Exercise 3.3 Show that LRU does not incur Belady’s anomaly but that
FIFO does incur the anomaly

Belady’s Anomaly: Some reference strings generate more page faults when

more page frames are allotted.

1) FIFO (First-In/First-Out): Replace the page that has been in the fast

memory longest.

Intuition: FIFO algorithm replaces a frequently used variable which causes
the extrawork of reading it in the page frames again (page fault) since this
variable is probably the one which was just replaced.

Proof: Considering the reference string
1,23 ...,p,ptl, 1,2,3,...,p-1, pt2, 1,2,3,...,p,ptl,pt+2

Segment 1 Segment 2 Segment 3 Segment 4

a. Calculating page faults for cache size p+1.

pt2

page
faults

Segment 1: p+1 page faults (initially empty)
Segment 2: 0 page fault (all hits)
Segment 3: 1 page fault (replace 1 with p+2 when applying FIFO)

Result: 2, 3, ..., p*+1, p+2

Segment 4:

Cache size p+1
End Beginning
34, p, pt1, p+2, 1 (after reading 1) 1 page fault
4,5, .o, pt+1, pt2, 1, 2 (after reading 2) 1 page fault

....................................

....................................

....................................

p, ptl, pt2, 1,2, ..., p-3, p-2 (after reading p-2) 1 page fault
pt+l,pt2, 1,2, 3, ..., p-2, p-1 (after reading p-1) 1 page fault
pt2,1,2,3,4,...,p-1,p (after reading p) 1 page fault

2,3,4, ...,p-1, p, pt1, pt2 (after reading p+2) 1 page fault

Total # of page faults for cache size p+1 using FIFO
= p+1+1+p+2=2p+4

b. Calculating page faults for cache size p:

Segment 1. p+1 page faults
Result: 2, 3, ..., p, pt1

Segment 2:
Cache size p
End Beginning
3,4, p-1, p, pt1, 1 (after reading 1) 1 page fault

4,5, i p, pt1, 1, 2 (after reading 2) 1 page fault
Pl |
page <
faults | covveriiii

p, ptl, 1,2, ..., p-3, p-2 (after reading p-2) 1 page fault

Segment 3: 1 page fault (replace p+1 with p+2 when applying FIFO)
Result: 1, 2, 3, ..., p-1, pt2
Segment 4:
p-1 hits for first p-1 inputs
2 page | after reading p: 2, 3, ..., p-1, p+2, p (1 page fault)
faults) after reading p+1: 3, ..., p-1, p+2, p, p*1 (1 page fault)
after reading p+2: 2, 3, ..., p-1, p, p*1, p+2 (hit)

Total # of page faults for cache size p using FIFO
= p+1+p-1+1+2=2p+3

Therefore, Total # of page faults for cache size p using FIFO
< Total # of page faults for cache size p+1 using FIFO
since 2p+3 < 2p+4. This incurs Belady’s Anomaly
whenpisat least 3.

2) LRU (L east-Recently-Used): When eviction is necessary, replace the
page whose most recent request was earliest.

Intuition: Due to the method of this algorithm, which isthat it will replace
the page (variable) whose most recent request was earliest, this algorithm

significantly avoids the case of replacing a frequently used variable if this
coming variable appears to be closer to the current reading variable.

Pr oof:
Given any reference string S=al, a2, ..., an. Let LRU;(S) be the number of
faults that LRU incurs on Swith a cache of sizei, we need to show for all i
and S, andi <j,

LRU;(S) > LRU;41(S) = LRU;1»(S) >... > LRU;(S)

Defining that a doubly-linked list of size i can be embedded in another
doubly-linked list of sizei+1, if the two doubly-linked lists are identical,
except that the longer one has one more item, which isthe last one.

Claim: After each step of processing a sequence of requests, the doubly-
linked list of LRU; can be embedded in the doubly-linked list of LRUj.;.

We prove this claim by induction on the number of steps.
1) Basic case: if n=1, both LRU; and LRU;., incur afault and bring in &.
2) Induction Hypothesis: the claim is true after step n.
3) To show it isalso true after step n+1.
a. Suppose before reading an+1, a1 1S in the cache of LRU; (hit).
According to IH, a, +1isaso in the cache of LRU;., (hit).
Both moving a, +; to the beginning of their lists after reading a, +1.
So the claim is also true after step a, +1.
b. Suppose before reading a,:+1,a.+11S NOT in the cache of LRU; (fault).
1) a,+11s aso not in the cache of LRU;.; (fault):both moving a, +1
to the beginning of their lists after reading &, 1. Claim holds.
I1) a,+1isinthe cache of LRU.; (a,+1 must be the last page
based on IH): LRU;.+; movesits a, +1 to the beginning of their
lists after reading &, +1. LRU; brings &, .1 and replaces one of the
old elements. By IH, al remaining items are same or evict page
which is always at the end of list.

Example:
Before reading a, +1 (7) | After reading a, +1(7)
LRU, End Beginning | End Beginning
324->5-56 4552627
LRU End Beginning | End Beginning
"1 7>324>5-6 32455567

The claim is proved. So at each step, if LRU;.; has afault, then LRU; hasa
fault since LRU;, list elements contain (embed) LRU; list elements.. So
LRU;(S) > LRU;j+(S). Finish proof for LRU.

Reference: http://www.cas.mcmaster.ca/~soltys/cs4sh3-w02/index.html

