
 J. Davies et al. (Eds.): ICFEM 2004, LNCS 3308, pp. 76–98, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A General Model for Reachability Testing
of Concurrent Programs

Richard H. Carver1 and Yu Lei2

1 Dept. of Computer Science, MS 4A5,
George Mason University, Fairfax

VA 22030-4444
rcarver@cs.gmu.edu

2 Dept. of Computer Science and Engineering,
The University of Texas at Arlington, Arlington, Texas, 76019

ylei@cse.uta.edu

Abstract. Reachability testing is a technique for testing concurrent programs.
Reachability testing derives test sequences on-the-fly as the testing process
progresses, and can be used to systematically exercise all the behaviors of a
program. The main contribution of this paper is a general model for reachability
testing. This model allows reachability testing to be applied to many different
types of concurrent programs, including asynchronous and synchronous
message passing programs, and shared-memory programs that use semaphores,
locks, and monitors. We define a common format for execution traces and
present timestamp assignment schemes for identifying races and computing
race variants, which are a crucial part of reachability testing. Finally, we discuss
a prototype reachability testing tool, called RichTest, and present some
empirical results.

1 Introduction

Concurrent programming is an important technique in modern software development.
Concurrency can improve computational efficiency and resource utilization.
However, concurrent programs behave differently than sequential programs. Multiple
executions of a concurrent program with the same input may exercise different
sequences of synchronization events (or SYN-sequences) and produce different
results. This non-deterministic behavior makes concurrent programs notoriously
difficult to test.

A simple approach to dealing with non-deterministic behavior when testing a
concurrent program CP is to execute CP with a fixed input many times and hope that
faults will be exposed by one of these executions [18]. This type of testing,
called non-deterministic testing, is easy to carry out, but it can be very inefficient. It is
possible that some behaviors of CP are exercised many times while others are never
exercised. An alternative approach is called deterministic testing, which forces a
specified SYN-sequence to be exercised. This approach allows CP to be tested with
carefully selected SYN-sequences. The test sequences are usually selected from a

A General Model for Reachability Testing of Concurrent Programs 77

static model of CP or of CP’s design. However, accurate static models are often
difficult to build for dynamic behaviors.

Reachability testing is an approach that combines non-deterministic and
deterministic testing [9] [12] [19]. It is based on a technique called prefix-based
testing, which controls a test run up to a certain point, and then lets the run continue
non-deterministically. The controlled portion of the execution is used to force the
execution of a “prefix SYN-sequence”, which is the beginning part of one or more
feasible SYN-sequences of the program. The non-deterministic portion of the
execution exercises one of these feasible sequences.

A novel aspect of reachability testing is that it adopts a dynamic framework in
which test sequences are derived automatically and on-the-fly, as the testing process
progresses. In this framework, synchronization events (or SYN-events) are recorded
in an execution trace during each test run. At the end of a test run, the trace is
analyzed to derive prefix SYN-sequences that are “race variants” of the trace. A race
variant represents the beginning part of a SYN-sequence that definitely could have
happened but didn’t, due to the way race conditions were arbitrarily resolved during
execution. The race variants are used to conduct more test runs, which are traced and
then analyzed to derive more race variants, and so on. If every execution of a program
with a given input terminates, and the total number of SYN-sequences is finite, then
reachability testing will terminate and every partially-ordered SYN-sequence of the
program with the input will be exercised.

Reachability testing requires program executions to be modeled so that races can
be identified and race variants can be generated. The execution model must also
contain sufficient information to support execution tracing and replay. Models for
tracing and replay have been developed for many synchronization constructs,
including semaphores, locks, monitors, and message passing [4] [20]. However, these
models do not support race analysis. Models for race analysis have been developed
for message passing, but not for other synchronization constructs. The contributions
of this paper are: (1) a general execution model for reachability testing that supports
race analysis and replay for all of the synchronization constructs mentioned above.
This model defines a common format for execution traces and provides a timestamp
assignment scheme that assists in identifying races and computing race variants. (2) A
race analysis method that can be used to identify races in executions captured by our
execution model. This method can be used by an existing algorithm for generating
race variants. (3) A Java reachability testing tool, called RichTest, that implements
reachability testing without any modifications to the Java JVM or to the operating
system.

The rest of this paper is organized as follows. The next section illustrates the
reachability testing process. Section 3 presents an execution model for several
commonly used synchronization constructs. Section 4 defines the notions of a race
and a race variant, and discusses how to identify races and compute race variants.
Section 5 describes the RichTest tool and reports some empirical results. Section 6
briefly surveys related work. Section 7 provides concluding remarks and describes
our plans for future work.

78 R.H. Carver and Y. Lei

s1 s3
s1 s1

T1 T2 T3 T4

Port p2, p3;

Thread 1 (T1)
s1: p2.send(a)

Thread 2 (T2)
s2: p3.send (b)
r1: x=p2.receive()
 if (x == d) {
r4: y=p2.receive()
 }

Thread 3 (T3)
r2: y = p3.receive()
r3: z = p3.receive()
 if (y == c) {
s4: p2.send(d)
 }

Thread 4 (T4)
s3: p3.send(c)

r1
s2

V1

r2
r1

s2
Q0

s3

r3
s1

T1 T2 T3 T4

r1

s2

Q1

s3
r2

r3
s4

T1 T2 T3 T4

r1

s2

V2

s1

s3
r2

r3

s4

T1 T2 T3 T4

r1
s2

Q2
r2

r3
s4

r4

s3
T1 T2 T3 T4

r2

2 The Reachability Testing Process

We use a simple example to illustrate the reachability testing process. Fig. 1 shows a
program CP that consists of four threads. The threads synchronize and communicate
by sending messages to, and receiving messages from, ports. Ports are communication
objects that can be accessed by many senders but only one receiver. Each send
operation specifies a port as its destination, and each receive operation specifies a port
as its source.

Fig. 1 also shows one possible scenario for applying reachability testing to the
example program. Each sequence and race variant generated during reachability
testing is represented by a space-time diagram in which a vertical line represents a
thread, and a single-headed arrow represents asynchronous message passing between
a send and receive event. The labels on the arrows match the labels on the send and
receive statements in program CP. The reachability testing process in Fig. 1 proceeds
as follows:

• First, sequence Q0 is recorded during a non-deterministic execution of CP.
Sequence V1 is a race variant of Q0 derived by changing the outcome of a race
condition in Q0. That is, in variant V1, thread T3 receives its first message from T4
instead of T2. The message sent by T2 is left un-received in V1.

• During the next execution of CP, variant V1 is used for prefix-based testing. This
means that variant V1 is replayed and afterwards the execution proceeds non-
deterministically. Sequence Q1 is recorded during this execution. Sequence Q1 is
guaranteed to be different from Q0 since V1 and Q0 differ on the outcome of a
race condition and V1 is a prefix of Q1. Variant V2 is a race variant of Q1 in
which T2 receives its first message from T3 instead of T1.

• When variant V2 is used for prefix-based testing, sequence Q2 is recorded.
Reachability testing stops since Q0, Q1 and Q2 are all the possible SYN-sequences
that can be exercised by this program.

Fig. 1. The reachability testing process

For a formal description of the above process, the reader is referred to a
reachability testing algorithm that we reported in [13]. The challenge for reachability

A General Model for Reachability Testing of Concurrent Programs 79

testing is to identify races and derive race variants. This is discussed in the remainder
of this paper.

