

= 1 + 3rm(x)-3r0(x)

≤1 + 3rm(x)

= 1 + 3log2n

Since x is the root after final rotation.


