
Exercise 3.3 Show that LRU does not incur Belady’s anomaly but that
FIFO does incur the anomaly

Belady’s Anomaly: Some reference strings generate more page faults when
more page frames are allotted.

1) FIFO (First-In/First-Out): Replace the page that has been in the fast
memory longest.

Intuition: FIFO algorithm replaces a frequently used variable which causes
the extra work of reading it in the page frames again (page fault) since this
variable is probably the one which was just replaced.

Proof: Considering the reference string
1, 2, 3, …, p, p+1, 1, 2, 3, …, p-1, p+2, 1, 2, 3, …, p, p+1, p+2

Segment 1 Segment 2 Segment 3 Segment 4

a. Calculating page faults for cache size p+1:

Segment 1: p+1 page faults (initially empty)
Segment 2: 0 page fault (all hits)
Segment 3: 1 page fault (replace 1 with p+2 when applying FIFO)

Result: 2, 3, …, p+1, p+2
Segment 4:

Cache size p+1

End Beginning
3, 4, ………….p, p+1, p+2, 1 (after reading 1) 1 page fault
4, 5, ………….p+1, p+2, 1, 2 (after reading 2) 1 page fault
………………………………
………………………………
………………………………
p, p+1, p+2, 1, 2, …, p-3, p-2 (after reading p-2) 1 page fault
p+1, p+2, 1, 2, 3, …, p-2, p-1 (after reading p-1) 1 page fault
p+2, 1, 2, 3, 4, …, p-1, p (after reading p) 1 page fault
1, 2, 3, 4, …, p-1, p, p+1 (after reading p+1) 1 page fault
2, 3, 4, …, p-1, p, p+1, p+2 (after reading p+2) 1 page fault

p+2
page
faults

Total # of page faults for cache size p+1 using FIFO
= p+1+1+p+2=2p+4

b. Calculating page faults for cache size p:

Segment 1: p+1 page faults
Result: 2, 3, …, p, p+1

Segment 2:
Cache size p

End Beginning
3, 4, ………….p-1, p, p+1, 1 (after reading 1) 1 page fault
4, 5, ………….p, p+1, 1, 2 (after reading 2) 1 page fault
………………………………
………………………………
………………………………
p, p+1, 1, 2, …, p-3, p-2 (after reading p-2) 1 page fault
p+1, 1, 2, 3, …, p-2, p-1 (after reading p-1) 1 page fault

Segment 3: 1 page fault (replace p+1 with p+2 when applying FIFO)
Result: 1, 2, 3, …, p-1, p+2

Segment 4:
p-1 hits for first p-1 inputs
after reading p: 2, 3, …, p-1, p+2, p (1 page fault)
after reading p+1: 3, …, p-1, p+2, p, p+1 (1 page fault)
after reading p+2: 2, 3, …, p-1, p, p+1, p+2 (hit)

Total # of page faults for cache size p using FIFO
= p+1+p-1+1+2=2p+3

Therefore, Total # of page faults for cache size p using FIFO
< Total # of page faults for cache size p+1 using FIFO
since 2p+3 < 2p+4. This incurs Belady’s Anomaly
when p is at least 3.

2) LRU (Least-Recently-Used): When eviction is necessary, replace the
page whose most recent request was earliest.

p-1
page
faults

2 page
faults

Intuition: Due to the method of this algorithm, which is that it will replace
the page (variable) whose most recent request was earliest, this algorithm
significantly avoids the case of replacing a frequently used variable if this
coming variable appears to be closer to the current reading variable.

Proof:
Given any reference string S=a1, a2, …, an. Let LRUi(S) be the number of
faults that LRU incurs on S with a cache of size i, we need to show for all i
and S, and i < j,

LRUi(S) ≥ LRUi+1(S) ≥ LRUi+2(S) ≥… ≥ LRUj(S)

Defining that a doubly-linked list of size i can be embedded in another
doubly-linked list of size i+1, if the two doubly-linked lists are identical,
except that the longer one has one more item, which is the last one.

Claim: After each step of processing a sequence of requests, the doubly-
linked list of LRUi can be embedded in the doubly-linked list of LRUi+1.

We prove this claim by induction on the number of steps.
1) Basic case: if n=1, both LRUi and LRUi+1 incur a fault and bring in a1.
2) Induction Hypothesis: the claim is true after step n.
3) To show it is also true after step n+1.

a. Suppose before reading an+1, an+1 is in the cache of LRUi (hit).
According to IH, an +1 is also in the cache of LRUi+1 (hit).
Both moving an +1 to the beginning of their lists after reading an +1.
So the claim is also true after step an +1.

b. Suppose before reading an+1,an+1 is NOT in the cache of LRUi (fault).
i) an +1 is also not in the cache of LRUi+1 (fault):both moving an +1
to the beginning of their lists after reading an +1. Claim holds.
ii) an +1 is in the cache of LRUi+1 (an +1 must be the last page
based on IH): LRUi+1 moves its an +1 to the beginning of their
lists after reading an +1. LRUi brings an +1 and replaces one of the
old elements. By IH, all remaining items are same or evict page
which is always at the end of list.
Example:

Before reading an +1 (7) After reading an +1 (7)

LRU4
End Beginning
3 4  5 6

End Beginning
4  5 6 7

LRU4+1
End Beginning
73 4  5 6

End Beginning
3 4  5 6 7

The claim is proved. So at each step, if LRUi+1 has a fault, then LRUi has a
fault since LRUi+1 list elements contain (embed) LRUi list elements.. So
LRUi(S) ≥ LRUi+1(S). Finish proof for LRU.

Reference: http://www.cas.mcmaster.ca/~soltys/cs4sh3-w02/index.html

