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Abstract 

A Java monitor is a Java class that defines one or more 
synchronized methods. Unlike a regular object, a Java 
monitor object is intended to be accessed by multiple 
threads simultaneously. Thus, testing a Java monitor can be 
significantly different from testing a regular class. In this 
paper, we propose a state exploration-based approach to 
testing a Java monitor. A novel aspect of our approach is 
that during exploration, threads are introduced on-the-fly, 
and as needed, to simulate race conditions that can occur 
when multiple threads try to access a monitor object at the 
same time. Furthermore, each transition is defined in a way 
such that the behavior of the threads along each path can be 
precisely characterized and controlled. We describe a 
prototype tool called MonitorExplorer and report three case 
studies that are designed to provide an initial evaluation of 
our approach.  

1. Introduction 
Multithreaded programming has become commonplace in 
modern software development. Using multiple threads 
increases the responsiveness of user interfaces. While one 
thread is performing computational tasks, another thread 
can respond to user inputs. More importantly, many 
problems can be solved more naturally and efficiently by 
creating multiple threads. As an example, a web server 
typically creates separate threads to service incoming client 
requests.  

An important feature of the Java language is that it 
provides built-in support for multithreaded programming. 
The Java core library includes a class named Thread as a 
programming abstraction of a thread. The Thread class 
defines a set of operations that are commonly performed on 
a thread. For thread synchronization, Java provides a 
simplified implementation of the monitor construct, which 
we refer to as a Java monitor [11]. Syntactically, a Java 
monitor is a Java class that defines one or more 
synchronized methods, i.e., methods whose signatures 
contain the keyword synchronized. In general, there are 
two types of thread synchronization: mutual exclusion and 
condition synchronization. Mutual exclusion ensures that at 
any given time, at most one thread can execute inside a 

critical section. (Recall that a critical section is a fragment 
of code that accesses shared data.) Condition 
synchronization ensures that a thread can proceed if and 
only if a certain condition is satisfied, e.g., a buffer is not 
full, a resource is not in use, etc. The Java runtime 
environment automatically enforces mutual exclusion on 
the synchronized methods in a Java monitor. Condition 
synchronization can be programmed in a Java monitor 
using wait and notify statements, which allow threads to 
be blocked and awakened inside a synchronized method. 

Over the years, many approaches have been developed for 
testing regular classes [4][9]. In these approaches, a test 
case is a sequence of method calls that are issued by a 
single-threaded test driver. These approaches cannot be 
directly applied to test a Java monitor. This is because 
unlike the methods of a regular object, which are supposed 
to be called by at most one thread at a time, the methods of 
a Java monitor object are intended to be called by multiple 
threads simultaneously. Thus, in order to simulate the 
possible scenarios in which a Java monitor object may be 
used, it is necessary to create more than one thread in each 
test case. Furthermore, if a single driver thread were to be 
used to execute a test case, the driver thread could be 
blocked by a synchronized method and could thus be 
prevented from completing the sequence of method calls in 
the test case. The need for creating multiple threads in a 
test case, however, raises the following two issues: 

• How many threads should be created in each test 
case? Many synchronization faults can only be 
detected when a certain minimum number of threads 
interact. However, the necessary number of threads 
is often not known a priori.  

• Since multiple threads are used, each test run may 
exhibit non-deterministic behavior. How should the 
desired behavior of each test run be specified? And 
given a desired behavior, how can each test run be 
controlled so that the desired behavior is exercised?  

The main contribution of this paper is a state exploration-
based approach that addresses the above issues. This 
approach involves systematically exploring the state space 
of a Java monitor. Each explored path (from the initial state 



to a state where the exploration backtracks) can be 
considered as a dynamically constructed test case. A novel 
aspect of our approach is that threads are introduced on-
the-fly, and as needed, along each path during exploration. 
The rules for deciding when to introduce a new thread are 
defined to simulate the race conditions that can occur when 
multiple threads try to access a monitor object 
simultaneously. A state transition is defined to occur when 
a synchronization operation is executed that causes a thread 
to enter or exit a monitor. Synchronization operations are 
of a smaller granularity than method calls and allow thread 
behavior to be precisely characterized and controlled. We 
describe a prototype tool called MonitorExplorer, and 
report three case studies that provide an initial evaluation 
of our approach. The results indicate that our approach is 
very effective in detecting synchronization-related faults 
for the monitors we have studied.   

The rest of this paper is organized as follows. Section 2 
surveys related work. Section 3 describes the semantics of 
Java monitor. Section 4 presents our state exploration-
based approach. Section 5 illustrates our approach using an 
example scenario. Section 6 describes the MonitorExplorer 
tool and discusses some implementation issues. Section 6 
also presents the three case studies. Section 7 provides 
concluding remarks and describes our plan for future work. 

2. Related Work 
As we mentioned in Section 1, the problems of determining 
the number of threads in a test case and dealing with non-
deterministic behavior are problems that do not exist when 
testing a regular class. Thus, we will only review existing 
work on testing monitors and on state exploration 
techniques. 

Hansen developed an approach to testing Concurrent 
Pascal monitors [2]. His approach has three major steps. 
The first step identifies for each monitor method a set of 
preconditions that if satisfied, will cause every branch of 
the method to be executed at least once. The second step 
constructs a single sequence of monitor calls such that each 
identified precondition is satisfied at least once. The last 
step creates a multithreaded test driver to execute the 
monitor call sequence identified in the second step. Each 
thread in the test driver executes one or more monitor calls 
in the sequence. During testing, all the threads are 
synchronized to ensure that they execute their calls in a 
specified order.  