3 Models of Program Executions

In this section, we present a general execution model for several commonly used
synchronization constructs. This model provides sufficient information for replaying
an execution and for identifying the race variants of an execution. Replay techniques
have already been developed for these constructs [4] [20]. An algorithm for
computing race variants is described in the next section.

3.1 Asynchronous Message Passing

Asynchronous message passing refers to non-blocking send operations and blocking
receive operations. A thread that executes a non-blocking send operation proceeds
without waiting for the message to arrive at its destination. A thread that executes a
blocking receive operation blocks until a message is received. We assume that
asynchronous ports (see Section 2) have unlimited capacity (which means that a send
operation is never blocked) and use a FIFO (First-In-First-Out) message ordering
scheme, which guarantees that messages passed between any two threads are received
in the order that they are sent.

 Port p;
 Thread 1 Thread 2
 p.send(msg) msg = p.receive();

An execution of a program that uses asynchronous ports exercises a sequence of
send and receive events. A send or receive event refers to the execution of a send or
receive statement, respectively. A send event s and the receive event r it synchronizes
with forms a synchronization pair <s, r>, where s is said to be the send partner of r,
and r is said to be the receive partner of s. We use an event descriptor to encode
certain information about each event. Each send event s is assigned an event
descriptor (T, O, i), where T is the sending thread, O is the port, and i is the event
index indicating that s is the i-th event in T. Each receive event r is assigned an event
descriptor (T, O, i), where T is the receiving thread, O is the port name, and i is the
event index indicating that r is the i-th event of T. A send event s is said to be open at
a receive event r if s.O = r.O.

Fig. 2 shows a space-time diagram representing an execution with three threads.
Thread T2 receives messages from ports p1 and p2. Thread T1 sends two messages to
port p1. Thread T3 sends its first message to port p1 and its second message to port p2.

We note that in many applications a thread only has one port for receiving
messages. In this special case, a thread identifier is usually specified as the destination
of a send event, and the source of a receive event can be left unspecified. Also, a link-
based communication scheme can be simulated by using ports that are restricted to
having only one sender. We also point out that in practical implementations, ports are
often implemented using bounded buffers that can only hold a fixed number of

80 R.H. Carver and Y. Lei

messages. In this case, a send operation can be blocked if the capacity of a buffer is
reached. Our model can be applied to buffer-blocking ports without any modification.

3.2 Synchronous Message Passing

Synchronous message passing is the term used when the send and receive operations
are both blocking. The receiving thread blocks until a message is received. The
sending thread blocks until it receives an acknowledgement that the message it sent
was received by the receiving thread.

A selective wait construct is commonly used in synchronous message passing to
allow a combination of waiting for, and selecting from, one or more receive()
alternatives [1]. The selection can depend on guard conditions associated with each
alternative of the selective wait:

 Port port1, port2;
 select
 when (guard condition 1) => port1.receive();
 or
 when (guard condition 2) => port2.receive();
 end select;

A receive alternative is said to be open if it does not start with when(guard
condition), or if the value of the guard condition is true. It is said to be closed
otherwise. A select statement works as follows:

• an open receive-alternative (i.e., one with a true guard) is selected only if that
alternative has a waiting message.

• if several receive-alternatives are open and have waiting messages, the alternative
whose message arrived first is selected.

• if one or more receive-alternatives are open but none have a waiting message,
select blocks until a message arrives for one of the open receive-alternatives.

• If none of the receive-alternatives are open, select throws an exception.

We make the restriction that there can be only one receive-alternative for a given
port.

A send event s and the receive event r it synchronizes with form a rendezvous pair
<s, r>, where s is the send partner of r and r is the receive partner of s. Each send
event s is assigned an event descriptor (T, O, i), where T is the sending thread, O is
the port, and i is the event index indicating that s is the i-th event of T. Each receive
event r is assigned an event descriptor (T, L, i), where T is the receiving thread, L is
the open-list of r, and i is the index indicating that r is the i-th event of T. The open-
list of a receive event r is a list containing the ports that had open receive-alternatives
at r. Note that this list includes the source port of r. For a simple receive statement
that is not in a selective wait, the list of open alternatives consists of the source port of
the receive statement only. Event s is said to be open at r if the port s.O of s is in the
open-list r.L of r.

Fig. 3 shows a space-time diagram representing an execution with three threads.
Thread T1 sends two messages to port p1, and thread T3 sends two messages to port

A General Model for Reachability Testing of Concurrent Programs 81

p2. Thread T2 executes a selective wait with receive-alternatives for p1 and p2.
Assume that whenever p2 is selected, the alternative for p1 is open, and whenever p1
is selected, the alternative for p2 is closed. This is reflected in the open-lists for the
receive events. Note that each solid arrow is followed by a dashed arrow in the
opposite direction. The dashed arrows represent the updating of timestamps when the
synchronous communication completes, and will be discussed in Section 4.

3.3 Semaphores

A semaphore is a synchronization object that is initialized with an integer value and
then accessed through two operations named P and V. Semaphores are provided in
many commercial operating systems and thread libraries. There are two types of
semaphores – counting semaphores and binary semaphores.

A V() operation on a counting semaphore s increments the value of s. A P()
operation decrements the value of s, but if s is less than or equal to zero when the P()
operation starts, the P() operation waits until s is positive. For a counting semaphore
s, at any time, the following relation, called the semaphore invariant, holds:

(initial value of s) + (number of completed s.V() operations) ≥ (number of
completed s.P() operations)

A thread that starts a P() operation may be blocked inside P(), so the operation may
not be completed right away. The invariant refers to the number of completed
operations, which may be less than the number of started operations. For a counting
semaphore, V() operations never block their caller and are always completed
immediately.

A binary semaphore must be initialized with the value 1 or the value 0 and the
completion of P() and V() operations must alternate. (P() and V() operations can be
started in any order, but their completions must alternate.) If the initial value of the
semaphore is 1 the first completed operation must be P(). If a V() operation is
attempted first, the V() operation will block its caller. Likewise, if the initial value of
the semaphore is 0, the first completed operation must be V(). Thus, the P() and
V() operations of a binary semaphore may block the calling threads. (Note that V()
operations are sometimes defined to be non-blocking – executing a non-blocking
V() operation on a binary semaphore has no effect if the value of the semaphore is 1.
In this paper, we are using a blocking V() operation. Our model can be easily adjusted
if a non-blocking V() operation is used.) We assume that the queues of blocked
threads are FIFO queues.

 s4 (T1, p1, 2)

s2 (T1, p1, 1)

s1 (T3, p1, 1)

r2 (T2, p1, 2)

s3 (T3, p2, 2)

r1 (T2, p1, 1)

r4 (T2, p1, 4)

r3 (T2, p2, 3)

T1 T2 T3

 s4 (T1,p1,2)

T1

s1 (T3,p2,1)

r2 (T2,{p1},2)

s3 (T3,p2,2)

r4 (T2,{p1},4)

 s2 (T1,p1,1)

 r3 (T2,{p1,p2},3)

 r1 (T2,{p1,p2},1)

T2 T3

Fig. 2. A sequence of asynchronous send/
receive events

Fig. 3. A sequence of synchronous send/
receive events

82 R.H. Carver and Y. Lei

We model the invocation of a P() or V() operation as a pair of call and completion
events. When a thread T calls a P() or V() operation on a semaphore S, a “semaphore-
call” event, or simply a “call” event, c is performed by T. When a P() or V() operation
of a semaphore S is completed, a “semaphore-completion” event, or simply a
“completion” event, e occurs on S. If the operation of a call event c is completed by a
completion event e, we say that c and e form a completion pair <c, e>, where c is the
call partner of e and e is the completion partner of c. This model is intentionally
similar to the model for message passing where a synchronization pair was defined as
a pair of send and receive events.

