
A State Exploration-Based Approach to Testing Java
Monitors

Yu Lei1, Richard Carver2, David Kung1, Vidur Gupta1, Monica Hernandez1

1Dept. of Comp. Sci. and Engineering

University of Texas at Arlington
Arlington, TX 76019-0015

{ylei, kung, gupta, hernandez}@cse.uta.edu

2Dept. of Computer Science
George Mason University

Fairfax, VA 22030
rcarver@cs.gmu.edu

Abstract

A Java monitor is a Java class that defines one or more
synchronized methods. Unlike a regular object, a Java
monitor object is intended to be accessed by multiple
threads simultaneously. Thus, testing a Java monitor can be
significantly different from testing a regular class. In this
paper, we propose a state exploration-based approach to
testing a Java monitor. A novel aspect of our approach is
that during exploration, threads are introduced on-the-fly,
and as needed, to simulate race conditions that can occur
when multiple threads try to access a monitor object at the
same time. Furthermore, each transition is defined in a way
such that the behavior of the threads along each path can be
precisely characterized and controlled. We describe a
prototype tool called MonitorExplorer and report three case
studies that are designed to provide an initial evaluation of
our approach.

1. Introduction
Multithreaded programming has become commonplace in
modern software development. Using multiple threads
increases the responsiveness of user interfaces. While one
thread is performing computational tasks, another thread
can respond to user inputs. More importantly, many
problems can be solved more naturally and efficiently by
creating multiple threads. As an example, a web server
typically creates separate threads to service incoming client
requests.

An important feature of the Java language is that it
provides built-in support for multithreaded programming.
The Java core library includes a class named Thread as a
programming abstraction of a thread. The Thread class
defines a set of operations that are commonly performed on
a thread. For thread synchronization, Java provides a
simplified implementation of the monitor construct, which
we refer to as a Java monitor [11]. Syntactically, a Java
monitor is a Java class that defines one or more
synchronized methods, i.e., methods whose signatures
contain the keyword synchronized. In general, there are
two types of thread synchronization: mutual exclusion and
condition synchronization. Mutual exclusion ensures that at
any given time, at most one thread can execute inside a

critical section. (Recall that a critical section is a fragment
of code that accesses shared data.) Condition
synchronization ensures that a thread can proceed if and
only if a certain condition is satisfied, e.g., a buffer is not
full, a resource is not in use, etc. The Java runtime
environment automatically enforces mutual exclusion on
the synchronized methods in a Java monitor. Condition
synchronization can be programmed in a Java monitor
using wait and notify statements, which allow threads to
be blocked and awakened inside a synchronized method.

Over the years, many approaches have been developed for
testing regular classes [4][9]. In these approaches, a test
case is a sequence of method calls that are issued by a
single-threaded test driver. These approaches cannot be
directly applied to test a Java monitor. This is because
unlike the methods of a regular object, which are supposed
to be called by at most one thread at a time, the methods of
a Java monitor object are intended to be called by multiple
threads simultaneously. Thus, in order to simulate the
possible scenarios in which a Java monitor object may be
used, it is necessary to create more than one thread in each
test case. Furthermore, if a single driver thread were to be
used to execute a test case, the driver thread could be
blocked by a synchronized method and could thus be
prevented from completing the sequence of method calls in
the test case. The need for creating multiple threads in a
test case, however, raises the following two issues:

• How many threads should be created in each test
case? Many synchronization faults can only be
detected when a certain minimum number of threads
interact. However, the necessary number of threads
is often not known a priori.

• Since multiple threads are used, each test run may
exhibit non-deterministic behavior. How should the
desired behavior of each test run be specified? And
given a desired behavior, how can each test run be
controlled so that the desired behavior is exercised?

The main contribution of this paper is a state exploration-
based approach that addresses the above issues. This
approach involves systematically exploring the state space
of a Java monitor. Each explored path (from the initial state

to a state where the exploration backtracks) can be
considered as a dynamically constructed test case. A novel
aspect of our approach is that threads are introduced on-
the-fly, and as needed, along each path during exploration.
The rules for deciding when to introduce a new thread are
defined to simulate the race conditions that can occur when
multiple threads try to access a monitor object
simultaneously. A state transition is defined to occur when
a synchronization operation is executed that causes a thread
to enter or exit a monitor. Synchronization operations are
of a smaller granularity than method calls and allow thread
behavior to be precisely characterized and controlled. We
describe a prototype tool called MonitorExplorer, and
report three case studies that provide an initial evaluation
of our approach. The results indicate that our approach is
very effective in detecting synchronization-related faults
for the monitors we have studied.

The rest of this paper is organized as follows. Section 2
surveys related work. Section 3 describes the semantics of
Java monitor. Section 4 presents our state exploration-
based approach. Section 5 illustrates our approach using an
example scenario. Section 6 describes the MonitorExplorer
tool and discusses some implementation issues. Section 6
also presents the three case studies. Section 7 provides
concluding remarks and describes our plan for future work.

2. Related Work
As we mentioned in Section 1, the problems of determining
the number of threads in a test case and dealing with non-
deterministic behavior are problems that do not exist when
testing a regular class. Thus, we will only review existing
work on testing monitors and on state exploration
techniques.