Hansen’s approach was extended in [10] for testing Java 
monitors. Observing that a wait statement in a Java 
monitor often needs to be put inside a loop (i.e., instead of 
an if statement), the authors extended Hansen’s approach to 
achieve loop coverage, in addition to branch coverage. 
That is, the identified preconditions are required not only to 
cause every branch to be executed but also to cause every 

loop to be executed zero time, one time, and more than one 
time. Carver and Tai [3][5] generalized Hansen’s technique 
for synchronizing threads during test execution (i.e., the 
last step in Hansen’s technique) and showed how to apply 
their technique to monitors, semaphores, locks, and 
message passing.  

To the best of our knowledge, Hansen’s approach and its 
extensions are the only existing approaches to testing a 
monitor. The tool support described in [10] only automates 
the last step; the first two steps still need to be performed 
manually. As a result, the above approach can be time 
consuming and error-prone. In contrast, our approach is 
more systematic, and the state exploration is conducted in 
an automatic manner. Furthermore, our approach explores 
the state space of a Java monitor until a fixed point is 
reached, which is a different stopping criterion than those 
provided by branch- and loop-based coverage.  

Several state exploration-based approaches have been 
developed for testing concurrent programs These 
approaches either directly explore the state space of a 
concurrent program [7][8], or extract an abstract model 
from the program and then explore the state space of the 
model using a model checker such as Spin [6]. An implicit 
assumption held by these approaches is that they will be 
applied to a standalone program. Before these approaches 
can be used to test a component like a Java monitor, a test 
program must be constructed to simulate the possible 
scenarios in which the Java monitor may be used. 
However, since failures are often triggered by unexpected 
scenarios, constructing a test program that will expose the 
potential faults is a difficult task. This is in contrast to our 
approach, which introduces test threads as needed to create 
race conditions that can trigger failures, removing the need 
to construct a test program. 

We wish to point out that all the existing state exploration 
approaches assume a closed system into which no new 
threads can be introduced during state exploration. (Some 
approaches allow the system to create threads dynamically 
during exploration. However, such a system is still closed 
in the sense that the types of threads, the number of 
threads, and the time at which the threads are created are 
prescribed by the system description.) This is different 
from our state exploration approach, which treats a Java 
monitor as a member of an open system where threads are 
introduced on-the-fly and as needed (i.e., not prescribed 
statically) during state exploration.  

3. Java Monitor Semantics 
A Java monitor is a Java class that defines one or more 
synchronized methods. The data members of a Java 
monitor represent shared data. Threads access the shared 
data by calling the synchronized methods defined in the 
monitor. Fig. 1 shows a graphical view of a Java monitor. 



It consists of three components: the entry queue, the 
critical section (or CS), and the condition queue. A 
synchronized method can only be executed inside the CS. 
Mutual exclusion to the CS is automatically provided by 
the Java runtime environment. That is, at any given time, at 
most one thread is allowed to execute inside the CS. If a 
thread calls a synchronized method while another thread is 
executing inside the monitor, the calling thread must wait 
on the entry queue of the monitor.  

Condition synchronization is achieved by using the 
condition queue and operations wait and notify/notifyAll. 
Only a thread that is already inside the CS can execute 
wait and/or notify/notifyAll. When a thread executes 
wait, it releases mutual exclusion and blocks itself on the 
condition queue, which allows another thread to enter the 
CS. When a thread executes notify (or notifyAll), it 
awakens one (or all) of the threads blocked in the condition 
queue, if the queue is not empty, and then continues to 
execute inside the CS. An awakened thread does not 
immediately re-enter the CS. Instead, it joins the entry 
queue and thus competes with other threads trying to 
enter/re-enter the CS. Note that according to the Java 
specification, notify does not necessarily preserve First-
Come-First-Serve semantics, i.e., it may not awaken the 
longest waiting thread. 

Figure 1. A graphical view of Java monitor. 

Fig. 2 shows a Java monitor that solves the bounded buffer 
problem [5]. A producer thread calls deposit() to put an 
integer into the buffer, and a consumer thread calls 
withdraw() to get an integer from the buffer. The 
correctness requirement dictates that a producer or 
consumer thread should be blocked when the buffer is full 
or empty, respectively.  

4. The State Exploration-Based Approach 
Fig. 3 shows an algorithm called MonitorTest that 
implements our state exploration-based approach. 
Algorithm MonitorTest takes as input a Java monitor M 
and an initial state s0. It begins by creating an instance m of 
M and initializing m to state s0. Then, it initializes two data 
structures, namely, stack and visited. The stack stores the 
transition sequence from the initial state to the state 
currently being explored. States that have already been 
explored are added to visited so that they are explored only 
once. A call to function getAbstractState() returns an 
abstraction of the current state, and a call to function 
getEnabledTransitions() returns the set of transitions that 
are enabled at the current state. As explained later, the set 

of transitions returned by getEnabledTransitions() may also 
include transitions that introduce new threads. That is, the 
logic for introducing threads on-the-fly is implicitly 
encoded in this function. The implementation details of 
functions getAbstractState() and getEnabledTransitions() 
are discussed in Section 4.1 and 4.2. 

