Name ____ CSE 5311 Test 1 - Closed Book Summer 2014 Student ID # Multiple Choice. Write your answer to the LEFT of each problem. 3 points each 1. During which operation on a leftist heap may subtree swaps be needed? A. DECREASE-KEY B. EXTRACT-MIN D. All of A., B., and C. C. UNION 2. Which of the following is not true regarding the amortized analysis of binary tree traversals? A. INIT had an amortized cost of 1. B. SUCC had an actual cost determined by the number of edges followed. C. SUCC had an amortized cost of 2. D. The potential was defined with regard to the type of traversal being performed. 3. Suppose you already have 10 different coupons when there are 20 coupon types. What is the expected number of boxes for obtaining a coupon different from the 10 you already have? A. 2 **B**. 3 C. 4 D. 5 4. When is path compression used? A. After an insertion into a splay tree. B. With a FIND operation. C. After an insertion into any type of balanced binary search tree. D. With a UNION operation. 5. Which of the following data structures offers similar capabilities and performance characteristics to skip lists? A. AVL trees B. Splay trees C. Treap D. Union-find with path compression 6. If a Fibonacci tree appears as a subtree of an AVL tree, which nodes would be assigned a balance factor of 0? A. none of them B. only the leaves C. only the root D. the leaves and the root 7. How many inversions are there for the lists 1, 2, 5, 4, 3 and 1, 2, 3, 4, 5? A. 2 B. 3 C. 4 D. 5 8. Which of the following is not a legal leftist heap? (1)6 B. А

9. Which situation is true regarding a cascading cut that produces c trees for a Fibonacci heap?

- A. Both the actual and amortized costs are O(1). B. The actual cost is O(c). The amortized cost is O(1). C. The actual cost is O(1). The amortized cost is O(c). D. The potential can become negative. 10. Which property does not hold for binomial heaps? A. MINIMUM takes O(1) time. B. Performing *n* INSERT operations into an empty heap will take O(n) time. C. The number of trees is based on the binary representation of the number of stored items. D. DECREASE-KEY takes $O(\log n)$ time. 11. When using Brent's rehash, the number of previously inserted keys that may move is: C. $\underline{1}$ A. 1 B. 2 D. H_m , where *m* is the number of stored keys 12. Which priority queue implementation generalizes binary heaps by increasing the branching? A. Binomial heaps B. d-heaps C. Fibonacci heaps D. Leftist heaps 13. What is minimized in the dynamic programming solution to the subset sum problem? A. The number of input values used to sum to each C(i)B. S_i C. *m* D. The index stored for each C(i)14. What is the worst-case number of rotations when performing deletion on an AVL tree? B. $\Theta(\log n)$ C. $\Theta(n)$ D. No rotations are ever used A. $\Theta(1)$ 15. If the universe size at the root of a van Emde Boas tree is u, then the number of children is: C. $\log \log u$ D. \sqrt{u} A. lg u B. $\log u$ 16. Give the binomial min-heap that results from inserting 1, 2, 3, 4, 5, 6, 7, 8 (in that order) into an empty heap. (5 points) CSE 5311 Name _____ Test 1 - Open Book Student ID # Summer 2014 "During Disney's biggest celebration, find one of 50 character Wobblers inside specially-marked 1. *Kellogg's*[®] cereals!". a. Assuming all Wobblers are equally likely to be the one that occurs in a box, what is the expected
- number of boxes to obtain all 50 Wobblers? (3 points. You may leave your answer as an expression.) b. Under the same assumption as a., what is the expected number of boxes to obtain just 25 different
- Wobblers (of the available 50)? (7 points. You may leave your answer as an expression.)Evaluate the following recurrences using the master method. Indicate the case that is used for each. (10 points)