Each call event c is assigned a descriptor (T, S, op, i), where T is the calling
thread, S is the destination semaphore, op is the called operation (P() or V()), and i is
the event index indicating that c is the i-th (call) event performed by T. A completion
event e is assigned a descriptor (S, L, i), where S is the semaphore on which e occurs,
L is the list of operations (P() and/or V()) that can be completed at e, and i is the event
index indicating that e is the i-th (completion) event that occurs on S. L is also called
the open-list of e. A call event c is open at a completion event e if c.S = e.S, and the
operation c.op of c is in the open-list e.L of e.

Fig. 4 shows a space-time diagram representing an execution with two threads T1
and T2, and a binary semaphore S initialized to 1. Each of T1 and T2 performs a P()
and V() operation on S. In this diagram, semaphore S is also represented as a vertical
line, which contains the entry events that occurred on S. A solid arrow represents the
completion of a P() or V() operation. The open-lists for the completion events model
the fact that P and V operations on a binary semaphore must alternate. Note that each
solid arrow is followed by a dashed arrow in the opposite direction. The dashed
arrows represent the updating of timestamps when operations complete, and will be
discussed in Section 4.

3.4 Locks

A mutex (for “mutual exclusion”) lock is a synchronization object that is used to
create critical sections. The operations on a mutex lock are named lock() and unlock().
Unlike semaphores, a mutex lock has an owner, and ownership plays an important
role in the behavior of a mutex lock:

• A thread requests ownership of mutex lock K by calling K.lock().
• A thread that calls K.lock() becomes the owner if no other thread owns the lock;

otherwise, the thread is blocked.
• A thread releases its ownership of K by calling K.unlock(). If the thread does not

own K, the call to K.unlock() generates an error.
• A thread that already owns lock K and calls K.lock() again is not blocked. In fact, it

is common for a thread to request and receive ownership of a lock that it already
owns. But the thread must call K.unlock() the same number of times that it called
K.lock(), before another thread can become K’s owner.

Our model for lock() and unlock() operations on mutex locks is similar to our
model for P() and V() operations on semaphores. When a thread T calls a lock() or
unlock() operation on mutex lock K, a “mutex-call” event, or simply a “call” event, c

A General Model for Reachability Testing of Concurrent Programs 83

occurs on T. When T eventually finishes a lock() or unlock() operation, a “mutex-
completion” event, or simply a “completion” event, e occurs on K. If the operation of a
call event c is completed by a completion event e, we say that c and e form a completion
pair <c,e>, where c is the call partner of e and e is the completion partner of c.

Each call event c is assigned a descriptor (T, K, op, i), where T is the calling
thread, K is the destination lock, op is the called operation (lock() or unlock()), and i is
the event index indicating that c is the i-th (call) event performed by T. A completion
event e is assigned a descriptor (K, L, i), where K is the lock on which e occurs, L is
the list of operations (lock() and/or unlock()) that can be completed at e, and i is the
event index indicating that e is the i-th (completion) event that occurs on K. L is also
called the open-list of e. If the lock is owned by some thread T when e occurs, then
each operation in L is prefixed with T to indicate that only T can perform the
operation. This is because if a thread T owns lock L, then only T can complete a lock()
or unlock() operation on L. For example, if the open-list L of an entry event e on a
lock K contains two operations lock() and unlock(), and if K is owned by a thread T
when e occurs, then L = {T:lock(), T:unlock()}. A call event c executed by thread T is
open at a completion event e if c.K = e.K, and the operation c.op of c is in the open-
list e.L of e, and if K is owned when e occurs then T is the owner.

Fig. 5 shows a space-time diagram representing an execution with two threads and
a mutex lock K initialized to 1. Thread T1 performs two lock() operations followed by
two unlock() operations on K, and thread T2 performs one lock() operation followed
by one unlock() operation on K.

 Fig. 4. A sequence of P and V events Fig. 5. A sequence of lock and unlock events

3.5 Monitors

A monitor is a high-level synchronization construct that supports data encapsulation
and information hiding and is easily adapted to an object oriented environment. We
use an object oriented definition of a monitor in which a monitor is a synchronization
object that is an instance of a special “monitor class”. The data members of a monitor
represent shared data. Threads communicate by calling monitor methods that access
the shared data.

At most one thread is allowed to execute inside a monitor at any time. Mutual
exclusion is enforced by the monitor’s implementation, which ensures that each
monitor method is a critical section. If a thread calls a monitor method, but another

l3 (T1,K,lock,1)

u3 (T1,K,unlock,2)

l1 (T2,K,lock,1)

l2 (T2,K,lock,2)

u1 (T2,K,unlock,3)

u2 (T2,K,unlock,4)

 e6 (K,[T1:lock,T1:unlock],6)

 e1 (K,[lock],1)

e5 (K,[lock],5)

 e2 K,[T2:lock,T2:unlock],2)

 e3 (K,[T2:lock,T2:unlock],3)

 e4 K,[T2:lock,T2:unlock],4)

T1 K T2

 p2 (T1,S,P,1)

e4 (S,{V},4)

e3 (S,{P},3)

 e2 (S,{V},2)

 e1 (S,{P},1)
p1 (T2,S,P,1)

v1 (T2,S,V,2)

S T2 T1

 v2 (T1,S,V,2)

84 R.H. Carver and Y. Lei

thread is already executing inside the monitor, the calling thread must wait outside the
monitor. A monitor has an entry queue to hold the calling threads that are waiting to
enter the monitor.

Condition synchronization is achieved using condition variables and operations
wait() and signal(). A condition variable denotes a queue of threads that are waiting to
be signaled that a specific condition is true. (The condition is not explicitly specified
as part of the condition variable.) There are several different types of signaling
disciplines. When the Signal-and-Continue (SC) discipline is used, the signaling
thread continues to execute in the monitor, and the signaled thread does not reenter
the monitor immediately. We assume that the signaled thread joins the entry queue
and thus competes with calling threads to enter the monitor. When the Signal-and-
Urgent-Wait (SU) discipline is used, the signaling thread is blocked in a queue called
the reentry queue and the signaled thread reenters the monitor immediately. The
difference between the entry and reentry queues is that the former holds calling
threads that are waiting to enter the monitor for the first time while the latter holds
threads that have entered the monitor, executed a signal operation, and are waiting to
reenter the monitor. The SU discipline assigns a higher priority to the reentry queue,
in the sense that a thread in the entry queue can enter the monitor only if the reentry
queue is empty.

We assume that a monitor’s entry queue and the queues associated with condition
variables are FIFO queues. Thus, the only non-determinism that is present in a
monitor is the order in which threads (re)enter the monitor. Such monitors enjoy a
beneficial property called entry-based execution, i.e., the execution behavior of
threads inside a monitor is completely determined by the order in which the threads
(re)enter the monitor and the values of the parameters on the calls to the monitor
methods [4]. Therefore, an entry-based execution can be replayed by replaying the
sequence of (re)entry events, called the Entry-sequence, exercised by this execution.
Note that an entry event is an event that occurs when a thread enters an SU or SC
monitor for the first time or when a thread reenters an SC monitor after being
signaled. Reentries into an SU monitor are not modeled because they do not involve
any races. A replay technique for monitor-based programs with entry-based
executions was described in [4]. In the remainder of this paper, we assume that
monitor-based programs have entry-based executions and the order of the entries is
the sole source of non-determinism in the programs.

