CSE 5311 Name ______ Test 1 - Closed Book Summer 2004 Student ID # ______ Multiple Choice. Write your answer to the LEFT of each problem. 4 points each 1. Which of the following random permutation techniques is not uniform? A. PERMUTE-BY-SORTING B. PERMUTE-WITH-ALL C. RANDOMIZE-IN-PLACE D. Randomly choose one of the n! ranks and then apply unranking 2. Fibonacci trees are used in the analysis of which technique? A. AVL

- B. red-black
- C. splay
- D. treap
- 3. Which analysis of self-organizing linear search did not involve probabilities?
 - A. Count vs. optimal fixed order
 - B. Lab Assignment 1
 - C. Markov analysis of move-to-front for Zipf's distribution
 - D. Move-to-front (online) vs. optimal offline
- 4. The median of a set of n numbers may be found optimally in time:
 - A. $\theta(\log n)$
 - B. $\theta(n)$
 - C. $\theta(n \log n)$
 - D. $\theta(n^2)$
- 5. To support computing prefix sums of all keys that are no larger than some query key, an augmented binary search tree stores the following at every node:
 - A. the sum of all keys in the entire tree
 - B. the sum of all keys in the left subtree
 - C. the sum of all keys that are no larger than the stored key
 - D. the sum of all keys stored in the subtree rooted by this node
- 6. When using Brent's rehash, the number of previously inserted keys that may move is:
 - A. 1
 - B. 2
 - C. $\frac{1}{2}$
 - α
 - D. H_m , where *m* is the number of stored keys
- 7. Assuming that a random n-permutation is provided, the expected number of hires for the hiring problem is:
 - A. 2
 - B. *H*_{*n*}
 - C. <u>1</u>
 - D. n
- 8. Which data structure is not used to implement a dictionary?
 - A. AVL tree
 - B. Red-black tree
 - C. Self-organizing list
 - D. Union-find

- 9. Which binary search tree method stores the same information in each node as an unbalanced binary search tree, yet performs retrieval, insertion, and deletion in O(log n) amortized time?
 - A. AVL
 - B. red-black
 - C. splay
 - D. treap
- 10. Which priority queue implementation generalizes binary heaps by increasing the branching?
 - A. Binomial heaps
 - B. d-heaps
 - C. Fibonacci heaps
 - D. Leftist heaps
- 11. Suppose you already have 15 different coupons when there are 20 coupon types. What is the expected number of boxes for obtaining a coupon different from the 15 you already have?
 - A. 3
 - **B**. 4
 - C. 5
 - D. 15
- 12. When is path compression used?
 - A. After an insertion into any type of balanced binary search tree.
 - B. After an insertion into a splay tree.
 - C. After a FIND operation.
 - D. After a UNION operation.

13. How many nodes does a B_5 tree in a binomial heap have? (2 points)

CSE 5311

Test 1 - Open Book

Summer 2004

- Student ID #
- 1. Give the range of possible heights for an AVL tree with 100 keys. (10 points)
- 2. Evaluate the following recurrences using the master method. Indicate the case that is used for each. (15 points)
- a. $T(n) = 2T\left(\frac{n}{4}\right) + 1$
- b. $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$
- c. $T(n) = 2T\left(\frac{n}{4}\right) + n^2$
- 3. Construct the final optimal binary search tree (using Knuth's root trick) and give its cost. SHOW YOUR WORK. (15 points)

n=6;	key[4]=40;	w[0][2]=0.250000
q[0]=0.01;	p[4]=0.2;	w[0][3]=0.490000
key[1]=10;	q[4]=0.0;	w[0][4]=0.690000
p[1]=0.09;	key[5]=50;	w[0][5]=0.850000
q[1]=0.02;	p[5]=0.12;	w[0][6]=1.000000
key[2]=20;	q[5]=0.04;	w[1][1]=0.020000
p[2]=0.1;	key[6]=60;	w[1][2]=0.150000
q[2]=0.03;	p[6]=0.12;	w[1][3]=0.390000
key[3]=30;	q[6]=0.03;	w[1][4]=0.590000
p[3]=0.2;	w[0][0]=0.010000	w[1][5]=0.750000
q[3]=0.04;	w[0][1]=0.120000	w[1][6]=0.900000

Name _____

w[2][2]=0.030000	Building c(3,5) using roots 4 thru 5	c(1,2) cost 0.150000 20
w[2][3]=0.270000	Building c(4,6) using roots 5 thru 6	c(2,3) cost 0.270000 30
w[2][4]=0.470000	Building c(0,3) using roots 2 thru 3	c(3,4) cost 0.240000 40
w[2][5]=0.630000	Building c(1,4) using roots 3 thru 3	c(4,5) cost 0.160000 50
w[2][6]=0.780000	Building c(2,5) using roots 3 thru 4	c(5,6) cost 0.190000 60
w[3][3]=0.040000	Building c(3,6) using roots 4 thru 6	c(0,2) cost 0.370000 20(10,)
w[3][4]=0.240000	Building c(0,4) using roots 3 thru 3	c(1,3) cost 0.540000 30(20,)
w[3][5]=0.400000	Building c(1,5) using roots 3 thru 4	c(2,4) cost 0.710000 30(,40)
w[3][6]=0.550000	Building c(2,6) using roots 4 thru 5	c(3,5) cost 0.560000 40(,50)
w[4][4]=0.000000	Building c(0,5) using roots 3 thru 4	c(4,6) cost 0.470000 60(50,)
w[4][5]=0.160000	Building c(1,6) using roots 4 thru 4	c(0,3) cost 0.860000 30(20(10,),)
w[4][6]=0.310000	Building c(0,6) using roots ? thru ?	c(1,4) cost 0.980000 30(20,40)
w[5][5]=0.040000	Counts - root trick 28 without root	c(2,5) cost 1.060000 40(30,50)
w[5][6]=0.190000	trick 50	c(3,6) cost 0.980000 50(40,60)
w[6][6]=0.030000	Average probe length is ???	c(0,4) cost 1.300000 30(20(10,),40)
Building c(0,2)	trees in parenthesized prefix	c(1,5) cost 1.450000 40(30(20,),50)
using roots 1	c(0,0) cost 0.000000	c(2,6) cost 1.520000 40(30,60(50,))
thru 2	c(1,1) cost 0.000000	c(0,5) cost 1.780000 30(20(10,),40(,50))
Building c(1,3)	c(2,2) cost 0.000000	c(1,6) cost 1.910000 40(30(20,),60(50,))
using roots 2	c(3,3) cost 0.000000	c(0,6) cost ??? ?????????
thru 3	c(4,4) cost 0.000000	
Building c(2,4)	c(5,5) cost 0.000000	
using roots 3	c(6,6) cost 0.000000	
thru 4	c(0,1) cost 0.120000 10	