a.
$$T(n) = 8T\left(\frac{n}{2}\right) + n^4$$

b.
$$T(n) = 8T\left(\frac{n}{2}\right) + n^2$$

c.
$$T(n) = 8T\left(\frac{n}{2}\right) + n^3$$

3. Construct the final optimal binary search tree (using Knuth's root trick) and give its cost. SHOW YOUR WORK. (10 points)

n=6;	p[2]=0.2;	p[4]=0.2;
q[0]=0.12;	q[2]=0.03;	q[4]=0.0;
key[1]=10;	key[3]=30;	key[5]=50;
p[1]=0.12;	p[3]=0.1;	p[5]=0.01;
q[1]=0.09;	q[3]=0.04;	q[5]=0.04;
key[2]=20;	key[4]=40;	key[6]=60;

p[6]=0.03;	w[5][5]=0.040000	c(5,5) cost 0.000000
q[6]=0.02;	w[5][6]=0.090000	c(6,6) cost 0.000000
w[0][0]=0.120000	w[6][6]=0.020000	c(0,1) cost 0.330000 10
w[0][1]=0.330000	Building c(0,2) using roots 1 thru 2	c(1,2) cost 0.320000 20
w[0][2]=0.560000	Building c(1,3) using roots 2 thru 3	c(2,3) cost 0.170000 30
w[0][3]=0.700000	Building c(2,4) using roots 3 thru 4	c(3,4) cost 0.240000 40
w[0][4]=0.900000	Building c(3,5) using roots 4 thru 5	c(4,5) cost 0.050000 50
w[0][5]=0.950000	Building c(4,6) using roots 5 thru 6	C(5,6) Cost 0.090000 60
w[0][6]=1.000000	Building c(0,3) using roots 1 thru 2	C(1,2) Cost 0.880000 $D(20)$
w[1][1]=0.090000	Building c(1,4) using roots 2 thru 4	c(2,4) cost 0.540000 40(30.)
w[1][2]=0.320000	Building c(2,5) using roots 4 thru 4	c(3,5) cost 0.340000 40(,50)
w[1][3]=0.460000	Building c(3,6) using roots 4 thru 6	c(4,6) cost 0.150000 60(50,)
w[1][4]=0.660000	Building c(0,4) using roots 2 thru 2	c(0,3) cost 1.200000 20(10,30)
w[1][5]=0.710000	Building c(1,5) using roots 2 thru 4	c(1,4) cost 1.200000 20(,40(30,))
w[1][6]=0.760000	Building c(2,6) using roots 4 thru 4	c(2,5) cost 0.640000 40(30,50)
w[2][2]=0.030000	Building c(0,5) using roots 2 thru 2	c(3,6) cost 0.490000 40(,60(50,))
w[2][3]=0.170000	Building c(1,6) using roots 2 thru 4	c(0,4) cost 1.770000 20(10,40(30,))
w[2][4]=0.370000	Building c(0,6) using roots ? thru ?	C(1,5) Cost 1.350000 20(,40(30,50))
w[2][5]=0.420000	Counts - root trick 31 without root	C(2,6) COSt 0.790000 40(30,60(50,7))
w[2][6]=0.470000	trick 50	c(1.6) cost 1.540000 40(20(.30).60(50.))
w[3][3]=0.040000	Average probe length is ???	c(0,6) cost ??? ????????????????????????????????
w[3][4]=0.240000	trees in parenthesized prefix	
w[3][5]=0.290000	c(0.0) cost 0.000000	
w[3][6]=0.340000	c(1,1) cost 0.000000	
w[4][4]=0.000000	c(2,2) cost 0.000000	
w[4][5]=0.050000	c(3,3) cost 0.000000	
w[4][6]=0.100000	c(4,4) cost 0.000000	

