Splay Trees

Self-adjusting counterpart to AVL and red-black trees
Advantages - 1) no balance bits, 2) some help with locality of reference, 3) amortized complexity is same as AVL and red-black trees

Disadvantage - worst-case for operation is $\mathrm{O}(\mathrm{n})$
Algorithms are based on use of rotations to splay the last node processed (x) to root position.

1. Single right rotation at z .
2. Single right rotation at y . (+ symmetric case)

Double right rotation at z . (+ symmetric case)

Zig: Applies ONLY at the root

Single right rotation at y . (+ symmetric case)

Insertion: Attach new leaf and then splay to root.
Deletion:

1. Access node x to delete, including splay to root.

2. Access predecessor x^{\prime} in left subtree A and then splay to root of left subtree.
3. Take right subtree of x and make it the right subtree of x '

Amortized Analysis of Splaying for Retrieval:
Actual cost (rotations) is 2 for zig-zig and zig-zag, but 1 for zig.
$S(x)=$ number of nodes in subtree with x as root ('size"')
$\mathrm{r}(\mathrm{x})=\log _{2} \mathrm{~S}(\mathrm{x})($ ('rank'")

$$
\Phi(\mathrm{T})=\sum_{\mathrm{x} \in \mathrm{~T}} \mathrm{r}(\mathrm{x})
$$

Examples:

Now suppose that the leaf in the second example is retrieved. Two zig-zigs occur.

Another example of splaying. There will be a zig-zag and a zig.

$\sum{ }^{\wedge} \mathrm{C}_{\mathrm{i}}=\sum \mathrm{C}_{\mathrm{i}}+\Phi($ After $)-\Phi($ Before $)=3+9.98-9.17=3.81 \leq 1+3 \log _{2} n=10.51$
Compute amortized complexity of individual steps and then complete splaying sequence:
Lemma: If $\alpha>0, \beta>0, \alpha+\beta \leq 1$, then $\log _{2} \alpha+\log _{2} \beta \leq-2$.
Proof: $\log _{2} \alpha+\log _{2} \beta=\log _{2} \alpha \beta$. $\alpha \beta$ is maximized when $\alpha=\beta=1 / 2$, so $\max \left(\log _{2} \alpha+\log _{2} \beta\right)=-2$.

Access Lemma:
Suppose 1) x is node being splayed
2) subtree rooted by x has

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{i}-1}(\mathrm{x}) \text { and } \mathrm{r}_{\mathrm{i}-1}(\mathrm{x}) \text { before ith step } \\
& \mathrm{S}_{\mathrm{i}}(\mathrm{x}) \text { and } \mathrm{r}_{\mathrm{i}}(\mathrm{x}) \text { after ith step }
\end{aligned}
$$

then

$$
{ }^{\wedge} \mathrm{C}_{\mathrm{i}} \leq 3 \mathrm{r}_{\mathrm{i}}(\mathrm{x})-3 \mathrm{r}_{\mathrm{i}-1}(\mathrm{x}), \text { except last step which has }{ }^{\wedge} \mathrm{C}_{\mathrm{i}} \leq 1+3 \mathrm{r}_{\mathrm{i}}(\mathrm{x})-3 \mathrm{r}_{\mathrm{i}-1}(\mathrm{x})
$$

Proof: Proceeds by considering each of the three cases for splaying:

$$
{ }^{\wedge} \mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}+\Phi\left(\mathrm{T}_{\mathrm{i}}\right)-\Phi\left(\mathrm{T}_{\mathrm{i}-1}\right)
$$

$=2+r_{i}(x)+r_{i}(y)+r_{i}(z)-r_{i-1}(x)-r_{i-1}(y)-r_{i-1}(z) \quad$ Potential only changes in this subtree

$$
=2+r_{i}(y)+r_{i}(z)-r_{i-1}(x)-r_{i-1}(y) \quad r_{i}(x)=r_{i-1}(z)
$$

$$
\leq 2+r_{i}(y)+r_{i}(z)-2 r_{i-1}(x)
$$

$$
r_{i-1}(x) \leq r_{i-1}(y)
$$

(*)

$$
\leq 2+r_{i}(x)+r_{i}(z)-2 r_{i-1}(x) \quad r_{i}(y) \leq r_{i}(x)
$$

Let $\alpha=\frac{S_{i-1}(x)}{S_{i}(x)}, \beta=\frac{S_{i}(z)}{S_{i}(x)} . \alpha>0, \beta>0 . \alpha+\beta=\frac{S_{i-1}(x)+S_{i}(z)}{S_{i}(x)} \leq 1 . \quad(y$ is absent from numerator)
Lemma conditions are satisfied, so $\log _{2} \alpha+\log _{2} \beta \leq-2$. Applying logs to α and β gives:

$$
\mathrm{r}_{\mathrm{i}-1}(\mathrm{x})+\mathrm{r}_{\mathrm{i}}(\mathrm{z})-2 \mathrm{r}_{\mathrm{i}}(\mathrm{x}) \leq-2
$$

which may be rearranged as:

$$
0 \leq 2 r_{i}(x)-r_{i-1}(x)-r_{i}(z)-2
$$

Add this to $\left({ }^{*}\right)$ to obtain:

$$
{ }^{\wedge} \mathrm{C}_{\mathrm{i}} \leq 3 \mathrm{r}_{\mathrm{i}}(\mathrm{x})-3 \mathrm{r}_{\mathrm{i}-1}(\mathrm{x})
$$