We will not explain algorithm MonitorTest line by line, as 
for the most part it is a classical depth-first search 
algorithm. Instead, we will only make three observations. 
First, algorithm MonitorTest uses abstract states to 
determine whether a (concrete) state needs to be expanded. 
As shown in Section 4.1, the abstract state space of a Java 
monitor is bounded, which ensures that the algorithm will 
terminate. Second, undoing a transition (line 16) restores 
the previous state from which the transition was executed. 
This can be done by re-executing all but the last transition 
in the transition sequence on the stack [7]. Doing so allows 
us to avoid representing, saving, and restoring explicit 
representations of concrete states, which, as explained in 
Section 4.1, can be difficult. Finally, algorithm 
MonitorTest takes as input an initial state, which can be 
any state of the monitor. In order to ensure adequate test 
coverage, some systematic strategy such as boundary 
testing can be used to identify a set of initial states to be 

Condition queue 
CS 

Entry queue 

class BoundedBuffer { 
      private int fullSlots=0;  
      private int capacity = 0;  
      private int[] buffer = null;  
      private int in = 0, out = 0; 
      public BoundedBuffer(int bufferCapacity) { 
1.       capacity = bufferCapacity;  
2.       buffer = new int[capacity]; 
      } 
      public synchronized void deposit (int value) { 
3.       while (fullSlots == capacity) { 
4.           try { wait(); } catch (InterruptedException ex) {} 
          }  
5.       buffer[in] = value; 
6.       in = (in + 1) % capacity; 
7.       if (fullSlots++ == 0) {    
8.            notifyAll(); 
          }     
      } 
      public synchronized int withdraw () { 
9.       int value = 0; 
10.     while (fullSlots == 0) { 
11.         try { wait(); } catch (InterruptedException ex) {} 
          }  
12.     value = buffer[out]; 
13.     out = (out + 1) % capacity; 
14.     if (fullSlots-- == capacity) { 
15.         notifyAll(); 
          } 
16.     return value; 
      } 
 }  

Figure 2. Monitor BoundedBuffer 



used.  

4.1 Function getAbstractState 
Function getAbstractState returns an abstraction of the 
current state of the state exploration. We will refer to this 
abstraction as the abstract state of the current state. In the 
following, we discuss what components should be included 
in the state representation of a Java monitor, explain the 
need for state abstractions, and present some guidelines 
about how to make appropriate state abstractions.    

The state of a Java monitor must include all of the 
information that may affect the future behavior of the 
monitor (or more precisely, the behavior of the threads that 
access the monitor). Therefore, the state representation of a 
Java monitor should include the following components: (1) 
the values of all the data members; (2) the state of the 
thread currently inside the CS; (3) the states of the threads 
in the entry queue; and (4) the states of the threads in the 
condition queue. Note that (2), (3), and (4) are internal 
states that are not directly visible to the programmer but 
that may still affect the behavior of the monitor.  

Since there is no bound on the number of threads that may 
access a Java monitor, the state space based on the above 
representation is infinite. Therefore, appropriate state 
abstractions are necessary to ensure that the exploration of 
the state space will terminate. Moreover, the concrete state 
representation of a thread can be complicated as the state of 
a thread needs to include everything that may affect the 
future behavior of a thread, e.g., the thread’s call stack [7]. 

Appropriate state abstractions are thus also needed to avoid 
the use of concrete state representations.  

In the following, we present some guidelines for making 
appropriate state abstractions. The abstraction of data 
members can be made using existing data abstraction 
techniques [1]. Since we are mainly interested in 
synchronization faults, we only consider the data members 
that could affect the synchronization behavior of a monitor. 
A key observation is that a data member affects the 
synchronization behavior of a monitor if the data member 
is directly or indirectly referenced in a branching statement 
that contains paths that may display different 
synchronization behavior. Therefore, the abstract values of 
a data member can be identified by partitioning the domain 
of the data member into intervals that lead to those 
different paths. For example, in Fig. 2, the only data 
member that affects the synchronization behavior of 
monitor BoundedBuffer is fullSlots. The abstract values of 
fullSlots are 0, (0, capacity), and capacity, where (0, 
capacity) indicates an open interval, i.e., 0 < fullSlots < 
capacity. 

The other components of the state representation are 
concerned with the threads inside a Java monitor. A key 
requirement for the abstractions of these components is that 
the resulting abstract state must be independent from the 
identities of the threads. Otherwise, the abstract state space 
will be infinite, as there can be an arbitrary number of 
threads accessing a Java monitor. While identities must be 
abstracted away, the abstractions must retain enough 
information to allow adequate test coverage to be achieved. 
For this purpose, we introduce the notion of thread type to 
abstract away thread identities. For example, the type of a 
thread T can be characterized by the method that T 
executes. Doing so will identify two types of threads in 
Fig. 2: (a) D – a depositing (or producer) thread that 
executes deposit(); (b) W – a withdrawing ( or consumer) 
thread that executes withdraw(). As another example, the 
type of a thread T may also include a flag that indicates 
whether T is a new thread entering the CS for the first time 
or an old thread trying to reenter the CS after being 
notified. 

Below we present possible abstractions of the CS, entry 
queue, and condition queue, based on the notion of thread 
type. These abstractions will be used in our case studies: 

• CS: The abstract state of the CS is empty if no 
thread is executing inside the CS; otherwise, it is 
identified by the type of the thread that is executing 
inside the CS.  