Hansen developed an approach to testing Concurrent
Pascal monitors [2]. His approach has three major steps.
The first step identifies for each monitor method a set of
preconditions that if satisfied, will cause every branch of
the method to be executed at least once. The second step
constructs a single sequence of monitor calls such that each
identified precondition is satisfied at least once. The last
step creates a multithreaded test driver to execute the
monitor call sequence identified in the second step. Each
thread in the test driver executes one or more monitor calls
in the sequence. During testing, all the threads are
synchronized to ensure that they execute their calls in a
specified order.

Hansen’s approach was extended in [10] for testing Java
monitors. Observing that a wait statement in a Java
monitor often needs to be put inside a loop (i.e., instead of
an if statement), the authors extended Hansen’s approach to
achieve loop coverage, in addition to branch coverage.
That is, the identified preconditions are required not only to
cause every branch to be executed but also to cause every

loop to be executed zero time, one time, and more than one
time. Carver and Tai [3][5] generalized Hansen’s technique
for synchronizing threads during test execution (i.e., the
last step in Hansen’s technique) and showed how to apply
their technique to monitors, semaphores, locks, and
message passing.

To the best of our knowledge, Hansen’s approach and its
extensions are the only existing approaches to testing a
monitor. The tool support described in [10] only automates
the last step; the first two steps still need to be performed
manually. As a result, the above approach can be time
consuming and error-prone. In contrast, our approach is
more systematic, and the state exploration is conducted in
an automatic manner. Furthermore, our approach explores
the state space of a Java monitor until a fixed point is
reached, which is a different stopping criterion than those
provided by branch- and loop-based coverage.

Several state exploration-based approaches have been
developed for testing concurrent programs These
approaches either directly explore the state space of a
concurrent program [7][8], or extract an abstract model
from the program and then explore the state space of the
model using a model checker such as Spin [6]. An implicit
assumption held by these approaches is that they will be
applied to a standalone program. Before these approaches
can be used to test a component like a Java monitor, a test
program must be constructed to simulate the possible
scenarios in which the Java monitor may be used.
However, since failures are often triggered by unexpected
scenarios, constructing a test program that will expose the
potential faults is a difficult task. This is in contrast to our
approach, which introduces test threads as needed to create
race conditions that can trigger failures, removing the need
to construct a test program.

We wish to point out that all the existing state exploration
approaches assume a closed system into which no new
threads can be introduced during state exploration. (Some
approaches allow the system to create threads dynamically
during exploration. However, such a system is still closed
in the sense that the types of threads, the number of
threads, and the time at which the threads are created are
prescribed by the system description.) This is different
from our state exploration approach, which treats a Java
monitor as a member of an open system where threads are
introduced on-the-fly and as needed (i.e., not prescribed
statically) during state exploration.

3. Java Monitor Semantics
A Java monitor is a Java class that defines one or more
synchronized methods. The data members of a Java
monitor represent shared data. Threads access the shared
data by calling the synchronized methods defined in the
monitor. Fig. 1 shows a graphical view of a Java monitor.

It consists of three components: the entry queue, the
critical section (or CS), and the condition queue. A
synchronized method can only be executed inside the CS.
Mutual exclusion to the CS is automatically provided by
the Java runtime environment. That is, at any given time, at
most one thread is allowed to execute inside the CS. If a
thread calls a synchronized method while another thread is
executing inside the monitor, the calling thread must wait
on the entry queue of the monitor.

Condition synchronization is achieved by using the
condition queue and operations wait and notify/notifyAll.
Only a thread that is already inside the CS can execute
wait and/or notify/notifyAll. When a thread executes
wait, it releases mutual exclusion and blocks itself on the
condition queue, which allows another thread to enter the
CS. When a thread executes notify (or notifyAll), it
awakens one (or all) of the threads blocked in the condition
queue, if the queue is not empty, and then continues to
execute inside the CS. An awakened thread does not
immediately re-enter the CS. Instead, it joins the entry
queue and thus competes with other threads trying to
enter/re-enter the CS. Note that according to the Java
specification, notify does not necessarily preserve First-
Come-First-Serve semantics, i.e., it may not awaken the
longest waiting thread.

Figure 1. A graphical view of Java monitor.

Fig. 2 shows a Java monitor that solves the bounded buffer
problem [5]. A producer thread calls deposit() to put an
integer into the buffer, and a consumer thread calls
withdraw() to get an integer from the buffer. The
correctness requirement dictates that a producer or
consumer thread should be blocked when the buffer is full
or empty, respectively.

4. The State Exploration-Based Approach
Fig. 3 shows an algorithm called MonitorTest that
implements our state exploration-based approach.
Algorithm MonitorTest takes as input a Java monitor M
and an initial state s0. It begins by creating an instance m of
M and initializing m to state s0. Then, it initializes two data
structures, namely, stack and visited. The stack stores the
transition sequence from the initial state to the state
currently being explored. States that have already been
explored are added to visited so that they are explored only
once. A call to function getAbstractState() returns an
abstraction of the current state, and a call to function
getEnabledTransitions() returns the set of transitions that
are enabled at the current state. As explained later, the set

of transitions returned by getEnabledTransitions() may also
include transitions that introduce new threads. That is, the
logic for introducing threads on-the-fly is implicitly
encoded in this function. The implementation details of
functions getAbstractState() and getEnabledTransitions()
are discussed in Section 4.1 and 4.2.

