Three Structurally Similar List Update Upper Bound Proofs

Review of amortized complexity:

$$
\begin{aligned}
& \hat{c}_{i}=c_{i}+\Phi(i)-\Phi(i-1) \\
& c_{i}=\hat{c}_{i}+\Phi(i-1)+\Phi(i) \\
& \sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n} \hat{c}_{i}+\Phi(0)-\Phi(n)
\end{aligned}
$$

If $\Phi(0)-\Phi(n)$ is never positive, then an upper bound on $\sum_{i=1}^{n} \hat{c}_{i}$ is an upper bound on $\sum_{i=1}^{n} c_{i}$.

1. To compare MTF to OPT (without detailing OPT), the amortized cost of each MTF operation is bounded.
$\Phi=$ Number of inversions (two elements in different order) between MTF list and OPT list.
Initially the lists are the same, so $\Phi(0)=0, \Phi(\mathrm{i}) \geq 0$, and $\Phi(0)-\Phi(\mathrm{n}) \leq 0$.
What happens when MTF and OPT process the same request, even though the lists are different?

Before processing ACCESS to X_{j}

"West"
"East"

$$
\mathrm{W}=\text { Items "west" of } \mathrm{X}_{\mathrm{j}} \text { in both lists }
$$

$$
\mathrm{E}=\text { Items "east" of } \mathrm{X}_{\mathrm{j}} \text { in both lists }
$$

WE $=$ Items west of X_{j} in MTF, but east of X_{j} in OPT (* and v in book)

$$
\mathrm{EW}=\text { Items east of } \mathrm{X}_{\mathrm{j}} \text { in MTF, but west of } \mathrm{X}_{\mathrm{j}} \text { in OPT }
$$

Observations:

$$
\begin{aligned}
& \mathrm{j}=|\mathrm{W}|+|\mathrm{EW}|+1 \\
& \mathrm{k}=|\mathrm{W}|+|\mathrm{WE}|+1 \\
& |\mathrm{~W}|=\mathrm{k}-1-|\mathrm{WE}| \\
& \mathrm{k}-1-|\mathrm{WE}|+|\mathrm{EW}|+1=\mathrm{j} \\
& \mathrm{k}-|\mathrm{WE}| \leq \mathrm{j}
\end{aligned}
$$

Amortized cost of ACCESS of X_{j} (by MTF)
Search + IWI new inversions - IWEl lost inversions

$$
\mathrm{k}+(\mathrm{k}-1-|\mathrm{WE}|)-|\mathrm{WE}|=2(\mathrm{k}-|\mathrm{WE}|)-1 \leq 2 \mathrm{j}-1
$$

BUT, OPT list also changes

f free transpositions

> p paid transpositions

$$
\text { Actual cost }=j+p
$$

"Correction" to Δ in $\Phi \leq-\mathrm{f}$ for lost inversions +p for new inversions
So, after accessing and updating both lists, the amortized cost of MTF ACCESS is

$$
\mathrm{k}+\mathrm{k}-1-|\mathrm{WE}|-|W E|-\mathrm{f}+\mathrm{p} \leq 2 \mathrm{j}-1-\mathrm{f}+\mathrm{p} \leq 2 \mathrm{OPT}-1
$$

For a sequence σ of n accesses
$\operatorname{MTF}(\sigma) \leq 2 \mathrm{OPT}_{\mathrm{C}}(\sigma)-\mathrm{n}-\mathrm{OPT}_{\mathrm{F}}(\sigma)+\mathrm{OPT}_{\mathrm{P}}(\sigma)$
where $\operatorname{OPT}_{\mathrm{C}}(\sigma)$ is cost without paid transposes, $\operatorname{OPT}_{\mathrm{F}}(\sigma)$ is the free transposes (already in $\left.\mathrm{OPT}_{\mathrm{C}}(\sigma)\right)$, and $\mathrm{OPT}_{\mathrm{P}}(\sigma)$ is the paid transposes. (Ex. 1.2. shows that free transposes are not critical.)
$\operatorname{MTF}(\sigma) \leq 2 \mathrm{OPT}_{\mathrm{C}}(\sigma)-\mathrm{n}+\mathrm{OPT}_{\mathrm{P}}(\sigma)$

$$
=\mathrm{OPT}(\sigma)+\mathrm{OPT}_{\mathrm{C}}(\sigma)-\mathrm{n} \leq 2 \mathrm{OPT}(\sigma)-\mathrm{n}
$$