• Entry queue: The abstract state of the entry queue is 
empty if no thread is in the entry queue; otherwise, 
it is identified by the type of the thread that is at the 
front of the entry queue. If we consider all of the 

Initialize:  
1. let stack be an empty stack; 
2. let visited be an empty set; 
3. create a instance m of M, and initialize m to state s0;  
 
    MonitorTest () { 
4.    AbstractState state = getAbstractState (); 
5.    add state into visited; 
6.    transitions = getEnabledTransitions (); 
7.    Explore (transitions); 
    }  
    Explore (transitions: a set of transitions) { 
8.    for (each transition t in transitions) { 
9.       push t onto stack; 
10.     execute t;     
11.     state = getAbstractState (); 
12.     if (state is not in visited) { 
13.         add state into visited; 
14.         Explore (getEnabledTransitions ()); 
          } 
15.     pop t out of stack; 
16.     undo t; 
       }     
    }  

Figure 3. AlgorithmMonitorTest



threads in the entry queue to be competing to enter 
the monitor, this abstraction captures the result of 
this competition.  

• Condition queue: The abstract state of the condition 
queue is empty if no thread is in the condition 
queue; otherwise, it is identified by a so-called type 
vector, which contains the different thread types that 
currently exist in the condition queue. For example, 
if the condition queue in Fig. 2 contains two threads, 
with one executing deposit() and the other executing 
withdraw(), then its abstract state is (D, W). The 
order of the elements in a type vector is not 
significant. The reason is that notify() awakens an 
arbitrary thread, and thus the result of executing 
two notify() operations is independent from the 
order of the threads in the condition queue. 

Note that the above abstractions for the CS, the entry 
queue, and the condition queue can be implemented in an 
application-independent manner, and thus do not have to be 
provided by the user. Also note that abstractions can be 
made at different levels of details. For instance, more 
information can be encoded in the abstract state of the 
condition queue so that we can determine whether there are 
zero, one, or more threads of a certain type in the queue. 
Typically, the more information contained in the 
abstractions, the more powerful and the more expensive 
they are when it comes to fault detection.  

4.2 Function getEnabledTransitions 
Fig. 4 shows function getEnabledTransitions, which 
returns the set of transitions that can be executed in the 
current state of the state exploration. As mentioned earlier, 
this function is also responsible for introducing new 
threads. As a result, the set of transitions returned by this 
function may include transitions that introduce new 
threads. 

Before we explain the details of this function, we introduce 
our execution model. We consider each thread to execute a 
sequence of operations, as specified by the text of the 
monitor method(s) being invoked. An operation is visible if 
its execution changes the internal state of a Java monitor, 
i.e., the state of the CS, the entry queue, and/or the 
condition queue. The following visible operations can be 
performed by a thread:    

• enter: A thread enters/re-enters the CS.  

• wait: A thread executes a wait operation. 

• awaken: A thread awakens one or more threads in 
the condition queue. 

• exit: A thread exits the CS. 

We consider other operations to be invisible operations. In 
our approach, each test thread executes one or more 
synchronized methods. Thus, each thread must start with an 
enter operation and end with an exit operation. We define a 
transition as a visible operation followed by a finite number 
of invisible operations (until the next visible operation). 
The type of a transition is determined by the type of the 
visible operation of the transition.  

We point out that the transitions defined above capture 
every change to the internal state of a monitor. It was 
shown in [5] that a monitor-based execution can be 
reproduced by replaying the order in which these 
transitions are executed. We stress that these transitions are 
of a finer granularity than method calls. The reason why we 
cannot define a transition as a method invocation is that a 
thread may be blocked in the middle of a synchronized 
method and may later resume execution after being 
notified. Therefore, method calls cannot be used to 
precisely characterize the behavior of the threads that 
access a Java monitor.  

One of the novel aspects of our approach is that during 
state exploration, we allow new threads to be introduced 
on-the-fly, and as needed, to simulate race conditions that 
can occur when multiple threads access a Java monitor at 
the same time. For this purpose, we introduce an auxiliary 
type of transition, called introduce. An introduce transition 
takes a synchronized method as a parameter. Conceptually, 
the execution of an introduce transition will create a new 
thread that executes the given synchronized method and 
then put it into the entry queue. In order to minimize the 
number of threads that have to be created, an introduce 
transition will reuse a thread if that thread was introduced 
earlier to execute a method and the execution of that 
method has finished. Note that an introduce transition is a 
visible transition as it changes the internal state of a Java 
monitor. Also note that unlike other visible transitions, 
which are executed by a test thread, an introduce transition 
is executed by our state exploration engine.  

Now we are ready to explain function 
getEnabledTransitions in Fig. 4. Lines 2 to 4 introduce 
new threads if necessary.  The following two rules 
determine when new threads are introduced:  

a. If the entry queue and the CS are both empty at the 
current state, then for each synchronized method, we 
introduce a new thread to execute the method.  