We will not explain algorithm MonitorTest line by line, as
for the most part it is a classical depth-first search
algorithm. Instead, we will only make three observations.
First, algorithm MonitorTest uses abstract states to
determine whether a (concrete) state needs to be expanded.
As shown in Section 4.1, the abstract state space of a Java
monitor is bounded, which ensures that the algorithm will
terminate. Second, undoing a transition (line 16) restores
the previous state from which the transition was executed.
This can be done by re-executing all but the last transition
in the transition sequence on the stack [7]. Doing so allows
us to avoid representing, saving, and restoring explicit
representations of concrete states, which, as explained in
Section 4.1, can be difficult. Finally, algorithm
MonitorTest takes as input an initial state, which can be
any state of the monitor. In order to ensure adequate test
coverage, some systematic strategy such as boundary
testing can be used to identify a set of initial states to be

Condition queue
CS

Entry queue

class BoundedBuffer {
 private int fullSlots=0;
 private int capacity = 0;
 private int[] buffer = null;
 private int in = 0, out = 0;
 public BoundedBuffer(int bufferCapacity) {
1. capacity = bufferCapacity;
2. buffer = new int[capacity];
 }
 public synchronized void deposit (int value) {
3. while (fullSlots == capacity) {
4. try { wait(); } catch (InterruptedException ex) {}
 }
5. buffer[in] = value;
6. in = (in + 1) % capacity;
7. if (fullSlots++ == 0) {
8. notifyAll();
 }
 }
 public synchronized int withdraw () {
9. int value = 0;
10. while (fullSlots == 0) {
11. try { wait(); } catch (InterruptedException ex) {}
 }
12. value = buffer[out];
13. out = (out + 1) % capacity;
14. if (fullSlots-- == capacity) {
15. notifyAll();
 }
16. return value;
 }
 }

Figure 2. Monitor BoundedBuffer

used.

4.1 Function getAbstractState
Function getAbstractState returns an abstraction of the
current state of the state exploration. We will refer to this
abstraction as the abstract state of the current state. In the
following, we discuss what components should be included
in the state representation of a Java monitor, explain the
need for state abstractions, and present some guidelines
about how to make appropriate state abstractions.

The state of a Java monitor must include all of the
information that may affect the future behavior of the
monitor (or more precisely, the behavior of the threads that
access the monitor). Therefore, the state representation of a
Java monitor should include the following components: (1)
the values of all the data members; (2) the state of the
thread currently inside the CS; (3) the states of the threads
in the entry queue; and (4) the states of the threads in the
condition queue. Note that (2), (3), and (4) are internal
states that are not directly visible to the programmer but
that may still affect the behavior of the monitor.

Since there is no bound on the number of threads that may
access a Java monitor, the state space based on the above
representation is infinite. Therefore, appropriate state
abstractions are necessary to ensure that the exploration of
the state space will terminate. Moreover, the concrete state
representation of a thread can be complicated as the state of
a thread needs to include everything that may affect the
future behavior of a thread, e.g., the thread’s call stack [7].

Appropriate state abstractions are thus also needed to avoid
the use of concrete state representations.

In the following, we present some guidelines for making
appropriate state abstractions. The abstraction of data
members can be made using existing data abstraction
techniques [1]. Since we are mainly interested in
synchronization faults, we only consider the data members
that could affect the synchronization behavior of a monitor.
A key observation is that a data member affects the
synchronization behavior of a monitor if the data member
is directly or indirectly referenced in a branching statement
that contains paths that may display different
synchronization behavior. Therefore, the abstract values of
a data member can be identified by partitioning the domain
of the data member into intervals that lead to those
different paths. For example, in Fig. 2, the only data
member that affects the synchronization behavior of
monitor BoundedBuffer is fullSlots. The abstract values of
fullSlots are 0, (0, capacity), and capacity, where (0,
capacity) indicates an open interval, i.e., 0 < fullSlots <
capacity.

The other components of the state representation are
concerned with the threads inside a Java monitor. A key
requirement for the abstractions of these components is that
the resulting abstract state must be independent from the
identities of the threads. Otherwise, the abstract state space
will be infinite, as there can be an arbitrary number of
threads accessing a Java monitor. While identities must be
abstracted away, the abstractions must retain enough
information to allow adequate test coverage to be achieved.
For this purpose, we introduce the notion of thread type to
abstract away thread identities. For example, the type of a
thread T can be characterized by the method that T
executes. Doing so will identify two types of threads in
Fig. 2: (a) D – a depositing (or producer) thread that
executes deposit(); (b) W – a withdrawing (or consumer)
thread that executes withdraw(). As another example, the
type of a thread T may also include a flag that indicates
whether T is a new thread entering the CS for the first time
or an old thread trying to reenter the CS after being
notified.

Below we present possible abstractions of the CS, entry
queue, and condition queue, based on the notion of thread
type. These abstractions will be used in our case studies:

• CS: The abstract state of the CS is empty if no
thread is executing inside the CS; otherwise, it is
identified by the type of the thread that is executing
inside the CS.

• Entry queue: The abstract state of the entry queue is
empty if no thread is in the entry queue; otherwise,
it is identified by the type of the thread that is at the
front of the entry queue. If we consider all of the

Initialize:
1. let stack be an empty stack;
2. let visited be an empty set;
3. create a instance m of M, and initialize m to state s0;

 MonitorTest () {
4. AbstractState state = getAbstractState ();
5. add state into visited;
6. transitions = getEnabledTransitions ();
7. Explore (transitions);
 }
 Explore (transitions: a set of transitions) {
8. for (each transition t in transitions) {
9. push t onto stack;
10. execute t;
11. state = getAbstractState ();
12. if (state is not in visited) {
13. add state into visited;
14. Explore (getEnabledTransitions ());
 }
15. pop t out of stack;
16. undo t;
 }
 }

Figure 3. AlgorithmMonitorTest

threads in the entry queue to be competing to enter
the monitor, this abstraction captures the result of
this competition.