Characterizing a monitor-based execution as an Entry-sequence is sufficient for
replaying executions, but not for identifying races. When two or more threads call a
monitor at the same time, they race to see which one will enter first. Thus, we model
the invocation of a monitor method as a pair of monitor-call and monitor-entry events:

• SU Monitors: When a thread T calls a method of monitor M, a monitor-call event,
or simply a call event, c occurs on T. When T eventually enters M, a monitor-entry
event, or simply an entry event, e occurs on M, and then T starts to execute inside
M.

• SC Monitors: When a thread T calls a method of monitor M, a monitor-call event,
or simply a call event, c occurs on T. A call event also occurs when T tries to
reenter a monitor M after being signaled. When T eventually (re)enters M, a

A General Model for Reachability Testing of Concurrent Programs 85

monitor-entry event, or simply an entry event, e occurs on M, and T starts to
execute inside M.

In these scenarios, we say that T is the calling thread of c and e, and M is the
destination monitor of c as well as the owning monitor of e. We also say that c and e
form an entry pair <c, e>, where c is the call partner of e and e is the entry partner of c.

Each call event c is assigned an event descriptor (T, M, i), where T is the calling
thread, M is the destination monitor, and i is the event index indicating that c is the
i-th (call) event of T. Each entry event e is assigned an event descriptor (M, i), where
M is the owning monitor, and i is the event index indicating that e is the i-th event of
M. A call event c is open at an entry event e if the destination monitor of c is the
owning monitor of e, i.e., c.M = e.M.

Fig. 6 shows a space-time diagram, which represents an execution involving three
threads T1, T2, and T3, and two SC monitors M1 and M2. Thread T1 enters M1 first
and executes a wait() operation. The second call event performed by T1 occurs when
T1 reenters M1 after being signaled by T2. Note that if M1 were an SU monitor, there
would be no c3 event representing reentry. After T1 exits from M1, T1 enters and
exits M2. This is followed by thread T3 entering and exiting M2 and then entering and
exiting M1.

Fig. 6. A sequence of monitor call and entry events

3.6 A General Model

In the models presented above, a program execution is characterized as a sequence of
event pairs. For asynchronous and synchronous message-passing programs, an
execution is characterized as a sequence of send and receive events. For semaphore-,
lock-, and monitor-based programs, an execution is characterized as a sequence of
call and completion events. In the remainder of this paper, we will refer to a send/call
event as a sending event, and a receive/completion event as a receiving event. We
also refer to a pair of sending and receiving events as a synchronization pair.

The event descriptors for the sending and receiving events defined above all fit
into a single general format:

• A descriptor for a sending event s is denoted by (T, O, op, i), where T is the thread
executing the sending event, O is the destination object, op is the operation
performed, and i is the event index indicating that s is the i-th event of T. Note that

T1 M1 T2 M2 T3

e1 (M1,1)

e4 (M2,1)

e6 (M1,4) c6 (T3,M1,2)

c5 (T3,M2,1) e5 (M2,2)

e2 (M1,2)

e3 (M1,3)

c2 (T2,M1,1)
 C1 (T1,M1,1)

 C3 (T1,M1,21)

 C4 (T1,M1,3)

86 R.H. Carver and Y. Lei

for message passing, op is always a send operation, and for monitors, op is the
called method.

• A descriptor for a receiving event r is denoted by (D, L, i), where D is the
destination thread or object, L is the open-list, and i is the event index indicating
that r is the i-th event of D. Note that for asynchronous message-passing, L
contains the source port of r only, and is thus represented as a single port. For a
monitor, L contains all of the methods defined on the monitor since entry into
a monitor is never guarded. (A thread may be blocked after it enters a monitor, but
a thread that calls a monitor method is guaranteed to eventually enter the method.)

In programs that use shared variables, we assume that accesses to shared variables
are always protected by semaphores, locks, or monitors. To enforce this, reachability
testing can be used in conjunction with the techniques used in data race detection
tools for multithreaded programs [16].

4 Race Analysis of SYN-Sequences

In this section, we show how to perform race analysis on SYN-sequences. Section 4.1
presents two schemes for assigning logical timestamps to determine the happened-
before relation between events. Section 4.2 defines the notion of a race and shows
how to identify races based on the happened-before relation. Section 4.3 defines the
notion of a race variant and uses an example to illustrate how to compute race
variants.

4.1 Timestamp Assignment

As we will see in Section 4.2, the definition of a race between events in a SYN-
sequence is based on the happened-before relation, which is a partial order defined in
the traditional sense [11]. Simply put, an event a happens before another event b in a
SYN-sequence Q if a could potentially affect b. We denote this as a →Q b, or simply
a → b if Q is implied. In a space-time diagram, if we take into account the direction
of the (solid and dashed) arrows, a happens before b if there exists a path from a to b.

Vector timestamps are frequently used to capture the happened-before relation
between events. In this section, we present thread-centric and object-centric
timestamp assignment schemes. A thread-centric timestamp has a dimension equal to
the number of threads involved in an execution. An object-centric timestamp has a
dimension equal to the number of synchronization objects involved. Therefore, a
thread-centric scheme is preferred when the number of threads is smaller than the
number of synchronization objects, and an object-centric scheme is preferred
otherwise. In the remainder of this section, we will use v[i] to denote the i-th
component of a vector v, and max(v1, v2) to denote the component-wise maximum of
vectors v1 and v2.

4.1.1 A Thread-Centric Scheme
A vector timestamp scheme for asynchronous message passing programs has already
been developed [6][14]. This scheme is thread-centric by our definition and can be

A General Model for Reachability Testing of Concurrent Programs 87

T1 T2 T3
s1 [0, 1, 1]
s3 [1, 3, 2]

r1 [0, 1, 1]

r2 [1, 2, 1]

r3 [1, 3, 2]

r4 [2, 4, 2]

s2 [1, 2, 1]

s4 [2, 4, 2]

T1

s2 [1, 0, 0]

T2 T3

s4 [2, 0, 0]

s1 [0, 0, 1]

s3 [0, 0, 2]

r1 [0, 1, 1]

r2 [1, 2, 1]
r3 [1, 3, 2]

r4 [2, 4, 2]

(a) (b)

used for race analysis. In this scheme, each thread maintains a vector clock. A vector
clock is a vector of integers used to keep track of the integer clock of each thread. The
integer clock of a thread is initially zero, and is incremented each time the thread
executes a send or receive event. Each send and receive event is also assigned a copy
of the vector clock as its timestamp.

Let T.v be the vector clock maintained by a thread T. Let f.ts be the vector
timestamp of an event f. The vector clock of a thread is initially a vector of zeros. The
following rules are used to update vector clocks and assign timestamps to the send
and receive events in asynchronous message passing programs:

1. When a thread Ti executes a non-blocking send event s, it performs the following
operations: (a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = Ti.v. Thread Ti also sends s.ts along
with the message sent by s.

2. When a thread Tj executes a receive event r, it performs the following operations:
(a) Tj.v[j] = Tj.v[j] + 1; (b) Tj.v = max(Tj.v, s.ts); (c) r.ts = Tj.v, where s is the
synchronization partner of r.

Fig. 7(a) shows the timestamps for the asynchronous message passing program in
Fig. 2.