This rule ensures that the state exploration will continue 
when all the existing threads are finished or blocked. 
Since the introduced threads compete to enter the CS, 
the state exploration engine will explore the possibility 
that for each synchronized method, a new thread that 
executes the method wins the competition. Note that 
this rule can always be applied to an initial state, where 



no thread has been introduced yet. Also note that the CS 
becomes empty when the thread inside the CS exits, 
which can be due to the execution of a wait operation or 
to reaching the end of a synchronized method. Also 
note that the introduction of new threads will eventually 
come to an end as the current state is not expanded if its 
abstract state was already visited, and the abstract state 
space is bounded.  

b. If the entry queue at the current state is empty, and the 
next operation to be executed by the thread inside the 
CS is a notify/notifyAll operation, then for each 
synchronized method, we introduce a new thread to 
execute the method before the notify/notifyAll operation 
is executed.  

The motivation for the above rule is as follows. When a 
notify operation is executed, an awakened thread T in 
the condition queue will join the entry queue and will 
compete with other threads to reenter the monitor. Also, 
the introduction of a new thread T’ for each 
synchronized method places thread T’ at the front of the 
entry queue. Therefore, the above rule allows the state 
exploration engine to explore the possibility that for 
each synchronized method, a new thread such as T’ 
executing the method wins the competition over T, as T 
will enter the entry queue after the new thread when we 
execute the notify operation. Note that if a thread is 
inside the CS and the next operation is a notify 
operation, an awaken transition will be created for 
every thread in the condition queue (lines 7 and 8). 
These transitions explore the possibility that an 
awakened thread wins the competition over a new 
thread trying to enter the monitor (such as T’). 

If both the entry queue and the CS are empty, next_thread 
will be null and this function returns (line 6). Otherwise, 
next_thread is the thread inside the CS or if no such thread 
exits the thread at the front of the entry queue. If the next 
operation to be performed by next_thread is a notify 
operation, a set of awaken transitions are created, one for 
each thread in the condition queue (line 7). Each of these 
awaken transitions, when executed, will awaken the 
associated thread. The reason for creating a set of awaken 
transitions is because a notify/notifyAll operation 
awakens an arbitrary thread in the condition queue. (Recall 
that according to Java’s semantics, a notify operation does 
not necessarily preserve First-Come-First-Serve order.) For 
other types of operations, a single transition is created (line 
8).  

5. An Example Scenario 
In this section, we use an example scenario to demonstrate 
our state exploration-based approach. Refer again to Fig. 2, 
which shows a Java monitor named BoundedBuffer that 

correctly solves the bounded buffer problem. In Fig. 2, a 
depositing thread D that enters the monitor first checks 
whether the buffer is full or not (line 3). If the buffer is full, 
thread D will execute wait (line 4) and will be blocked. 
Observe that wait is executed inside a while loop. Thus, 
when thread D is awakened at a later point, it will first re-
check the loop condition (fullSlots == capacity) before it 
proceeds further. This re-checking of the loop condition is 
necessary since a notified thread does not immediately re-
enter the monitor. Instead, it joins the entry queue and 
competes with other threads that are also trying to (re)enter 
the monitor. As a result, it is possible for another thread to 
barge ahead of thread D, making the loop condition true 
again before D is able to re-enter the monitor. Rechecking 
the condition ensures that D will wait again if this happens. 
A subtle fault is introduced in monitor BoundedBuffer if 
the while-loop is replaced by an if-statement. This means 
that a depositing thread, after being notified, will proceed 
without re-checking whether the buffer is full or not. 
Below, we present a scenario that will be exercised and that 
will allow this fault to be detected when our state 
exploration-based approach is applied to the faulty version. 
We will depict the scenario using a sequence of transitions 
between abstract states. For example, the first transition is 
   [F, E, E, (N, N)] – introduce(D)  [F, E, D, (N, N)]  
In this transition, a pair of brackets represents an abstract 
state, and the arrow represents a transition that is labeled by 
the corresponding visible operation. The abstract states are 
created using the abstraction described in Section 4.1. To 
be specific, each abstract state consists of the abstract 

 Set getEnabledTransitions () { 
1.  let transitions be an empty set 
2.  if (the entry queue is empty and either no thread  
           is inside the CS or the next operation of the thread  
           inside the CS is notify or notifyAll) {  
3.     create an introduce transition for each synch. method
4.     add these transitions into transitions 
     } 
     else {  
5.     let next_thread be the thread inside CS if exists 
           or the thread at the front of the entry queue 
6.     if (the next operation of next_thread is notify ) { 
7.         create an awaken transition for every thread in  
               the condition queue 
        } else { 
8.         create a transition for the next operation of 
               next_thread 
        } 
9.      add these transitions into transitions 
       } 
10.  return transitions; 
     } 

Figure 4. Function getEnabledTransitions 



values of four components, namely, fullSlots, the CS, the 
entry queue, and the condition queue, in the given order. 
The abstract values of each of these components are listed 
below: 
• fullSlots: U(nderflow) if fullSlots < 0; E(mpty) if 

fullSlots = 0; M(iddle) if 0 < fullSlots < capacity; 
F(ull) if fullSlots = capacity; and O(verflow) if 
fullSlots > capacity. Note that U and O are values that 
signify invalid states.  

• CS: E(mpty) if no thread is inside the CS; D(eposit) (or 
W(ithdraw)) if a thread executing deposit (or 
withdraw) is inside the CS.  

• Entry queue: E(mpty) if the queue is empty, D(eposit) 
(or W(ithdraw)) if the thread at the front of the queue is 
executing deposit (or withdraw).  

• Condition queue: A type vector (T, T’), where T (or T’) 
is N(ull) if no thread in the queue executes deposit (or 
withdraw) and is D(eposit) (or W(ithdraw)) if there 
exists at least one thread in the queue that is executing 
deposit (or withdraw). 