• Condition queue: The abstract state of the condition
queue is empty if no thread is in the condition
queue; otherwise, it is identified by a so-called type
vector, which contains the different thread types that
currently exist in the condition queue. For example,
if the condition queue in Fig. 2 contains two threads,
with one executing deposit() and the other executing
withdraw(), then its abstract state is (D, W). The
order of the elements in a type vector is not
significant. The reason is that notify() awakens an
arbitrary thread, and thus the result of executing
two notify() operations is independent from the
order of the threads in the condition queue.

Note that the above abstractions for the CS, the entry
queue, and the condition queue can be implemented in an
application-independent manner, and thus do not have to be
provided by the user. Also note that abstractions can be
made at different levels of details. For instance, more
information can be encoded in the abstract state of the
condition queue so that we can determine whether there are
zero, one, or more threads of a certain type in the queue.
Typically, the more information contained in the
abstractions, the more powerful and the more expensive
they are when it comes to fault detection.

4.2 Function getEnabledTransitions
Fig. 4 shows function getEnabledTransitions, which
returns the set of transitions that can be executed in the
current state of the state exploration. As mentioned earlier,
this function is also responsible for introducing new
threads. As a result, the set of transitions returned by this
function may include transitions that introduce new
threads.

Before we explain the details of this function, we introduce
our execution model. We consider each thread to execute a
sequence of operations, as specified by the text of the
monitor method(s) being invoked. An operation is visible if
its execution changes the internal state of a Java monitor,
i.e., the state of the CS, the entry queue, and/or the
condition queue. The following visible operations can be
performed by a thread:

• enter: A thread enters/re-enters the CS.

• wait: A thread executes a wait operation.

• awaken: A thread awakens one or more threads in
the condition queue.

• exit: A thread exits the CS.

We consider other operations to be invisible operations. In
our approach, each test thread executes one or more
synchronized methods. Thus, each thread must start with an
enter operation and end with an exit operation. We define a
transition as a visible operation followed by a finite number
of invisible operations (until the next visible operation).
The type of a transition is determined by the type of the
visible operation of the transition.

We point out that the transitions defined above capture
every change to the internal state of a monitor. It was
shown in [5] that a monitor-based execution can be
reproduced by replaying the order in which these
transitions are executed. We stress that these transitions are
of a finer granularity than method calls. The reason why we
cannot define a transition as a method invocation is that a
thread may be blocked in the middle of a synchronized
method and may later resume execution after being
notified. Therefore, method calls cannot be used to
precisely characterize the behavior of the threads that
access a Java monitor.

One of the novel aspects of our approach is that during
state exploration, we allow new threads to be introduced
on-the-fly, and as needed, to simulate race conditions that
can occur when multiple threads access a Java monitor at
the same time. For this purpose, we introduce an auxiliary
type of transition, called introduce. An introduce transition
takes a synchronized method as a parameter. Conceptually,
the execution of an introduce transition will create a new
thread that executes the given synchronized method and
then put it into the entry queue. In order to minimize the
number of threads that have to be created, an introduce
transition will reuse a thread if that thread was introduced
earlier to execute a method and the execution of that
method has finished. Note that an introduce transition is a
visible transition as it changes the internal state of a Java
monitor. Also note that unlike other visible transitions,
which are executed by a test thread, an introduce transition
is executed by our state exploration engine.

Now we are ready to explain function
getEnabledTransitions in Fig. 4. Lines 2 to 4 introduce
new threads if necessary. The following two rules
determine when new threads are introduced:

a. If the entry queue and the CS are both empty at the
current state, then for each synchronized method, we
introduce a new thread to execute the method.

This rule ensures that the state exploration will continue
when all the existing threads are finished or blocked.
Since the introduced threads compete to enter the CS,
the state exploration engine will explore the possibility
that for each synchronized method, a new thread that
executes the method wins the competition. Note that
this rule can always be applied to an initial state, where

no thread has been introduced yet. Also note that the CS
becomes empty when the thread inside the CS exits,
which can be due to the execution of a wait operation or
to reaching the end of a synchronized method. Also
note that the introduction of new threads will eventually
come to an end as the current state is not expanded if its
abstract state was already visited, and the abstract state
space is bounded.

b. If the entry queue at the current state is empty, and the
next operation to be executed by the thread inside the
CS is a notify/notifyAll operation, then for each
synchronized method, we introduce a new thread to
execute the method before the notify/notifyAll operation
is executed.

The motivation for the above rule is as follows. When a
notify operation is executed, an awakened thread T in
the condition queue will join the entry queue and will
compete with other threads to reenter the monitor. Also,
the introduction of a new thread T’ for each
synchronized method places thread T’ at the front of the
entry queue. Therefore, the above rule allows the state
exploration engine to explore the possibility that for
each synchronized method, a new thread such as T’
executing the method wins the competition over T, as T
will enter the entry queue after the new thread when we
execute the notify operation. Note that if a thread is
inside the CS and the next operation is a notify
operation, an awaken transition will be created for
every thread in the condition queue (lines 7 and 8).
These transitions explore the possibility that an
awakened thread wins the competition over a new
thread trying to enter the monitor (such as T’).