Fig. 7. Traditional timestamp schemes for asynchronous and synchronous message passing

A timestamp scheme for synchronous message passing has also been developed
[6], but this scheme must be extended for race analysis. The traditional timestamp
scheme for synchronous message passing is to assign the same timestamp to send and
receive events that are synchronization partners:

1. When a thread Ti executes a blocking send event s, it performs the operation Ti.v[i]
= Ti.v[i] + 1. Thread Ti also sends Ti.v along with the message sent by s.

2. When a thread Tj executes a receiving event r that receives the message sent by s, it
performs the following operations: (a) Tj.v[j] = Tj.v[j] + 1; (b) Tj.v = max(Tj.v,
Ti.v); (c) r.ts = Tj.v. Thread Tj also sends Tj.v back to thread Ti.

3. Thread Ti receives Tj.v and performs the following operations (a) Ti.v = max(Ti.v,
Tj.v); (b) s.ts = Ti.v.

The exchange of vector clock values between threads Ti and Tj represents the
synchronization that occurs between them, which causes their send and receive events
to be completed at the same time. Fig. 7b shows the timestamps for the synchronous
message passing program in Fig. 3.

88 R.H. Carver and Y. Lei

In our execution model for synchronous message passing, we model the start of a
send event, not its completion. For send and receive events that are synchronization
partners, the start of the send is considered to happen before the receive event with
which the send eventually synchronizes. This means that the timestamps for send and
receive partners should not be the same. Thus, we use the timestamp of the receive
event to update the vector clock of the sending thread, but not the timestamp of the
send event, when the synchronization completes:

1. When a thread Ti executes a blocking send event s, it performs the following
operations: (a) Ti.v[i] = Ti.v[i] + 1. (b) s.ts = Ti.v. Thread Ti also sends Ti.v along
with the message sent by s.

2. When a thread Tj executes a receiving event r that receives the message sent by s, it
performs the following operations: (a) Tj.v[j] = Tj.v[j] + 1; (b) Tj.v = max(Tj.v,
Ti.v); (b) r.ts = Tj.v. Thread Tj also sends Tj.v back to thread Ti.

3. Thread Ti receives Tj.v and performs the operation (a) Ti.v = max(Ti.v, Tj.v).

Fig. 8 shows the timestamps that are assigned so that race analysis can be
performed on the synchronous message passing program in Fig. 3. Note that the
dashed arrows represent the execution of rule 3.

Fig. 8. Timestamp scheme for race analysis of synchronous message passing programs

Below we describe a new thread-centric timestamp scheme for semaphores, locks,
and monitors. We refer to semaphores, locks, and monitors generally as
“synchronization objects”. In this scheme, each thread and synchronization object
maintains a vector clock. (As before, position i in a vector clock refers to the integer
clock of thread Ti; synchronization objects do not have integer clocks and thus there
are no positions in a vector clock for the synchronization objects.) Let T.v (or O.v) be
the vector clock maintained by a thread T (or a synchronization object O). The vector
clock of a thread or synchronization object is initially a vector of zeros. The following
rules are used to update vector clocks and assign timestamps to events:

1. When a thread Ti executes a sending event s, it performs the following operations:
(a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = Ti.v;

2. When a receiving event r occurs on a synchronization object O, the following
operations are performed: (a) O.v = max(O.v, s.ts); (b) r.ts = O.v, where s is the
sending partner of r;

r3 [1,3,2]

r2 [1,2,1]

s1 [0,0,1]

s3 [0,1,2]

r1 [0,1,1]

r4 [2,4,2]

r3 [1,0,0]

r3 [2,2,1]

T1 T2 T3

A General Model for Reachability Testing of Concurrent Programs 89

3. Semaphore/Lock: When a thread Ti finishes executing an operation on a semaphore
or lock O, it updates its vector clock using the component-wise maximum of Ti.v
and O.v, i.e., Ti.v = max(Ti.v, O.v).

SU Monitor: When a thread Ti finishes executing a method on a monitor O, it
updates its vector clock using the component-wise maximum of T.v and O.v, i.e.,
T.v = max(T.v, O.v).
SC Monitor: When a thread Ti finishes executing a method on a monitor O, or
when a thread Ti is signaled from a condition queue of O, it updates its vector
clock using the component-wise maximum of Ti.v and O.v, i.e., Ti.v = max(Ti.v,
O.v).

Figs. 9a and 9b shows the thread-centric timestamps assigned for the executions in
Figs. 4 and 6, respectively. Again, dashed arrows are also shown to indicate
applications of the third rule.

Thread-centric timestamps can be used to determine the happened-before relation
between two arbitrary events, as shown below.

Proposition 1. Let X be an execution involving threads T1, T2, …, Tn and semaphores,
locks, or monitors. Let Q be the SYN-sequence exercised by X. Assume that every
event in Q is assigned a thread-centric timestamp. Let f.tid be the (integer) thread ID
of thread f.T for an event f. Let f1 and f2 be two events in Q. Then, f1 → f2 if and only
if

(1) <f1, f2> is a synchronization pair; or
(2) f1.ts[f1.tid] ≤ f2.ts[f1.tid] and f1.ts[f2.tid] < f2.ts[f2.tid].

Fig. 9. Timestamp scheme for race analysis of semaphore-based and monitor-based programs

4.1.2 Object-Centric Scheme
In this scheme, each thread and synchronization object (port, semaphore, lock, or
monitor) maintains a version vector. A version vector is a vector of integers used to
keep track of the version number of each synchronization object. The version number
of a synchronization object is initially zero, and is incremented each time a thread
performs a sending or receiving event. Each sending and receiving event is also
assigned a version vector as its timestamp.

Let T.v (or O.v) be the version vector maintained by a thread T (or a
synchronization object O). Initially, the version vector of each thread or

c1 [1, 0, 0]

c3 [2, 1, 0]

c2 [0, 1, 0]
e1 [1, 0, 0]

e2 [1, 1, 0]

e3 [2, 1, 0]

c4 [3, 1, 0] e4 [3, 1, 0]
e5 [3, 1, 1]

e6 [3, 1, 2] c6 [3, 1, 2]
c5 [0, 0, 1]

p1 [0, 1]

p2 [1, 0]
v1 [0, 2]

v2 [2, 2]

e1 [0, 1]

 e2 [0, 2]

e3 [1, 2]
e4 [2, 2]

T1 S T2 T1 T2 T3 M1 M2

(a) (b)

90 R.H. Carver and Y. Lei

synchronization object is a vector of zeros. The following rules are used to update
version vectors and assign timestamps to events:

1. When a thread T executes a sending event s, T assigns its version vector as the
timestamp of s, i.e., s.ts = T.v;.

2. When a receiving event r occurs on a synchronization object Oi, letting s be the
sending partner of r, the following operations are performed: (a) Oi.v = max(Oi.v,
s.ts); (b) r.ts = Oi.v.

3. Semaphore/Lock: When a thread T finishes a called operation on a semaphore or
lock O, T updates its version vector using the component-wise maximum of T.v
and O.v, i.e., T.v = max(T.v, O.v).
SU Monitor: When a thread T finishes executing a method on a monitor O, T
updates its version vector using the component-wise maximum of T.v and O.v, i.e.,
T.v = max(T.v, O.v).
SC Monitor: When a thread T finishes executing a method on a monitor O, or when
a thread T is signaled from a condition queue of O, T updates its version vector
using the component-wise maximum of T.v and O.v, i.e., T.v = max(T.v, O.v).

Timestamps assigned using the above rules are called object-centric timestamps.
Note that this scheme is preferred only if the number of synchronization objects is
smaller than the number of threads. Considering that in a message-passing program,
each thread usually has at least one port, we do not expect that this scheme will be
frequently used for message passing programs. Fig. 10 shows object-centric
timestamps assigned for the executions in Fig 9.