The complete scenario is as follows.  
[F, E, E, (N, N)] – introduce(D)  [F, E, D, (N, N)] – 
enter  [F, D, E, (N, N)] – wait  [F, E, E, (D, N)] – 
introduce(W)  [F, E, W, (D, N)] – enter  [M, W, E, (D, 
N)] – introduce(D)  [M, W, D, (D, N)] – notifyAll  [M, 
W, D, (N, N)] – exit  [M, E, D, (N, N)] – enter  [F, D, 
D, (N, N)] – exit  [F, E, D, (N, N)] – enter  [O, D, E, 
(N, N)] (An invalid state is entered) 
This scenario begins with an initial state, namely [F, E, E, 
(N, N)], in which the buffer is full, and no thread is 
executing in the monitor. Since both the CS and the entry 
queue are empty, an introduce transition, i.e., introduce(D), 
is executed, which introduces a depositing thread D1 into 
the entry queue and leads to state [F, E, D, (N, N)]. Next, 
thread D1 enters the CS by executing an enter transition, 
which leads to state [F, D, E, (N, N)]. Since the buffer is 
full, thread D1 executes a wait transition (line 4). As a 
result, D1 is blocked on the condition queue, leading to 
state [F, E, E, (D, N)]. Since both the CS and the entry 
queue become empty again, another introduce transition, 
i.e., introduce(W), is executed, which introduces a 
withdrawing thread W1 into the entry queue and leads to 
state [F, E, W, (D, N)]. Similar to thread D1, thread W1 
enters the CS by executing an enter transition, which leads 
to state [M, W, E, (D, N)]. Note that since the buffer is not 
empty, thread W1 does not enter the while-loop at line 10 
and proceeds instead to withdraw an item. Thus, fullSlots is 
decremented by the execution of this enter transition. 
Immediately before W1 executes notifyAll at line 15, an 
introduce transition, i.e., introduce(D), is executed. This 
introduces another deposit thread D2 into the entry queue 

and leads to state [M, W, D, (D, N)]. Next, thread W1 
executes an awaken transition, which awakens thread D1, 
leading to state [M, W, D, (N, N)].  Note that thread D1 re-
joins the entry queue and is placed after the second deposit 
thread D2. Then, W1 exits the monitor, leading to state [M, 
E, D, (N, N)]. The next thread that enters the CS is thread 
D2. Since the buffer is no longer full, thread D2 is able to 
deposit an item into the buffer, leading to state [F, D, D, 
(N, N)]. Next, D2 exits the monitor, leading to state [F, E, 
D, (N, N)]. Thread D1 then enters the CS. Since line 3 is 
now an if-statement, instead of a while-loop, thread D1 
proceeds without re-checking whether the buffer is full or 
not, leading to an invalid state [O, D, E, (N, N)]. This 
invalid state will be detected when thread D1 exits, 
allowing us to detect the fault.      

6. Case Studies 
We built a prototype tool called MonitorExplorer that 
implements our state exploration-based approach. The tool 
consists of four major components: (1) an exploration 
engine that coordinates the entire state exploration process; 
(2) A monitor driver that hides from the exploration engine 
the specifics of how to communicate with the monitor 
under test; (3) A monitor wrapper that provides necessary 
runtime control for deterministic execution of the 
transitions; and (4) A monitor toolbox that simulates the 
Java monitor construct in a functionally equivalent manner. 
The monitor toolbox was adapted from [5] and allows us to 
access the internal state of a Java monitor, without having 
to modify the Java compiler or the Java virtual machine.  

Before applying the tool, the user must provide an 
implementation of function getAbstractState(). In most 
cases, the user only needs to implement abstractions of data 
members in this function. The tool provides a built-in 
abstraction for the internal components of a Java monitor. 
In addition, the user can provide two optional functions, 
namely, initialize() and evaluate(). These two functions 
allow the user to provide their own initialization and 
evaluation code, respectively. Finally, the user needs to 
provide an input file that specifies the full path of the Java 
monitor class to be tested, and the parameters for invoking 
each synchronized method. 

In the following, we present the results of applying 
MonitorExplorer to two classical textbook monitors, 
namely BoundedBuffer and ReaderWriterSafe, and a real-
life monitor called ArrayBlockingQueue in the 
java.util.concurrency package in Java 1.5. All the results 
are obtained on a Windows desktop with 1GHZ CPU and 
512 MB memory. 

6.1 Monitor BoundedBuffer 
The source code for monitor BoundedBuffer was given in 
Fig. 1. To conduct mutation-based testing, a set of mutants 
of this monitor were first created. Each mutant introduces a 



single change to the original version and is intended to 
simulate a programming error. Then, we used our prototype 
tool to test each of these mutants. A mutant is said to be 
killed if our tool discovers a violation of any correctness 
requirement.    

Two batches of mutants were used in this case study. The 
first batch contained 73 mutants that were created by a 
Java-based mutation tool called µJava [12][1]. µJava 
generates two types of mutants, one based on traditional 
mutation operators, e.g., changing a Boolean operator from 
“>=” to “>”, and the other based on class-level mutation 
operators, e.g., changing an instance attribute to a static 
attribute. Since we are concerned with the synchronization 
behavior of a monitor, we only kept the first type of 
mutants created by µJava. There were 8 mutants in the 
second batch. These mutants were created based on several 
mutation operators that are unique to a Java monitor. 