If both the entry queue and the CS are empty, next_thread
will be null and this function returns (line 6). Otherwise,
next_thread is the thread inside the CS or if no such thread
exits the thread at the front of the entry queue. If the next
operation to be performed by next_thread is a notify
operation, a set of awaken transitions are created, one for
each thread in the condition queue (line 7). Each of these
awaken transitions, when executed, will awaken the
associated thread. The reason for creating a set of awaken
transitions is because a notify/notifyAll operation
awakens an arbitrary thread in the condition queue. (Recall
that according to Java’s semantics, a notify operation does
not necessarily preserve First-Come-First-Serve order.) For
other types of operations, a single transition is created (line
8).

5. An Example Scenario
In this section, we use an example scenario to demonstrate
our state exploration-based approach. Refer again to Fig. 2,
which shows a Java monitor named BoundedBuffer that

correctly solves the bounded buffer problem. In Fig. 2, a
depositing thread D that enters the monitor first checks
whether the buffer is full or not (line 3). If the buffer is full,
thread D will execute wait (line 4) and will be blocked.
Observe that wait is executed inside a while loop. Thus,
when thread D is awakened at a later point, it will first re-
check the loop condition (fullSlots == capacity) before it
proceeds further. This re-checking of the loop condition is
necessary since a notified thread does not immediately re-
enter the monitor. Instead, it joins the entry queue and
competes with other threads that are also trying to (re)enter
the monitor. As a result, it is possible for another thread to
barge ahead of thread D, making the loop condition true
again before D is able to re-enter the monitor. Rechecking
the condition ensures that D will wait again if this happens.
A subtle fault is introduced in monitor BoundedBuffer if
the while-loop is replaced by an if-statement. This means
that a depositing thread, after being notified, will proceed
without re-checking whether the buffer is full or not.
Below, we present a scenario that will be exercised and that
will allow this fault to be detected when our state
exploration-based approach is applied to the faulty version.
We will depict the scenario using a sequence of transitions
between abstract states. For example, the first transition is
 [F, E, E, (N, N)] – introduce(D) [F, E, D, (N, N)]
In this transition, a pair of brackets represents an abstract
state, and the arrow represents a transition that is labeled by
the corresponding visible operation. The abstract states are
created using the abstraction described in Section 4.1. To
be specific, each abstract state consists of the abstract

 Set getEnabledTransitions () {
1. let transitions be an empty set
2. if (the entry queue is empty and either no thread
 is inside the CS or the next operation of the thread
 inside the CS is notify or notifyAll) {
3. create an introduce transition for each synch. method
4. add these transitions into transitions
 }
 else {
5. let next_thread be the thread inside CS if exists
 or the thread at the front of the entry queue
6. if (the next operation of next_thread is notify) {
7. create an awaken transition for every thread in
 the condition queue
 } else {
8. create a transition for the next operation of
 next_thread
 }
9. add these transitions into transitions
 }
10. return transitions;
 }

Figure 4. Function getEnabledTransitions

values of four components, namely, fullSlots, the CS, the
entry queue, and the condition queue, in the given order.
The abstract values of each of these components are listed
below:
• fullSlots: U(nderflow) if fullSlots < 0; E(mpty) if

fullSlots = 0; M(iddle) if 0 < fullSlots < capacity;
F(ull) if fullSlots = capacity; and O(verflow) if
fullSlots > capacity. Note that U and O are values that
signify invalid states.

• CS: E(mpty) if no thread is inside the CS; D(eposit) (or
W(ithdraw)) if a thread executing deposit (or
withdraw) is inside the CS.

• Entry queue: E(mpty) if the queue is empty, D(eposit)
(or W(ithdraw)) if the thread at the front of the queue is
executing deposit (or withdraw).

• Condition queue: A type vector (T, T’), where T (or T’)
is N(ull) if no thread in the queue executes deposit (or
withdraw) and is D(eposit) (or W(ithdraw)) if there
exists at least one thread in the queue that is executing
deposit (or withdraw).

The complete scenario is as follows.
[F, E, E, (N, N)] – introduce(D) [F, E, D, (N, N)] –
enter [F, D, E, (N, N)] – wait [F, E, E, (D, N)] –
introduce(W) [F, E, W, (D, N)] – enter [M, W, E, (D,
N)] – introduce(D) [M, W, D, (D, N)] – notifyAll [M,
W, D, (N, N)] – exit [M, E, D, (N, N)] – enter [F, D,
D, (N, N)] – exit [F, E, D, (N, N)] – enter [O, D, E,
(N, N)] (An invalid state is entered)
This scenario begins with an initial state, namely [F, E, E,
(N, N)], in which the buffer is full, and no thread is
executing in the monitor. Since both the CS and the entry
queue are empty, an introduce transition, i.e., introduce(D),
is executed, which introduces a depositing thread D1 into
the entry queue and leads to state [F, E, D, (N, N)]. Next,
thread D1 enters the CS by executing an enter transition,
which leads to state [F, D, E, (N, N)]. Since the buffer is
full, thread D1 executes a wait transition (line 4). As a
result, D1 is blocked on the condition queue, leading to
state [F, E, E, (D, N)]. Since both the CS and the entry
queue become empty again, another introduce transition,
i.e., introduce(W), is executed, which introduces a
withdrawing thread W1 into the entry queue and leads to
state [F, E, W, (D, N)]. Similar to thread D1, thread W1
enters the CS by executing an enter transition, which leads
to state [M, W, E, (D, N)]. Note that since the buffer is not
empty, thread W1 does not enter the while-loop at line 10
and proceeds instead to withdraw an item. Thus, fullSlots is
decremented by the execution of this enter transition.
Immediately before W1 executes notifyAll at line 15, an
introduce transition, i.e., introduce(D), is executed. This
introduces another deposit thread D2 into the entry queue