4. Suppose all 2^{k} - 1 nodes, along with the sentinel, in a red-black tree are colored black. Explain what will happen if any key is deleted. (10 points)

Name _____

CSE 5311

Test 2 - Closed Book

Summer 2004

Student ID # _____ Multiple Choice. Write your answer to the LEFT of each problem. 3 points each

- 1. Which of the following problems is not NP-complete? (Assume $P \neq NP$)
 - A. Testing if a graph is 3-colorable
 - B. Testing if an undirected graph has a Hamiltonian cycle
 - C. Testing if the number of colors needed to edge color a graph is the degree of the graph
 - D. 2-satisfiability
- 2. How many times will -1 occur in the style 1 fail link table for the pattern abaabaab?
 - A. 1
 - B. 2
 - C. 3
 - D. 4

3. How many times will -1 occur in the style 2 fail link table for the pattern abaabaab?

- A. 1
- B. 2
- C. 3
- D. 4

4. Which of the following do Kruskal's and Boruvka's algorithms have in common?

- A. They can take advantage of Union-Find structures
- B. They do not work correctly unless all edge weights are unique
- C. They use min-heaps

- D. They use the edges in ascending weight order
- 5. Under what condition does an instance of stable marriages have only one solution?
 - A. Every male preference list is identical to some female preference list
 - B. No female appears at the beginning of multiple male preference lists
 - C. The male-optimal solution and female-optimal solution are the same
 - D. There is only one rotation
- 6. Which of the following algorithms does not preprocess using a sort?
 - A. Closest points in 2-d space
 - B. Graham scan
 - C. Jarvis march
 - D. Kruskal
- 7. Which algorithm is defined using the notions of left-turn and right-turn?
 - A. Closest points in 2-d space
 - B. Graham scan
 - C. Jarvis march
 - D. Longest common subsequence
- 8. Which of the following is not a condition for performing a lift operation at u?
 - A. all exiting saturated edges have heads with height \geq height of u
 - B. all exiting unsaturated edges have heads with height \geq height of u
 - C. u has excess > 0
- 9. Which of the following does not have a polynomial-time approximation algorithm?
 - A. Bin packing
 - B. Edge coloring
 - C. Traveling salesperson with triangle inequality
 - D. Vertex coloring
- 10. The length of a longest monotone increasing subsequence for 1 4 3 2 3 4 3 6 3 4 is:
 - A. 4
 - B. 5
 - C. 6
 - D. 7
- 11. Which longest common subsequence method is potentially the most space-consuming?
 - A. Compact version of dynamic programming
 - B. Method based on subsequence indices and longest strictly increasing subsequence
 - C. Ordinary dynamic programming
- 12. Consider the technique for determining articulation points using depth-first search. If a vertex has no predecessors (first vertex discovered for a "restart"), it can be an articulation point only if
 - A. there are no incident tree edges
 - B. there is one incident tree edge
 - C. there is more than one incident tree edge
 - D. there is no back edge incident to this vertex
- 13. Which minimum spanning tree algorithm is the slowest?
 - A. Boruvka
 - B. Kruskal
 - C. Prim
 - D. Warshall
- 14. Which string search method is potentially the most time-consuming?
 - A. Karp-Rabin
 - B. KMP with fail 1 links
 - C. KMP with fail 2 links

D. Z table

15. What is the minimum increase in the tail's distance from the source between the first and second times that an edge becomes critical in the Edmonds-Karp method?

A. 1 B. 2 C. (V-2)/2 D. VE 16. Explain how the Z Algorithm ("Fundamental String Preprocessing") may be used to find all occurences of string 1 within string 2. (5 points) CSE 5311 Name Test 2 - Open Book Summer 2004 Student ID # 1. Use the Gale-Shapley algorithm to determine the male-optimal solution for the following instance of the stable marriages problem. In addition, show the preference lists at termination. Note that the preference lists are given left-to-right. (15 points) male preference lists are: 1: 1 2 3 4 5 2: 3 2 1 5 4 3: 3 4 2 5 1 4:13254 5: 2 3 4 5 1 female preference lists are: 1: 4 5 3 2 1 2:12345 3: 2 3 4 5 1 4: 3 2 1 5 4

- 5:45213
- Perform depth-first search on the following graph, including start/finish times and edge types (T=tree, B=back, C=cross, F=forward. Assume that the adjacency lists are *ordered*. Write your answer in the tables below. 15 points

3. *Clearly* list the lift and push operations for the preflow-push algorithm on the following network. In addition, give a minimum cut. (20 points)