4. Fill in the min and max blanks for the following instance of a van Emde Boas tree for the set {1, 3, 5, 6, 7, 13, 14, 15}. You should give these as values in the local universe (0..u-1). Instead of using the symbol "/" for NIL, use the symbol "Ø". (10 points)

root (base 0) u 16 min	max	
summary (base 0) u 4 min _	max	
summary (base 0) u 2 m	in ma	ıx
cluster[0] (base 0) u	2 min	max
cluster[1] (base 2) u	2 min	max
cluster[0] (base 0) u 4 mi	n max	X
summary (base 0) u 2 m	in ma	ıx
cluster[0] (base 0) u	2 min	max
cluster[1] (base 2) u	2 min	max
cluster[1] (base 4) u 4 mi	n max	<u> </u>
summary (base 0) u 2 m	in ma	ıx
cluster[0] (base 4) u	2 min	max
cluster[1] (base 6) u	2 min	max
cluster[2] (base 8) u 4 mi	n max	<u> </u>
summary (base 0) u 2 m	in ma	ıx
cluster[0] (base 8) u	2 min	max
cluster[1] (base 10) u	2 min	max
cluster[3] (base 12) u 4 m	in ma	ıx
summary (base 0) u 2 m	in ma	ıx
cluster[0] (base 12) u	2 min	max
cluster[1] (base 14) u	2 min	max

5. The hash table below was created using double hashing with Brent's rehash. The initial slot $(h_1(key))$ and rehashing increment $(h_2(key))$ are given for each key. Show the result from inserting 1300 using Brent's rehash when $h_1(1300) = 5$ and $h_2(1300) = 3$. (10 points)

2

	0	key	$h_1(key)$	$h_2(key)$	-		-			
	0 1 2	1000	6	2						
	3	1200	3	3						
	4	500	3	1						
	5	12	5	1						
	6	27	6	3						
		key								
	0									
	1									
	23									
	4									
	5									
	6						Λ.T.			
CO	E 5311 at 2 - Clo	used Book				1	Name			
Sur	nmer 20	14								
Mu	ltiple Cł	noice. Wr	ite your an	swer to the	LEFT of	each p	roblem. 3 p	oints e	each	
1.	What is	the nature	e of the sign	nature func	tion for th	e Karp	o-Rabin met	hod?		
	A. it is	similar to	the KMP f	ailure link	S	1	1			
	B. the 1	remainder	of arbitrary	ing the ove	implement	a polyi ted usi	nomiai ng a bignun	n nack	200	
	D. simi	ilar to a do	ouble hash	function fo	r string ke	VS	ing a orginali		age	
2.	When p	erforming	selection i	n worst-ca	st linear ti	, me for	<i>n</i> numbers,	rough	ly how many column	
	medians	s are comp	puted in the	first round	1?					
	А.	$W\left(\frac{n}{5}\right)$	B. m , the	median-of	-medians		C. 0.7 <i>n</i>	D.	$\frac{n}{5}$	
3.	While c	onstructin	ng a suffix a	array for a	sequence v	with <i>n</i>	symbols by	using	radix sorts, sequence	
	symbols	s are used	in which of	f the radix	sorts?		1.	D		
1	A. A. Which a	All of the	m B.	None of t	hem (J. The	e last one	D. th tech	The first one	
4.	A Ano	menting r	baths will h	e discovere	ed in desce	ending	incremental	l flow	increase order	
	B. Flow	w decomp	osition mus	st be applie	d.	manng	merenen	1 110 00		
	C. An a	augmentir	ng path is b	locked if it	introduce	s a cyc	ele of flow.			
	D. The	maximun	n number o	f potential	augmentir	ng path	is depends o	on the a	achievable flow, in addition	1
5	to th	ne number	of vertices	and edges	an of our	montin	a notha in a	flow	lacomposition is hounded	
э.	in a mai bv·	xiiiium Ilo	w problem	, me numb	er or augr	nentin	g pains in a	110W C	accomposition is bounded	
	A. 1	V	B. O(VE)	C. <i>f</i>		D. <i>E</i>			
6.	Which o	of the foll	owing is no	, t true rega	rding Stras	ssen's	algorithm?			
	A. It is	not possi	ble to have	an asympt	otically fas	ster alg	gorithm.			