and leads to state [M, W, D, (D, N)]. Next, thread W1
executes an awaken transition, which awakens thread D1,
leading to state [M, W, D, (N, N)]. Note that thread D1 re-
joins the entry queue and is placed after the second deposit
thread D2. Then, W1 exits the monitor, leading to state [M,
E, D, (N, N)]. The next thread that enters the CS is thread
D2. Since the buffer is no longer full, thread D2 is able to
deposit an item into the buffer, leading to state [F, D, D,
(N, N)]. Next, D2 exits the monitor, leading to state [F, E,
D, (N, N)]. Thread D1 then enters the CS. Since line 3 is
now an if-statement, instead of a while-loop, thread D1
proceeds without re-checking whether the buffer is full or
not, leading to an invalid state [O, D, E, (N, N)]. This
invalid state will be detected when thread D1 exits,
allowing us to detect the fault.

6. Case Studies
We built a prototype tool called MonitorExplorer that
implements our state exploration-based approach. The tool
consists of four major components: (1) an exploration
engine that coordinates the entire state exploration process;
(2) A monitor driver that hides from the exploration engine
the specifics of how to communicate with the monitor
under test; (3) A monitor wrapper that provides necessary
runtime control for deterministic execution of the
transitions; and (4) A monitor toolbox that simulates the
Java monitor construct in a functionally equivalent manner.
The monitor toolbox was adapted from [5] and allows us to
access the internal state of a Java monitor, without having
to modify the Java compiler or the Java virtual machine.

Before applying the tool, the user must provide an
implementation of function getAbstractState(). In most
cases, the user only needs to implement abstractions of data
members in this function. The tool provides a built-in
abstraction for the internal components of a Java monitor.
In addition, the user can provide two optional functions,
namely, initialize() and evaluate(). These two functions
allow the user to provide their own initialization and
evaluation code, respectively. Finally, the user needs to
provide an input file that specifies the full path of the Java
monitor class to be tested, and the parameters for invoking
each synchronized method.

In the following, we present the results of applying
MonitorExplorer to two classical textbook monitors,
namely BoundedBuffer and ReaderWriterSafe, and a real-
life monitor called ArrayBlockingQueue in the
java.util.concurrency package in Java 1.5. All the results
are obtained on a Windows desktop with 1GHZ CPU and
512 MB memory.

6.1 Monitor BoundedBuffer
The source code for monitor BoundedBuffer was given in
Fig. 1. To conduct mutation-based testing, a set of mutants
of this monitor were first created. Each mutant introduces a

single change to the original version and is intended to
simulate a programming error. Then, we used our prototype
tool to test each of these mutants. A mutant is said to be
killed if our tool discovers a violation of any correctness
requirement.

Two batches of mutants were used in this case study. The
first batch contained 73 mutants that were created by a
Java-based mutation tool called µJava [12][1]. µJava
generates two types of mutants, one based on traditional
mutation operators, e.g., changing a Boolean operator from
“>=” to “>”, and the other based on class-level mutation
operators, e.g., changing an instance attribute to a static
attribute. Since we are concerned with the synchronization
behavior of a monitor, we only kept the first type of
mutants created by µJava. There were 8 mutants in the
second batch. These mutants were created based on several
mutation operators that are unique to a Java monitor.

• If a while loop contains a wait operation, replace
the while loop with an if statement.

• Replace a notifyAll operation with a notify
operation.

• Remove a wait, notify, or notifyAll operation.

Recall that in order to apply our tool, the user needs to
provide three functions, namely, getAbstractState(),
initialize(), and evaluate(). In this study, function
getAbstractState() implements the abstraction described in
section 5. Function initialize() initializes a BoundedBuffer
instance by depositing a given number of (random) integers
into the buffer. Function evaluate() evaluates each state by
checking the following conditions:

• The buffer never underflows or overflows.

• # of completed withdraws <= # of completed
deposits + # of initial items in the buffer.

• If both the entry queue and the CS are empty, and
if there exists at least one depositing thread in the
condition queue, # of initial items + # of
completed deposits - # of completed withdraws =
capacity.

• If both the entry queue and the CS are empty, and
if there exists at least one withdrawing thread in
the condition queue, # of initial items + # of
completed deposits - # of completed withdraws =
0.

Note that the last two conditions require both the entry
queue and the CS to be empty. This ensures that all the
existing threads that are not waiting in the condition queue
have exited the monitor.

For each mutant, we first ran the prototype tool with the
buffer initialized to be empty. If the mutant was killed by

this run, we stopped testing; otherwise, we ran the
prototype tool again with the buffer initialized to be full. A
mutant that was not killed by either test run was said to be
alive. Among the 81 mutants we created, 4 of them are
functionally equivalent to the original monitor. Our
prototype tool killed 57 mutants out of the remaining 77
mutants, making the ratio of killed mutants (over all the
non-equivalent mutants) as 74.03%. We manually
inspected each of the 20 mutants that were alive. All these
mutants involved a single change to one of the following
three attributes: in, out, capacity. The mutants involving
changes to in and out were not killed because the changes
did not affect the synchronization behavior. The mutants
involving changes to capacity were not killed because our
state abstraction scheme assumes that the capacity of a
buffer is fixed, and some of these mutants cannot be killed
by any program-based testing technique such as ours that
only exercises feasible sequences. (These mutants can only
be killed by showing that certain sequences cannot be
exercised.) On the average, each test run took 1.36 seconds
and explored 15.4 states and 24.7 transitions. Note that
when we applied our tool to the original version of
BoundedBuffer, it took 2.2 seconds and explored 33 states
and 47 transitions.

