CSE 5319-001 (Computational Geometry) SYLLABUS

Spring 2012: TR 11:00-12:20, ERB 129

Instructor: Office: Hours:	Bob Weems, Associate Professor, http://ranger.uta.edu/~weems 627 ERB, 817/272-2337 (weems@uta.edu) TR 12:30-1:50 PM and by appointment (please email by 8:30 AM)
Prerequisite:	Advanced Algorithms (CSE 5311)
Objective:	Ability to apply and expand geometric techniques in computing.
Outcomes:	 Exposure to algorithms and data structures for geometric problems. Exposure to techniques for addressing degenerate cases. Exposure to randomization as a tool for developing geometric algorithms. Experience using CGAL with C++/STL.
Textbooks: https://libp	M. de Berg et.al., Computational Geometry: Algorithms and Applications, 3rd ed., Springer-Verlag, 2000. roxy.uta.edu/login?url=http://www.springerlink.com/content/k18243
	S.L. Devadoss and J. O'Rourke, <i>Discrete and Computational Geometry</i> , Princeton University Press, 2011.
References:	Adobe Systems Inc., <i>PostScript Language Tutorial and Cookbook</i> , Addison-Wesley, 1985. (http://Www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF)
	B. Casselman, Mathematical Illustrations: A Manual of Geometry and PostScript, Springer-Verlag, 2005. (http://www.math.ubc.ca/~cass/graphics/manual)
	CGAL User and Reference Manual (http://www.cgal.org/Manual)
	T. Cormen, et.al., Introduction to Algorithms, 3rd ed., MIT Press, 2009.
	E.D. Demaine and J. O'Rourke, <i>Geometric Folding Algorithms: Linkages, Origami, Polyhedra</i> , Cambridge University Press, 2007. (occasionally)
	J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford Univ. Press, 1987. (http://maven.smith.edu/~orourke/books/ArtGalleryTheorems/art.html, occasionally)
	J. O'Rourke, <i>Computational Geometry in C, 2nd ed.</i> , Cambridge Univ. Press, 1998. (definitely)
	K. Mehlhorn and S. Näher, <i>The LEDA Platform of Combinatorial and Geometric Computing</i> , Cambridge University Press, 1999.
	R. Motwani and P. Raghavan, <i>Randomized Algorithms</i> , Cambridge Univ. Press, 1995.

	K. Mulr Algorith	nuley, Computational Geometry: An Introduction Through Randomized ams, Prentice Hall, 1994. (occasionally)	
	F.P. Pre Verlag,	parata and M.I. Shamos, <i>Computational Geometry: An Introduction</i> , Springer-1985. (occasionally)	
	Confere Europea	erences: STOC, FOCS, ACM Symp. on CG, Canadian Conf. on CG, and bean Workshop on CG	
Grade:	Based on the following weights:		
	40%	Homework Presentations (slides and 5-15 minute talk)	
	40%	Participation in Software Development Exercises - usually involving CGAL	
	≤ 20%	"Discretionary" Quizzes (2-5% each) and Exams (10-20% each)	
Policies:			

- 1. Attendance is not required, but is highly encouraged. Consult me in advance if you must miss class for a good reason.
- 2. CHEATING YOU ARE EXPECTED TO KNOW UNIVERSITY POLICIES. All cases of plagiarism will be processed through University channels outside the CSE department.
- 3. Any request for special consideration must be appropriately documented **in advance**. (Special consideration does not include giving a higher grade than has been earned.)