Fig. 10. Object-centric timestamps

Object-centric timestamps cannot be used to determine the happened-before
relation between two arbitrary events. However, they can be used to determine the
happened-before relation between two events if at least one of the events is a
receiving event, which is sufficient for our purposes.

Proposition 2. Let X be an execution involving synchronization objects O1, O2, …,
Om. Let Q be the SYN-sequence exercised by X. Assume that every event in Q is
assigned an object-centric timestamp. Let r be a receiving event on Oi, and f a
receiving event on Oj, where 1≤ i, j≤ m. Then, e → f if and only if e.ts[i]≤ f.ts[i] and
e.ts[j]<f.ts[j].

T1 M1 T2 M2 T3

c1 [0, 0]

c3 [2, 0]

c2 [0, 0]

e1 [1, 0]

e2 [2, 0]

e3 [3, 0]

c4 [3, 0] e4 [3, 1, 0]

e5 [3, 2]

e6 [4, 2] c6 [3, 2]

c5 [0, 0]

p1 [0]

v1 [1]

e1 [1]

e2 [2]

e3 [3]

e4 [4]

 T1 S T2

 (a) (b)

p2 [0]

v2 [3]

A General Model for Reachability Testing of Concurrent Programs 91

Proposition 3. Let X be an execution involving synchronization objects O1, O2, …,
Om. Let Q be the SYN-sequence exercised by X. Assume that every event in Q is
assigned an object-centric timestamp. Let r be a receiving event on Oi, and s a
sending event on Oj, where 1≤ i, j≤ m. Then, r → s if and only if r.ts[i]≤ s.ts[i].

In Fig. 10b, entry e3 happens before entry e4 since e3.ts[1] = e4.ts[1] and e3.ts[2] <
e4.ts[2]. Entry e3 happens before call c6 since e3.ts[1] = e6.ts[1].

4.2 Race Detection

As we described in Section 3.6, we can characterize a program execution as a
sequence of sending and receiving events. Intuitively, there exists a race between two
sending events if they can synchronize with the same receiving event in different
executions. In order to accurately determine all the races in an execution, the
program’s semantics must be analyzed. Fortunately, for the purpose of reachability
testing, we only need to consider a special type of race, called a lead race. Lead races
can be identified solely based on the SYN-sequence of an execution, i.e., without
analyzing the program’s semantics.

Definition 1. Let Q be a SYN-sequence exercised by an execution of a concurrent
program CP. Let s be a sending event and r a receiving event in Q such that <s, r> is
a synchronization pair. Let s’ be another sending event in Q. There exists a lead race
between s’ and <s, r> in Q if s’ and r can form a synchronization pair during some
other execution of CP provided that all the events that happen before s’ or r in Q are
replayed in that execution.

Note that Definition 1 requires all events that can potentially affect s’ or r in Q to
be replayed and thus ensures the existence of c’ or e, regardless of the program’s
implementation. As a result lead races can be identified solely based on information
encoded in Q. In the remainder of this paper, a race is assumed to be a lead race
unless otherwise specified.

Next, we define the notion of a race set of a receiving event. Let Q be a SYN-
sequence. Let r be a receiving event and s a sending event in Q such that <s, r> is a
synchronization pair. The race set of r in Q, denoted as race(r, Q) or race(r) if Q is
implied, is the set of sending events in Q that have a race with <s, r>. Formally,
race(r, Q) = {s’ ∈ Q | there exists a lead race between s’ and <s, r>}.

The following proposition describes how to compute the race set of a receiving
event.

Proposition 4. Let Q be a SYN-sequence exercised by a program execution. A sending
event s is in the race set of a receiving event r if (1) s is open at r; (2) r does not
happen before s; (3) if <s, r’> is a synchronization pair, then r happens before r’; and
(4) s and r are consistent with FIFO semantics (i.e., all the messages that were sent to
the same destination as s, but were sent before s, have already been received before r).

Race Set Examples:

• Asynchronous Message Passing. The race set of each receive event in Fig. 2 is as
follows: race(r1) = {s2}, race(r2) = race(r3) = race(r4) = {}. Note that s3 is not in

92 R.H. Carver and Y. Lei

the race set of r1 because s3 is sent to a different port and thus s3 is not open at r1.
For the same reason, s4 is not in the race set of r3. Also note that s4 is not in the
race set of r1, because FIFO semantics ensures that s1 is received before s4.

• Synchronous message passing. The race set of each receive event in Fig. 3 is as
follows: race(r1) = {s2}, race(r2) = { }, race(r3) = {s4}, and race(r4) = { }. Since
the alternative for p2 is open whenever T2 selects the receive-alternative for p1, the
race set for r1 contains s2 and the race set for r3 contains s4. On the other hand,
since the alternative for p1 was closed when T2 selected the receive-alternative for
p2 at r2, the race set for r2 does not contain s3.

• Semaphores. The race set of each completion event in Fig. 4 is as follows: race(e1)
= {p2}, race(e2) = race(e3) = race(e4) = { }. Note that since P() was not in the
open-list of e2, the race set for e2 does not contain p2. This captures the fact that
the P() operation by T1 could start but not complete before the V() operation by T2
and hence that these operations do not race.

• Locks. The race set of each completion event in Fig. 5 is as follows: race(e1) =
{l3}, race(e2) = race(e3) = race(e4) = race(e5) = race(e6) = {}. Note that since
T2 owned lock K when the operations for events e2, e3, and e4 were started, the
race sets for e2, e3, and e4 are empty. This represents the fact that no other thread
can complete a lock() operation on K while it is owned by T2.

• Monitors. The race set of each entry event in Fig. 6 is as follows: race(e1) = {c2},
race(e2) = race(e3) = { }, race(e4) = {c5}, and race(e5) = race(e6) = { }. Sending
event c3 is not in the race set of e2 since c3 happened after e2. (Thread T2 entered
monitor m at e2 and executed a signal operation that caused T1 to issue call c3.)

4.3 Computing Race Variants

Let CP be a concurrent program. Let Q be the SYN-sequence exercised by an
execution of CP. Informally, a race variant of Q is the beginning part of one or more
SYN-sequences of CP that could well have occurred but didn’t, due to the way races
were arbitrarily resolved during execution.

Definition 2. Let Q be a SYN-sequence and V be a race variant of Q. Let partner(r, Q)
(or partner(r, V)) be the sending partner of a receiving event r in Q (or in V). Variant
V is another SYN-sequence that satisfies the following conditions:

1. Let r be a receiving event in Q. If r is also in V, and if call(r, Q) != call(r, V), then
call(r, V) must be in race(r, Q).

2. Let f be a sending or receiving event in Q. Then, f is not in V if and only if there
exists a receiving event r in Q such that r →Q f in Q and partner(r, Q) != partner(r,
V).

3. There exists at least one receiving event r in both Q and V such that partner(r, Q) !=
partner(r, V).

The first condition says that if we change the sending partner of a receiving event
r, the new sending partner must be a sending event in the race set of r. The second
condition says that if and only if we change the sending partner of a receiving event r,
we remove all the events that happen after r. The third condition says that there must
be at least one difference between Q and V.

A General Model for Reachability Testing of Concurrent Programs 93

s1
s2

s4
s3

r1

Note that the second condition is a conservative approach to ensuring that a race
variant is always feasible (i.e., it can be exercised by at least one program execution),
regardless of the program’s control and data flow. This condition is necessary since
after the sending partner of a receiving event r is changed, all the events that happen
after r could potentially be affected. That is, what happens after r might depend on the
program’s control and data flow. Note that this is a conservative approach since it
removes events that happen after r even if they are not affected and are still feasible.