6.2 Monitor ReaderWriterSafe
Monitor ReaderWriterSafe [11] solves the readers/writers
problem, i.e., it allows multiple readers to read a shared
variable at the same time, but requires writers to obtain
mutually exclusive access to the variable. There are four
synchronized methods, namely acquireRead, releaseRead,
acquireWrite, and releaseWrite, defined in the monitor. A
reader (writer) thread calls acquireRead (acquireWrite)
before it starts reading (writing) and calls releaseRead
(releaseWrite) after it finishes reading (writing). There are
in total 34 lines of code in monitor ReaderWriterSafe. The
source code of this monitor can be accessed at http://www-
dse.doc.ic.ac.uk/concurrency/.

Similar to our previous study, we created two batches of
mutants for monitor ReaderWriterSafe. The first batch
contained 26 mutants and the second batch contained 7
mutants. In monitor ReaderWriterSafe, there are two data
members, namely readers and writing, that can affect the
synchronization behavior. Member readers is an integer
variable used to keep track of the number of active readers,
and member writing is a Boolean variable used to indicate
whether there is an active writer. Function
getAbstractState() implements the following abstraction.
The value of readers is abstracted to “-” if readers < 0,
“0” if readers = 0, “R” if readers = 1, and “R+” if
readers > 1. The value of writing does not have to be
abstracted, as it has only two values true and false. The
internal components of the monitor are abstracted in the
same way as described in section 5. There is no need for
special initialization for this monitor, and thus function

initialize() is left empty. Function evaluate() evaluates each
state by checking the following conditions:

• The abstract value of readers is never “-”.

• # of completed acquireWrite - # of completed
releaseWrite <= 1. (Intuitively, there can be at
most one active writer at a given time.)

• If # of completed acquireWrite - # of completed
releaseWrite = 1, # of completed acquireRead - #
of completed releaseRead = 0. (Intuitively, if there
is an active writer, there can be no active reader.)

• If # of completed acquireRead - # of completed
releaseRead > 0, # of completed acquireWrite - #
of completed releaseWrite = 0. (Intuitively, if
there is an active reader, there can be no active
writer.)

• If both the entry queue and the CS are empty, and
if there exists at least one waiting writer, # of
completed acquireRead - # of completed
releaseRead > 0.

• If both the entry queue and the CS are empty, and
if there exists at least one waiting reader in the
condition queue, # of completed acquireWrite - #
of completed releaseWrite = 1.

Again, in the last two conditions, the requirement that both
the entry queue and the CS are empty ensures that all the
existing threads that are not waiting in the condition queue
have exited the monitor. Note that monitor
ReaderWriterSafe has an implicit protocol that the four
synchronized methods must be used in pairs. This
constraint is enforced by the exploration engine by
ensuring that releaseRead (or releaseWrite) is only
executed by a thread that has already executed acquireRead
(or acquireWrite). We point out that if this constraint was
not enforced, false negatives could be produced by our
tool, as sequences that did not follow the implicit protocol
could also be explored.

Among the 33 mutants we created, 3 of them are
functionally equivalent to the original version. Our tool
killed all the other mutants, making the ratio of killed
mutants (over all the non-equivalent mutants) 96.67%. The
only mutant that was not killed involved a change that
caused method acquireRead to become read-only. Since no
state change was detected after executing this method, the
state exploration process terminated immediately. We note
that this type of mutants can be killed by unit testing of
individual methods, whereas our approach focuses on
faults related to interactions between multiple methods. On
average, each test run took about 1.99 seconds and
explored 30.1 states and 43.7 transitions. When we applied

our tool to the original version of ReaderWriterSafe, it took
3.65 seconds and explored 75 states and 106 transitions.

6.3 Monitor ArrayBlockingQueue
Monitor ArrayBlockingQueue can be considered as a real-
life version of monitor BoundedBuffer. There are 18
synchronized methods and 758 lines of code in the
monitor. The main purpose of our study of this monitor is
to obtain some initial evidence about the scalability of our
approach.
Before we report the results of this study, we make the
following comments. First, unlike the default Java monitor,
which only has an implicit condition queue, monitor
ArrayBlockingQueue has multiple condition queues, a
feature that is newly introduced in Java 1.5. Our prototype
tool was extended to support multiple condition queues.
Second, two methods in monitor ArrayBlockingQueue use
a timed wait operation, which allows threads to wait for a
specified amount of time. Our prototype tool currently does
not support timed wait. Thus, the two methods were left out
of our case study. Finally, among the 18 synchronized
methods, 10 of them are query-only operations, and do not
involve any wait/notify operations. These methods were not
tested in this study since they did not affect the
synchronization behavior of the other methods.
Table 1 reports the test results obtained for monitor
ArrayBlockingQueue. Observe that the explored number of
states and transitions actually decreases when the capacity
of the queue is increased from 2 to greater than 2. Also
observe that the number of explored states and transitions
remains the same when the capacity of the queue is greater
than 2. This can be explained as follows. Monitor
ArrayBlockingQueue has a variable named count which
keeps track of the number of items in the queue. Variable
count is abstracted in the same way as variable fullSlots in
section 5. Assume that the queue contains one item. Then,
when we deposit one more item into the queue, we will get
a new abstract state where the buffer becomes full if the
capacity is 2. However, if the capacity is greater than 2, we
will stay in the same abstract state where the buffer is
neither full nor empty. According to algorithm
MonitorTest, the current state will not be expanded if the
corresponding abstract state has been visited before. As a
result, when the capacity is greater than 2, the abstract state
in which the buffer is full would not be reached when we
start from an initial state where the buffer is empty. By the
same token, the number of explored states as well as
transitions will not change when the capacity is further
increased. Note that when the capacity is greater than 2, the
full state can be explored by initializing the buffer to be
full.