2. To compare BIT to OPT, the expected amortized cost of each BIT operation is bounded.
$\Phi=$ Sum of weighted inversions (two elements in different order) between BIT list and OPT list.
Suppose pair appears with x before y in BIT list and y before x in OPT list.
Weight of inversion is the value of y 's bit +1

(Expected) Amortized cost of ACCESS of X_{j} (by BIT)
Search $+1 / 2$ Cost if MTF occurs $+1 / 2$ Cost if MTF does not occur $=$ (bit for X_{j} is now 1) (bit for X_{j} is now 0)

Search $+1 / 2$ (Weight of new inversions for W less the weight of lost inversions for WE) $+1 / 2$ Decrease in weight for WE

MTF: (expected) weight of each new inversion (BIT: X_{j}, w; OPT: w, X_{j}) for W is $3 / 2$
MTF: weight of each lost inversion for WE is 1 (didn't adjust Φ for bit change from 0 to 1)
No MTR: The decrease in weight for each WE inversion will be 1

$$
\begin{aligned}
\mathrm{k}+1 / 2(3 / 2|\mathrm{~W}|-|\mathrm{WE}|)+1 / 2(-|\mathrm{WE}|)=\mathrm{k}+3 / 4|\mathrm{~W}|-|\mathrm{WE}| & =\mathrm{k}+3 / 4(\mathrm{k}-1-|\mathrm{WE}|)-|\mathrm{WE}| \\
& =7 / 4 \mathrm{k}-3 / 4-7 / 4|\mathrm{WE}| \leq 7 / 4 \mathrm{j}-3 / 4
\end{aligned}
$$

BUT, OPT also searches and changes its list
Actual cost $=j+p$

With probability $1 / 2$, BIT changed X_{j} bit from 0 to 1 (so MTF occured)

$$
\text { "Correction" to } \Delta \text { in } \Phi \leq 1 / 2(-3 / 2 f+3 / 2 p)=-3 / 4 f+3 / 4 p
$$

With probability $1 / 2$, BIT changed X_{j} bit from 1 to 0 (so no MTF occured)

p paid transpositions
"Correction" to Δ in $\Phi \leq 1 / 2(f+3 / 2 p)=1 / 2 f+3 / 4 p$
This gives an overall expected correction $\leq-1 / 4 f+3 / 2 p$
Applying correction

$$
\begin{aligned}
7 / 4 \mathrm{k}-3 / 4-7 / 4 \text { WEl }-1 / 4 \mathrm{f}+3 / 2 \mathrm{p} & \leq 7 / 4 \mathrm{j}-3 / 4-1 / 4 \mathrm{f}+3 / 2 \mathrm{p} \\
& \leq 7 / 4 \mathrm{j}+7 / 4 \mathrm{p}-3 / 4 \\
& =7 / 4 O P T-3 / 4
\end{aligned}
$$

3. To compare RMTF to OPT, the expected amortized cost of each RMTF operation is bounded.

Since MTF is decided by a coin flip, the expected number of accesses to an element before a MTF is 2 :

$$
\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}=\frac{1}{1-\frac{1}{2}}=2
$$

But if the element is not MTF'd, the expectation remains 2.

Amortized cost of ACCESS of X_{j} (by RMTF)
Search $+1 / 2$ Cost if MTF occurs $+1 / 2$ Cost if MTF does not occur $=$
Search $+1 / 2$ (Weight of new inversions for W less the weight of lost inversions for WE) $+1 / 2 \cdot 0$
$\mathrm{k}+1 / 2(2|\mathrm{~W}|-2|\mathrm{WE}|)=\mathrm{k}+|\mathrm{W}|-|\mathrm{WE}|=\mathrm{k}+(\mathrm{k}-1-(|\mathrm{WE}|)-|\mathrm{WE}|$ $=2 \mathrm{k}-1-2 \mid \mathrm{WEl} \leq 2 \mathrm{j}-1$

BUT, OPT also searches and changes its list
Actual cost $=j+p$
With probability $1 / 2$, MTF occured
"Correction" to Δ in $\Phi \leq 1 / 2(-2 f+2 p)=-f+p$
With probability $1 / 2$, no MTF occured
"Correction" to Δ in $\Phi \leq 1 / 2(2 \mathrm{f}+2 \mathrm{p})=\mathrm{f}+\mathrm{p}$
This gives an overall expected correction $\leq 2 p$
Applying correction

$$
2 \mathrm{k}-1-2|\mathrm{WE}|+2 \mathrm{p} \leq 2 \mathrm{j}-1+2 \mathrm{p} \leq 2 \mathrm{OPT}-1
$$