An algorithm for computing race variants of semaphore-based programs was
described in [13]. This algorithm is easily adapted to the general execution model
presented in this paper so we briefly describe it here. The race variants of a SYN-
sequence are generated by building a so-called “race table”, where each row of a race
table corresponds to a race variant. The composition of a race table is described as
follows. There is a column for each receiving event whose race set is non-empty. Let
r be the receiving event corresponding to column j, V the race variant to be derived
from row i, and v the value at row i, column j. Value v indicates how receiving event r
is changed in variant V:

1. v = -1 indicates that r is removed from V
2. v = 0 indicates that the sending partner of r is left unchanged in V
3. v > 0 indicates that, in V, the sending partner of r is changed to the v-th event in

race(r), where the sending events in race(r) are arranged in an arbitrary order and
the index of the first event in race(r) is 1.

Note that when we change the sending partner of event r, we need to remove all
the events that happened after r in the original execution. This is to be consistent with
the second condition in Definition 2. The algorithm in [13] generates a race table
whose rows contain all possible combinations of values for the receiving events.

(a) race table

 r1 r3
1 0 1
2 1 -1

 (b) race variant V1

 (c) race variant V2

Fig. 11. Race variant examples

Fig. 11(a) shows the race table for the sample execution in Fig. 3. Recall that r1
and r3 are the only receiving events whose race sets are non-empty: race(r1) = {s2}
and race(r3) = {s4}. Fig. 11(b) shows the variant derived from the first row, where the
sending partner of r3 is changed from s3 to s4. Fig. 11(c) shows the variant derived
from the second row, where the sending partner of r1 is changed from s1 to s2, and
event r3 is removed since r3 happened after r1. See [13] for details about this
algorithm.

s1 r1

s2

s4
s3

r2

r3

94 R.H. Carver and Y. Lei

5 Empirical Results

We implemented our reachability testing algorithms in a prototype tool called
RichTest. RichTest is developed in Java, and consists of three main components: a
synchronization library, a race variant generator, and a test driver. The
synchronization library provides classes for simulating semaphores, locks, monitors,
and message passing with selective waits. The synchronization classes contain the
necessary control for replaying variants and tracing SYN-sequences. The race variant
generator inputs a SYN-sequence and generates race variants of the sequence as
discussed in Sections 4. The test driver is responsible for coordinating the exchange
of variants and SYN-sequences between the synchronization classes and the variant
generator. These three components and the application form a single Java program
that performs the reachability testing process presented in Section 2.

We wish to stress that RichTest does not require any modifications to the JVM or
the operating system. Instead, the synchronization classes contain the additional
control necessary for reachability testing. In trace mode, the synchronization classes
record synchronization events at appropriate points and assign timestamps to these
events. In replay mode, the synchronization classes implement the replay techniques
that have been developed for the various constructs. We are applying this same
approach to build portable reachability testing tools for multithreaded C++ programs
that use thread libraries in Windows, Solaris, and Unix.

As a proof-of-concept, we conducted an experiment in which RichTest was used
to apply reachability testing to several components. The components chosen to carry
out the experiment include: (1) BB – a solution to the bounded-buffer problem where
the buffer is protected using either semaphores, an SC monitor, an SU monitor, or a
selective wait; (2) RW – a solution to the readers/writers problem using either
semaphores, an SU monitor, or a selective wait; (3) DP – a solution that uses an SU
monitor to solve the dining philosophers problem without deadlock or starvation.

Table 1 summarizes the results of our experiment. The first column shows the
names of the components. The second column shows the test configuration for each
component. For BB, it indicates the number of producers (P), the number of
consumers (C), and the number of slots (S) in the buffer. For RW, it indicates the
number of readers (R) and the number of writers (W). For DP, it indicates the number
of processes. The third column shows the number of sequences generated during
reachability testing. To shed some light on the total time needed to execute these
sequences, we observe that, for instance, the total execution time for the DP program
with 5 philosophers is 7 minutes on a 1.6GHz PC with 512 MB of RAM.

Note that RichTest implements the reachability testing algorithm presented in
[13]. The algorithm has a very low memory requirements, but it could generate
duplicate SYN-sequences (i.e., exercise a given SYN-sequence more than once) for
certain communication patterns. The reader is referred to [13] for more discussion on
duplicates. In our experiment, the only case where duplicates were generated was for
program BB-Semaphore. Since the number of duplicates may vary during different
applications of reachability testing, we performed reachability testing on BB-
Semaphore ten times and reported the average number of sequences exercised. We

A General Model for Reachability Testing of Concurrent Programs 95

note that the program has 324 unique sequences, and thus, on average, 64 sequences
(or 18% of the total sequences) exercised during reachability testing were duplicates.

Table 1. Experimental Results

Program Config # Seqs. Program Config # Seqs. Program Config # Seqs.
BB-Select 3P + 3C + 2S 144 RW-

Semaphore
2R + 2W 608 DP-

Monitor
SU

3 30

BB-
Semaphore

3P + 3C + 2S 384
(avg.
)

RW-
Semaphore

2R + 3W 12816 DP-
Monitor
SU

4 624

BB-
Monitor
SU

3P + 3C + 2S 720 RW-
Semaphore

3R + 2W 21744 DP-
Monitor
SU

5 19330

BB-
Monitor
SC

3P + 3C + 2S 12096 RW-
Monitor
SC

3R + 2W 70020

 RW-
Monitor
SU

3R + 2W 13320

 RW-Select 3R + 2W 768

The results in Table 1 show that the choice of synchronization construct has a big
effect on the number of sequences generated during reachability testing. SC monitors
generate more sequences than SU monitors since SC monitors have races between
signaled threads trying to reenter the monitor and calling threads trying to enter for
the first time. SU monitors avoid these races by giving signaled threads priority over
calling threads. Selective waits generated fewer sequences than the other constructs.
This is because the guards in the selective waits are used to generate open-lists that
reduce the sizes of the race sets.

6 Related Work

The simplest approach to testing concurrent programs is non-deterministic testing.
The main problem with non-deterministic testing is that repeated executions of a
concurrent program may exercise the same synchronization behavior. Most research
in this area has focused on how to increase the chances of exercising different
synchronization behaviors, and thus the chances of finding faults, when a program is
repeatedly executed. This is typically accomplished by inserting random delays [23]
or calls to a randomized scheduling function [17] into carefully selected program
locations.

An alternative approach is deterministic testing, which is used to determine
whether a specified sequence can or cannot be exercised. The main challenge for
deterministic testing is dealing with the test sequence selection problem. A common
method for selecting test sequences for deterministic testing is to derive a global state
graph of a program (or of a model of the program) and then select paths from this

96 R.H. Carver and Y. Lei

graph [21]. This method, however, suffers from the state explosion problem.
Moreover, it is possible to select two or more paths that correspond to the same partial
order, which is inefficient. Most research [10] [22] in this area has focused on how to
address these two problems.

Reachability testing combines non-deterministic and deterministic testing. In [9], a
reachability testing technique was described for multithreaded programs that use read
and write operations. A reachability testing approach for asynchronous message-
passing programs was reported in [19] and was later improved in [12]. These two
approaches use different models to characterize program executions as well as
different algorithms for computing race variants. Our work in this paper presents a
general model for reachability testing. In addition, these approaches compute race
variants by considering all possible interleavings of the events in a SYN-sequence.
This is less efficient than our table-based algorithm where we deal with partial orders
directly.