Course Outline

Wk	Devadoss & O'Rourke	de Berg et.al.	CGAL Manual
1	 2 CONVEX HULLS 2.1 Convexity 2.2 The Incremental Algorithm 2.3 Analysis of Algorithms 2.4 Gift Wrapping and Graham Scan 2.5 Lower Bound 2.6 Divide-and-Conquer 	 Computational Geometry - Introduction An Example: Convex Hulls <i>Graham</i> Scan Degeneracies and Robustness Application Domains 	1 Introduction 15 2D hulls 18 Polygons

2		 2 Line Segment Intersection 2.1 Line Segment Intersection <i>Bentley-Ottman Plane Sweep</i> 2.2 The Doubly-Connected Edge List <i>Planar Subdivisions</i> 2.3 Computing the Overlay of Two Subdivisions 2.4 Boolean Operations 	 19 Set operations 26 Halfedge data structs 32 Set of segments ∩
3	 POLYGONS 1.1 Diagonals and Triangulations <i>Tetrahedralizations</i> 1.2 Basic Combinatorics 1.3 The Art Gallery Theorem 1.4 Scissors Congruence in 2D 1.5 Scissors Congruence in 3D 	 3 Polygon Triangulation 3.1 Guarding and Triangulations 3.2 Partitioning a Polygon into Monotone Pieces 3.3 Triangulating a Monotone Polygon 	22 Polygon partitioning
4	 3 TRIANGULATIONS Point Sets 3.1 Basic Constructions 3.2 The Flip Graph of the set of triangulations 3.3 The Associahedron like 3.2, but without interior points (convex position) 3.4 Delaunay Triangulations 3.5 Special Triangulations MWT, compatible, pseudo- 	 9 Delaunay Triangulations 9.1 Triangulations of Planar Point Sets 9.2 The Delaunay Triangulation 9.3 Computing the Delaunay Triangulation 9.4 The Analysis 	36 Triangulations 37 Tri. data structs
5	2.7 Convex Hull in 3D	11 Convex Hulls 11.1 The Complexity of Convex Hulls in 3- Space 11.2 Computing Convex Hulls in 3-Space 11.3 The Analysis	16 3D hulls
7	 4 VORONOI DIAGRAMS 4.1 Voronoi Geometry 4.2 Algorithms to Construct the Diagram <i>incremental</i> 4.3 Duality and the Delaunay Triangulation <i>incremental</i> 	 7 Voronoi Diagrams - The Post Office Problem 7.1 Definition and Basic Properties 7.2 Computing the Voronoi Diagram <i>Fortune</i> 7.3 Voronoi Diagrams of Line Segments 7.4 Farthest-Point Voronoi Diagrams 	36 Triangulations43 Seg. Delaunaygraphs44 Apollonius graphs45 Voronoi adaptor
8	4.4 Convex Hull Revisited	 8 Arrangements and Duality - motivate w/O'Rourke CG in C, chap 6 8.2 Duality 8.3 Arrangements of Lines construction 11.4 Convex Hulls and Half-Space Intersection 11.5 Voronoi Diagrams Revisited 	31 2D arrangements
9		6 Point Location6.1 Point Location and Trapezoidal Maps6.2 A Randomized Incremental Algorithm6.3 Dealing with Degenerate Cases	31.3.1 PL queries
10	5 CURVES 5.1 Medial Axis 5.2 Straight Skeleton		23 Straight skeleton
12	6 POLYHEDRA 6.1 Platonic Solids 6.2 Euler's Polyhedral Formula 6.3 The Gauss-Bonnet Theorem 6.4 Cauchy Rigidity		Boost for shortest paths?

	6.5 Shortest Paths		
	6.6 Geodesics		
13	 5.3 Minkowski Sums Wein's convolution method 5.4 Convolution of Curves winding number 7 CONFIGURATION SPACES 7.1 Motion Planning cell decomposition 	 13 Robot Motion Planning - collision avoidance 13.1 Work Space and Configuration Space 13.2 A Point Robot trapezoidal map, road map 13.3 Minkowski Sums convex case, triangulation for non-convex 13.4 Translational Motion Planning 13.5 Motion Planning with Rotations slices 	24 2D Mink. sums 30 3D Mink. sums
14		15 Visibility Graphs 15.1 Shortest Paths for a Point Robot 15.2 Computing the Visibility Graph <i>rotational plane sweep</i> 15.3 Shortest Paths for a Translating Polygonal Robot	
15	7.2 Polygonal Chains7.3 Rulers and Locked Chains7.4 Polygon Spaces		