capacity # of states # of transes # of paths Time

1 182 336 155 45.83s

2 226 418 193 66.57s

>=3 80 140 61 10.96s

Table 1: Results for class ArrayBlockingQueue

7. Conclusion and Future Work
In this paper, we have described a state exploration-based
approach to testing Java monitors. This approach can be
used as a unit testing technique for concurrent programs.
During state exploration, threads are introduced on-the-fly
to simulate the race conditions that may occur when
multiple threads call the same monitor simultaneously. It is
our belief that many synchronization faults are caused by
race conditions that are not accounted for. We wish to
stress that our approach assumes that the methods in a Java
monitor are properly identified as synchronized methods.
Since mutual exclusion for individual synchronized
methods is automatically enforced by the Java runtime, our
approach focuses on detecting faults that are caused by
improper and/or insufficient synchronization between
different synchronization methods, i.e., synchronization
involving wait/notify/notifyAll operations.

We are continuing our work in the following directions.
First, we will try to remove the need for several
assumptions that are currently made in our approach. For
example, the synchronization behavior of a method is
assumed to be independent from its arguments, and each
method can be called independently. These assumptions
restrict the applicability of our approach. Second, we will
add necessary support for other synchronization-related
features in Java, including timed wait, synchronization
blocks, and multiple condition queues. Third, we will
conduct a more thorough evaluation of our approach. In
particular, we plan to compare the fault detection
effectiveness of our approach to that of the approach
reported in [10]. Fourth, we plan to add a graphical user
interface to visualize the state exploration process. Such
visualization will aid in understanding the behavior of a
Java monitor and, in particular, will be of great help during
the debugging process. Finally, we plan to extend our
approach to non-Java monitors. In particular, we have
implemented a monitor toolbox written in C++/Pthreads.
We believe that the general framework presented in this
paper can be adapted to test a monitor written in
C++/Pthreads.

Acknowledgement
We would like to thank Prof. Paul Strooper for sharing his
work on testing Java monitors and Prof. Jeff Offutt for
providing us with the µJava tool used in the case studies.
We would also like to thank Weijia Deng for conducting
one of the case studies.

8. REFERENCES
[1] T. Ball, R. Majumdar, T. Millstein, and S. K.

Rajamani, “Automatic predicate abstraction of C
programs,” In Proc. the ACM SIGPLAN 2001
Conference on Programming Language Design and
Implementation, pages 203–213, 2001.

[2] P. Brinch Hansen, “Reproducible testing of monitors,”
Software Practice and Experience, vol. 8, pp. 721-729,
1978.

[3] Richard H. Carver and Kuo-Chung Tai, “Replay and
Testing for Concurrent Programs,” IEEE Software,
March 1991, pp. 66-74.

[4] R.-K. Doong and P. G. Frankl. The ASTOOT
approach to testing object-oriented programs. ACM
Trans. Softw. Eng. Methodol., 3(2):101–130, 1994.

[5] Richard H. Carver and Kuo-Chung Tai, Modern
Multithreading, Wiley, 2005.

[6] J. Corbett, M. Dwyer, J. Hatcliff, C. P. Robby, S,
Laubach, and H. Zheng. “Bandera: Extracting Finite-
state Models from Java Source Code,” Proc. of the
22nd International Conference on Software
Engineering, June, 2000.

[7] P. Godefroid, “Model Checking for Programming
Languages using VeriSoft,” Proc. of the 24th ACM
Symposium on Principles of Programming Languages,
pp. 174-186, Paris, January 1997.

[8] K. Havelund and Tom Pressburger. “Model Checking
Java Programs Using Java PathFinder,” International
Journal on Software Tools for Technology Transfer
(STTT), 2(4): 366-381, April 2000.

[9] D. Kung, Y. Lu, N. Venugopalan, P. Hsia, Y.
Toyoshima, C. Chen, J. Gao, ``Object state testing and
fault analysis for reliable software systems,'' Proc. of
7th International Symposium on Software Reliability
Engineering, White Plains, New York, Oct. 30 - Nov.
2, 1996.

[10] B. Long, D. Hoffman, and P. Strooper, “Tool support
for testing concurrent Java components”, IEEE Trans.
On Software Engineering, 29(6):555-566, 2003.

[11] J. Magee and J. Kramer, “Concurrency: State Models
& Java Programs”, John Wiley & Sons, 1999.

[12] Yu-Seung Ma, Jeff Offutt and Yong-Rae Kwon,
“MuJava : An Automated Class Mutation System,”
Journal of Software Testing, Verification and
Reliability, 15(2):97-133, June 2005.

[13] µJava Home Page, http://ise.gmu.edu/~ofut/mujava/.