• If a while loop contains a wait operation, replace 
the while loop with an if statement.  

• Replace a notifyAll operation with a notify 
operation.  

• Remove a wait, notify, or notifyAll operation.  

Recall that in order to apply our tool, the user needs to 
provide three functions, namely, getAbstractState(), 
initialize(), and evaluate().  In this study, function 
getAbstractState() implements the abstraction described in 
section 5. Function initialize() initializes a BoundedBuffer 
instance by depositing a given number of (random) integers 
into the buffer. Function evaluate() evaluates each state by 
checking the following conditions: 

• The buffer never underflows or overflows. 

• # of completed withdraws <= # of completed 
deposits + # of initial items in the buffer. 

• If both the entry queue and the CS are empty, and 
if there exists at least one depositing thread in the 
condition queue, # of initial items + # of 
completed deposits - # of completed withdraws = 
capacity. 

• If both the entry queue and the CS are empty, and 
if there exists at least one withdrawing thread in 
the condition queue, # of initial items + # of 
completed deposits - # of completed withdraws = 
0.  

Note that the last two conditions require both the entry 
queue and the CS to be empty. This ensures that all the 
existing threads that are not waiting in the condition queue 
have exited the monitor.  

For each mutant, we first ran the prototype tool with the 
buffer initialized to be empty. If the mutant was killed by 

this run, we stopped testing; otherwise, we ran the 
prototype tool again with the buffer initialized to be full. A 
mutant that was not killed by either test run was said to be 
alive. Among the 81 mutants we created, 4 of them are 
functionally equivalent to the original monitor. Our 
prototype tool killed 57 mutants out of the remaining 77 
mutants, making the ratio of killed mutants (over all the 
non-equivalent mutants) as 74.03%. We manually 
inspected each of the 20 mutants that were alive. All these 
mutants involved a single change to one of the following 
three attributes: in, out, capacity. The mutants involving 
changes to in and out were not killed because the changes 
did not affect the synchronization behavior. The mutants 
involving changes to capacity were not killed because our 
state abstraction scheme assumes that the capacity of a 
buffer is fixed, and some of these mutants cannot be killed 
by any program-based testing technique such as ours that 
only exercises feasible sequences. (These mutants can only 
be killed by showing that certain sequences cannot be 
exercised.) On the average, each test run took 1.36 seconds 
and explored 15.4 states and 24.7 transitions. Note that 
when we applied our tool to the original version of 
BoundedBuffer, it took 2.2 seconds and explored 33 states 
and 47 transitions. 

6.2 Monitor ReaderWriterSafe 
Monitor ReaderWriterSafe [11] solves the readers/writers 
problem, i.e., it allows multiple readers to read a shared 
variable at the same time, but requires writers to obtain 
mutually exclusive access to the variable. There are four 
synchronized methods, namely acquireRead, releaseRead, 
acquireWrite, and releaseWrite, defined in the monitor. A 
reader (writer) thread calls acquireRead (acquireWrite) 
before it starts reading (writing) and calls releaseRead 
(releaseWrite) after it finishes reading (writing). There are 
in total 34 lines of code in monitor ReaderWriterSafe. The 
source code of this monitor can be accessed at http://www-
dse.doc.ic.ac.uk/concurrency/. 

Similar to our previous study, we created two batches of 
mutants for monitor ReaderWriterSafe. The first batch 
contained 26 mutants and the second batch contained 7 
mutants. In monitor ReaderWriterSafe, there are two data 
members, namely readers and writing, that can affect the 
synchronization behavior. Member readers is an integer 
variable used to keep track of the number of active readers, 
and member writing is a Boolean variable used to indicate 
whether there is an active writer. Function 
getAbstractState() implements the following abstraction. 
The value of readers is abstracted to “-” if readers < 0, 
“0” if readers = 0, “R” if readers = 1, and “R+” if 
readers > 1. The value of writing does not have to be 
abstracted, as it has only two values true and false. The 
internal components of the monitor are abstracted in the 
same way as described in section 5. There is no need for 
special initialization for this monitor, and thus function 



initialize() is left empty. Function evaluate() evaluates each 
state by checking the following conditions:  

• The abstract value of readers is never “-”. 

• # of completed acquireWrite - # of completed 
releaseWrite <= 1. (Intuitively, there can be at 
most one active writer at a given time.) 

• If # of completed acquireWrite - # of completed 
releaseWrite = 1, # of completed acquireRead - # 
of completed releaseRead = 0. (Intuitively, if there 
is an active writer, there can be no active reader.) 

• If # of completed acquireRead - # of completed 
releaseRead > 0, # of completed acquireWrite - # 
of completed releaseWrite = 0. (Intuitively, if 
there is an active reader, there can be no active 
writer.) 

• If both the entry queue and the CS are empty, and 
if there exists at least one waiting writer, # of 
completed acquireRead - # of completed 
releaseRead > 0. 

• If both the entry queue and the CS are empty, and 
if there exists at least one waiting reader in the 
condition queue, # of completed acquireWrite - # 
of completed releaseWrite = 1. 