Recently, there is a growing interest in techniques that can systematically explore
the state space of a program or a model of the program. The main challenge is dealing
with the state explosion problem. The tools Java PathFinder I [8] and Bandera [5] first
derive an abstract model of a Java program and then use model checkers such as SPIN
to explore a state graph of the model. Techniques such as slicing and abstraction are
used to reduce the size of the state graph. One problem these tools encounter is the
semantic gap between programming languages and modeling languages, which makes
some programming language features difficult to model. To overcome this problem,
tools such as Java PathFinder II, VeriSoft [7] and ExitBlock [3] directly explore the
state space of actual programs, i.e., without constructing any models. These tools use
partial order reduction methods to reduce the chances of executing sequences that
only differ in the order of concurrent events.

Reachability testing also directly explores the state space of actual programs.
However, unlike VeriSoft, ExitBlock, and Java PathFinder II, our reachability testing
algorithm deals with partial orders directly. In contrast, partial order reduction still
generates total orders but tries to reduce the chances of generating total orders that
correspond to the same partial order. In addition, the SYN-sequence framework used
by reachability testing is highly portable. This is because the definition of a SYN-
sequence is based on the language-level definition of a concurrency construct, rather
than the implementation details of the construct. Our Java reachability testing tools do
not require any modifications to the Java Virtual Machine (JVM) or the thread
scheduler, and are completely portable. Our C/C++ tools for Windows, Unix, and
Solaris, do not require any modifications to the thread scheduler either. In contrast,
VeriSoft, ExitBlock and Java PathFinder II all rely on access to the underlying thread
scheduler to control program execution, and the latter two tools also rely on a custom
JVM to capture program states. As a result, these tools have limited portability.

7 Conclusion and Future Work

In this paper, we described a general model for reachability testing of concurrent
programs. The main advantages of reachability testing can be summarized as follows:

A General Model for Reachability Testing of Concurrent Programs 97

• Reachability testing uses a dynamic framework to derive test sequences. This
avoids the construction of static program models, which are often inaccurate and
may be too large to build.

• If desired, reachability testing can systematically exercise all the behaviors of a
program. This maximizes test coverage and has important applications in program-
based verification.

• Reachability testing tools can be implemented in a portable manner, without
modifying the underlying virtual machine, runtime-system or operating system.

We note that since reachability testing is implementation-based, it cannot by itself
detect “missing sequences”, i.e., those that are valid according to the specification but
are not allowed by the implementation. In this respect, reachability testing is
complimentary to specification-based approaches that select valid sequences from a
specification and determine whether they are allowed by the implementation [10].

We are continuing our work on reachability testing in the following directions.
First, we are considering additional synchronization constructs, such as else/delay
alternatives in selective wait statements. Second, exhaustive testing is not always
practical due to resource constraints. Towards a more scalable solution, we are
developing algorithms that can selectively exercise a set of SYN-sequences according
to some coverage criteria. Third, there is a growing interest in combining formal
methods and testing. Formal methods are frequently model based, which means that a
model must be extracted from a program. Static analysis methods for model
extraction have difficulty handling dynamic activities like creating threads and heap
management. These things are easier to handle in a dynamic framework. Since
reachability testing is dynamic and can be exhaustive, we are investigating the use of
reachability testing to construct complete models of the communication and
synchronization behavior of a concurrent program.

References

1. Ada Language Reference Manual, January 1983.
2. A. Bechini and K. C. Tai, Timestamps for Programs using Messages and Shared

Variables, 18th Int’l Conf. on Distributed Computing Systems, 1998.
3. D. L. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis, MIT,

1999.
4. R. Carver and K. C. Tai, "Replay and Testing for Concurrent Programs," IEEE Software,

Vol. 8 No. 2, Mar. 1991, 66-74.
5. J. Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach, and

Hongjun Zheng. Bandera: Extracting Finite-state Models from Java Source Code, In
Proceedings of the 22nd International Conference on Software Engineering, June, 2000.

6. C. J. Fidge, Logical Time in Distributed Computing Systems, IEEE Computer, Aug. 1991,
pp. 28-33.

7. P. Godefroid. Model Checking for Programming Languages using VeriSoft. Proceedings
of the 24th ACM Symposium on Principles of Programming Languages, pages 174-186,
Paris, January 1997.

98 R.H. Carver and Y. Lei

8. K. Havelund and Tom Pressburger. Model Checking Java Programs Using Java
PathFinder. International Journal on Software Tools for Technology Transfer (STTT)
2(4): 366-381, April 2000.

9. G. H. Hwang, K. C. Tai, and T. L. Huang. Reachability testing: An approach to testing
concurrent software. International Journal of Software Engineering and Knowledge
Engineering, 5(4):493-510, 1995.

10. Koppol, P.V., Carver, R. H., and Tai, K. C., Incremental Integration Testing of Concurrent
Programs, IEEE Trans. on Software. Engineering, Vol. 28, No. 6, June 2002, 607-623.

11. L. Lamport. Time, Clocks, and the Ordering of Events in a Dist. System, Comm. ACM,
July 1978, pp. 558-565.

12. Yu Lei and Kuo-Chung Tai, Efficient reachability testing of asynchronous message-
passing programs, Proc. 8th IEEE Int’l Conf. on Engineering for Complex Computer
Systems, pp. 35-44, Dec. 2002.

13. Yu Lei and Richard H. Carver, “Reachability testing of semaphore-based programs”, to be
published in Proc. of the 28th Computer Software and Applications Conference
(COMPSAC), September, 2004.

14. F. Mattern, Virtual Time and Global States of Distributed Systems, Parallel and
Distributed Algorithms (M. Cosnard et al.), Elsevier Science, North Holland, 1989, pp.
215-226.

15. R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallel
programs. Proc. of 3rd ACM/ONR Workshop on Parallel and Dist. Debugging, pp. 1-11,
1993.

16. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A dynamic
race detector for multithreaded programs,” Transactions on Computer Systems 15, 4
(November 1998), 391-411

17. S. D. Stoller. Testing concurrent Java programs using randomized scheduling. In Proc. of
the Second Workshop on Runtime Verification (RV), Vol. 70(4) of Electronic Notes in
Theoretical Computer Science. Elsevier, 2002.

18. K. C. Tai. Testing of concurrent software. Proc. of the 13th Annual International Computer
Software and Applications Conference, pp. 62-64, 1989.

19. K. C. Tai. Reachability testing of asynchronous message-passing programs. Proc. of the
2nd International Workshop on Software Engineering for Parallel and Distributed Systems,
pp. 50-61, 1997.

20. K. C. Tai, R. H. Carver, and E. Obaid, “Debugging concurrent Ada programs by
deterministic execution,” IEEE Trans. Software Engineering, 17(1):45-63, 1991.

21. R. N. Taylor, D. L. Levine, and Cheryl D. Kelly, Structural testing of concurrent programs,
IEEE Transaction on Software Engineering, 18(3):206-214, 1992.

22. A. Ulrich and H. Konig, Specification-based Testing of Concurrent Systems, Proceedings
of the IFIP Joint International Conference on Formal Description Techniques and Protocol
Specification, Testing, and Verification (FORTE/PSTV '97), 1997.

23. C. Yang and L. L. Pollock. Identifying redundant test cases for testing parallel language
constructs. ARL-ATIRP First Annual Technical Conference, 1997.