B. It requires more space than the everyday method.

- C. It uses $\Theta(n^{\lg 7})$ scalar additions when multiplying two n x n matrices. D. It uses $\Theta(n^{\lg 7})$ scalar multiplications when multiplying two n x n matrices.
- 7. The four russians' concept is to:
 - A. Implement longest common subsequences using linear space
 - B. Pack bits into an efficient storage unit
 - C. Trade-off between enumerating situations and referencing these situations
 - D. Trade-off between scalar additions and multiplications
- 8. Which is not true regarding the first-fit decreasing method for bin packing?
 - A. Each object is placed by going left-to-right until it fits in a bin or a new bin is allocated.
 - B. Objects placed in bins beyond the optimal number have sizes no larger than $\frac{1}{2}$.
 - C. The number of objects placed in bins beyond the optimal number is arbitrary.
 - D. The number of objects with sizes larger than $\frac{1}{2}$ is a lower bound on the optimal number of bins.
- 9. Which of the following is NOT required when showing that problem B is NP-complete by a reduction from problem A?
 - A. The reduction has an inverse that takes each instance of problem B to an instance of problem A.
 - B. The reduction takes polynomial time.
 - C. The reduction must be consistent for the decision results for each instance of problem A and and the corresponding instance of problem B.
 - D. Problem A is NP-complete.
- 10. The algorithm for finding a maximum capacity path for network flows is most similar to which algorithm?
 - A. Breadth-first search
 - B. Decomposition of a flow into *E* augmenting paths
 - C. Dijkstra
 - D. Floyd-Warshall
- 11. Which minimum spanning tree algorithm is the slowest?

B. Kruskal C. Prim D. Warshall A. Boruvka

- 12. The reduction from 3-sat to 3-colorability will give a graph requiring four colors when:
 - A. Removing one clause from the 3-sat instance will leave a satisifiable set of clauses.
 - B. The 3-sat instance is unsatisfiable.
 - C. The 3-sat instance is satisfiable.
 - D. The 3-sat instance is a tautology.
- 13. Which of the following is not required before relabeling ("lifting") a vertex to a new height?
 - A. Both breadth-first searches have been done.
 - B. The vertex is overflowing.
 - C. Any eligible edges for the present height have been saturated.
 - D. The vertex is not the source or sink.
- 14. Which of the following does not have a polynomial-time approximation algorithm?
 - A. Bin packing
 - B. Edge coloring
 - C. Traveling salesperson with triangle inequality
 - D. Vertex coloring
- 15. How many times will -1 occur in the style 2 fail link table for the pattern acaababc?

A. 1 B. 2 C. 3 D. 4

16. Suppose you have a set of points in Euclidean 2-d space. Give an algorithm for finding a ρ approximation for the minimum traveling salesperson path. Be sure to give the value of p. (5 points) CSE 5311 Name ____

Test 2 - Open Book

- Summer 2014
- 1. Demonstrate Boruvka's algorithm on the following graph. Be sure to indicate the edges that are inserted into the MST in each phase. (10 points)

- 2. Give both types of KMP failure link tables and the table produced by the Z algorithm for the following string: (15 points)
- 0 а 1 С 2 а 3 b 4 а 5 С 6 а 7 С 8 а 9 b 10 а
- 11 c 12 a
- 13 b
- 14 a
- 15 c
- 16 a 17 c
- 17 C 18 a
- 10 u 19 b
- 20 a
- 21 c
- 22 a

23 c

- 24 a
- 3. List the remaining operations to complete this instance of network flows by push-relabel. In addition, give a minimum cut. (15 points)

- 4. Use dynamic programming, either with a table or lists, to determine a subset that sums to 20. DO NOT SOLVE BY INSPECTION! (10 points)
 - 2 3 5 7 11 13 17