Zig-Zag:

$$
\begin{array}{rlrl}
{ }^{\wedge} \mathrm{C}_{\mathrm{i}} & =\mathrm{C}_{\mathrm{i}}+\Phi\left(\mathrm{T}_{\mathrm{i}}\right)-\Phi\left(\mathrm{T}_{\mathrm{i}-1}\right) & & \\
& =2+\mathrm{r}_{\mathrm{i}}(\mathrm{x})+\mathrm{r}_{\mathrm{i}}(\mathrm{y})+\mathrm{r}_{\mathrm{i}}(\mathrm{z})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{x})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{y})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{z}) & & \text { Potential only changes in this subtree } \\
& =2+\mathrm{r}_{\mathrm{i}}(\mathrm{y})+\mathrm{r}_{\mathrm{i}}(\mathrm{z})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{x})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{y}) & & \mathrm{r}_{\mathrm{i}}(\mathrm{x})=\mathrm{r}_{\mathrm{i}-1}(\mathrm{z}) \\
(* *) & & \leq 2+\mathrm{r}_{\mathrm{i}}(\mathrm{y})+\mathrm{r}_{\mathrm{i}}(\mathrm{z})-2 \mathrm{r}_{\mathrm{i}-1}(\mathrm{x}) & \\
\mathrm{r}_{\mathrm{i}-1}(\mathrm{x}) \leq \mathrm{r}_{\mathrm{i}-1}(\mathrm{y})
\end{array}
$$

Lemma may be applied by observing that $\mathrm{S}_{\mathrm{i}}(\mathrm{y})+\mathrm{S}_{\mathrm{i}}(\mathrm{z}) \leq \mathrm{S}_{\mathrm{i}}(\mathrm{x})$ and thus

$$
\frac{S_{i}(y)}{S_{i}(x)}+\frac{S_{i}(z)}{S_{i}(x)} \leq 1
$$

By lemma, $\log _{2}\left(\frac{\mathrm{~S}_{\mathrm{i}}(\mathrm{y})}{\mathrm{S}_{\mathrm{i}}(\mathrm{x})}\right)+\log _{2}\left(\frac{\mathrm{~S}_{\mathrm{i}}(\mathrm{z})}{\mathrm{S}_{\mathrm{i}}(\mathrm{x})}\right) \leq-2$

$$
\begin{array}{rlr}
& r_{i}(y)+r_{i}(z)-2 r_{i}(x) \leq-2 & \\
& r_{i}(y)+r_{i}(z) \leq 2 r_{i}(x)-2 & \text { which can substitute into }(* *) \\
{ }^{\wedge} C_{i} \leq & 2+2 r_{i}(x)-2-2 r_{i-1}(x) & \\
= & 2 r_{i}(x)-2 r_{i-1}(x) & \\
\leq & 3 r_{i}(x)-3 r_{i-1}(x) & \text { Since } r_{i-1}(x) \leq r_{i}(x)
\end{array}
$$

Zig:

$$
\begin{aligned}
{ }^{\wedge} \mathrm{C}_{\mathrm{i}} & =\mathrm{C}_{\mathrm{i}}+\Phi\left(\mathrm{T}_{\mathrm{i}}\right)-\Phi\left(\mathrm{T}_{\mathrm{i}-1}\right) & & \\
& =1+\mathrm{r}_{\mathrm{i}}(\mathrm{x})+\mathrm{r}_{\mathrm{i}}(\mathrm{y})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{x})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{y}) & & \text { Potential only changes in this subtree } \\
& =1+\mathrm{r}_{\mathrm{i}}(\mathrm{y})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{x}) & & \mathrm{r}_{\mathrm{i}-1}(\mathrm{y})=\mathrm{r}_{\mathrm{i}}(\mathrm{x}) \\
& \leq 1+\mathrm{r}_{\mathrm{i}}(\mathrm{x})-\mathrm{r}_{\mathrm{i}-1}(\mathrm{x}) & & \mathrm{r}_{\mathrm{i}}(\mathrm{y}) \leq \mathrm{r}_{\mathrm{i}}(\mathrm{x}) \\
& \leq 1+3 \mathrm{r}_{\mathrm{i}}(\mathrm{x})-3 \mathrm{r}_{\mathrm{i}-1}(\mathrm{x}) & & \mathrm{r}_{\mathrm{i}-1}(\mathrm{x}) \leq \mathrm{r}_{\mathrm{i}}(\mathrm{x})
\end{aligned}
$$

Total amortized cost for an entire splay sequence:

$$
\begin{aligned}
\sum_{i=1}^{m}{ }^{\wedge} C_{i} & =\sum_{i=1}^{m-1}{ }^{\wedge} C_{i}+{ }^{\wedge} C_{m} \\
& \\
& \leq \sum_{i=1}^{m-1}\left(3 r_{i}(x)-3 r_{i-1}(x)\right)+1+3 r_{m}(x)-3 r_{m-1}(x) \\
& =3 r_{m-1}(x)-3 r_{0}(x)+1+3 r_{m}(x)-3 r_{m-1}(x) \\
& =1+3 r_{m}(x)-3 r_{0}(x) \\
\leq & 1+3 r_{m}(x) \\
& =1+3 \log _{2} n
\end{aligned}
$$

Since x is the root after final rotation.