Again, in the last two conditions, the requirement that both 
the entry queue and the CS are empty ensures that all the 
existing threads that are not waiting in the condition queue 
have exited the monitor. Note that monitor 
ReaderWriterSafe has an implicit protocol that the four 
synchronized methods must be used in pairs. This 
constraint is enforced by the exploration engine by 
ensuring that releaseRead (or releaseWrite) is only 
executed by a thread that has already executed acquireRead 
(or acquireWrite).  We point out that if this constraint was 
not enforced, false negatives could be produced by our 
tool, as sequences that did not follow the implicit protocol 
could also be explored.  

Among the 33 mutants we created, 3 of them are 
functionally equivalent to the original version. Our tool 
killed all the other mutants, making the ratio of killed 
mutants (over all the non-equivalent mutants) 96.67%. The 
only mutant that was not killed involved a change that 
caused method acquireRead to become read-only. Since no 
state change was detected after executing this method, the 
state exploration process terminated immediately. We note 
that this type of mutants can be killed by unit testing of 
individual methods, whereas our approach focuses on 
faults related to interactions between multiple methods. On 
average, each test run took about 1.99 seconds and 
explored 30.1 states and 43.7 transitions. When we applied 

our tool to the original version of ReaderWriterSafe, it took 
3.65 seconds and explored 75 states and 106 transitions. 

6.3 Monitor ArrayBlockingQueue 
Monitor ArrayBlockingQueue can be considered as a real-
life version of monitor BoundedBuffer. There are 18 
synchronized methods and 758 lines of code in the 
monitor. The main purpose of our study of this monitor is 
to obtain some initial evidence about the scalability of our 
approach.  
Before we report the results of this study, we make the 
following comments. First, unlike the default Java monitor, 
which only has an implicit condition queue, monitor 
ArrayBlockingQueue has multiple condition queues, a 
feature that is newly introduced in Java 1.5. Our prototype 
tool was extended to support multiple condition queues. 
Second, two methods in monitor ArrayBlockingQueue use 
a timed wait operation, which allows threads to wait for a 
specified amount of time. Our prototype tool currently does 
not support timed wait. Thus, the two methods were left out 
of our case study. Finally, among the 18 synchronized 
methods, 10 of them are query-only operations, and do not 
involve any wait/notify operations. These methods were not 
tested in this study since they did not affect the 
synchronization behavior of the other methods.  
Table 1 reports the test results obtained for monitor 
ArrayBlockingQueue. Observe that the explored number of 
states and transitions actually decreases when the capacity 
of the queue is increased from 2 to greater than 2. Also 
observe that the number of explored states and transitions 
remains the same when the capacity of the queue is greater 
than 2. This can be explained as follows. Monitor 
ArrayBlockingQueue has a variable named count which 
keeps track of the number of items in the queue. Variable 
count is abstracted in the same way as variable fullSlots in 
section 5. Assume that the queue contains one item. Then, 
when we deposit one more item into the queue, we will get 
a new abstract state where the buffer becomes full if the 
capacity is 2. However, if the capacity is greater than 2, we 
will stay in the same abstract state where the buffer is 
neither full nor empty. According to algorithm 
MonitorTest, the current state will not be expanded if the 
corresponding abstract state has been visited before. As a 
result, when the capacity is greater than 2, the abstract state 
in which the buffer is full would not be reached when we 
start from an initial state where the buffer is empty. By the 
same token, the number of explored states as well as 
transitions will not change when the capacity is further 
increased. Note that when the capacity is greater than 2, the 
full state can be explored by initializing the buffer to be 
full. 

 

 



capacity # of states # of transes # of paths Time 

1 182 336 155 45.83s 

2 226 418 193 66.57s 

>=3 80 140 61 10.96s 

Table 1: Results for class ArrayBlockingQueue 

7. Conclusion and Future Work 
In this paper, we have described a state exploration-based 
approach to testing Java monitors. This approach can be 
used as a unit testing technique for concurrent programs. 
During state exploration, threads are introduced on-the-fly 
to simulate the race conditions that may occur when 
multiple threads call the same monitor simultaneously. It is 
our belief that many synchronization faults are caused by 
race conditions that are not accounted for. We wish to 
stress that our approach assumes that the methods in a Java 
monitor are properly identified as synchronized methods. 
Since mutual exclusion for individual synchronized 
methods is automatically enforced by the Java runtime, our 
approach focuses on detecting faults that are caused by 
improper and/or insufficient synchronization between 
different synchronization methods, i.e., synchronization 
involving wait/notify/notifyAll operations.     

We are continuing our work in the following directions. 
First, we will try to remove the need for several 
assumptions that are currently made in our approach. For 
example, the synchronization behavior of a method is 
assumed to be independent from its arguments, and each 
method can be called independently. These assumptions 
restrict the applicability of our approach. Second, we will 
add necessary support for other synchronization-related 
features in Java, including timed wait, synchronization 
blocks, and multiple condition queues. Third, we will 
conduct a more thorough evaluation of our approach. In 
particular, we plan to compare the fault detection 
effectiveness of our approach to that of the approach 
reported in [10]. Fourth, we plan to add a graphical user 
interface to visualize the state exploration process. Such 
visualization will aid in understanding the behavior of a 
Java monitor and, in particular, will be of great help during 
the debugging process. Finally, we plan to extend our 
approach to non-Java monitors. In particular, we have 
implemented a monitor toolbox written in C++/Pthreads. 
We believe that the general framework presented in this 
paper can be adapted to test a monitor written in 
C++/Pthreads.  
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