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Abstract. Reachability testing is a technique for testing concurrent programs. 
Reachability testing derives test sequences on-the-fly as the testing process 
progresses, and can be used to systematically exercise all the behaviors of a 
program. The main contribution of this paper is a general model for reachability 
testing. This model allows reachability testing to be applied to many different 
types of concurrent programs, including asynchronous and synchronous 
message passing programs, and shared-memory programs that use semaphores, 
locks, and monitors. We define a common format for execution traces and 
present timestamp assignment schemes for identifying races and computing 
race variants, which are a crucial part of reachability testing. Finally, we discuss 
a prototype reachability testing tool, called RichTest, and present some 
empirical results. 

1   Introduction 

Concurrent programming is an important technique in modern software development. 
Concurrency can improve computational efficiency and resource utilization. 
However, concurrent programs behave differently than sequential programs. Multiple 
executions of a concurrent program with the same input may exercise different 
sequences of synchronization events (or SYN-sequences) and produce different 
results. This non-deterministic behavior makes concurrent programs notoriously 
difficult to test. 

A simple approach to dealing with non-deterministic behavior when testing a 
concurrent program CP is to execute CP with a fixed input many times and hope that 
faults will be exposed by one of these executions [18]. This type of testing,  
called non-deterministic testing, is easy to carry out, but it can be very inefficient. It is 
possible that some behaviors of CP are exercised many times while others are never 
exercised. An alternative approach is called deterministic testing, which forces a 
specified SYN-sequence to be exercised. This approach allows CP to be tested with 
carefully  selected  SYN-sequences. The  test  sequences  are  usually selected from a 
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static model of CP or of CP’s design. However, accurate static models are often 
difficult to build for dynamic behaviors. 

Reachability testing is an approach that combines non-deterministic and 
deterministic testing [9] [12] [19]. It is based on a technique called prefix-based 
testing, which controls a test run up to a certain point, and then lets the run continue 
non-deterministically. The controlled portion of the execution is used to force the 
execution of a “prefix SYN-sequence”, which is the beginning part of one or more 
feasible SYN-sequences of the program. The non-deterministic portion of the 
execution exercises one of these feasible sequences.  

A novel aspect of reachability testing is that it adopts a dynamic framework in 
which test sequences are derived automatically and on-the-fly, as the testing process 
progresses. In this framework, synchronization events (or SYN-events) are recorded 
in an execution trace during each test run. At the end of a test run, the trace is 
analyzed to derive prefix SYN-sequences that are “race variants” of the trace. A race 
variant represents the beginning part of a SYN-sequence that definitely could have 
happened but didn’t, due to the way race conditions were arbitrarily resolved during 
execution. The race variants are used to conduct more test runs, which are traced and 
then analyzed to derive more race variants, and so on. If every execution of a program 
with a given input terminates, and the total number of SYN-sequences is finite, then 
reachability testing will terminate and every partially-ordered SYN-sequence of the 
program with the input will be exercised.  

Reachability testing requires program executions to be modeled so that races can 
be identified and race variants can be generated. The execution model must also 
contain sufficient information to support execution tracing and replay. Models for 
tracing and replay have been developed for many synchronization constructs, 
including semaphores, locks, monitors, and message passing [4] [20].  However, these 
models do not support race analysis. Models for race analysis have been developed 
for message passing, but not for other synchronization constructs. The contributions 
of this paper are: (1) a general execution model for reachability testing that supports 
race analysis and replay for all of the synchronization constructs mentioned above. 
This model defines a common format for execution traces and provides a timestamp 
assignment scheme that assists in identifying races and computing race variants. (2) A 
race analysis method that can be used to identify races in executions captured by our 
execution model. This method can be used by an existing algorithm for generating 
race variants. (3) A Java reachability testing tool, called RichTest, that implements 
reachability testing without any modifications to the Java JVM or to the operating 
system. 

The rest of this paper is organized as follows. The next section illustrates the 
reachability testing process. Section 3 presents an execution model for several 
commonly used synchronization constructs. Section 4 defines the notions of a race 
and a race variant, and discusses how to identify races and compute race variants. 
Section 5 describes the RichTest tool and reports some empirical results. Section 6 
briefly surveys related work. Section 7 provides concluding remarks and describes 
our plans for future work. 
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2   The Reachability Testing Process 

We use a simple example to illustrate the reachability testing process. Fig. 1 shows a 
program CP that consists of four threads. The threads synchronize and communicate 
by sending messages to, and receiving messages from, ports. Ports are communication 
objects that can be accessed by many senders but only one receiver. Each send 
operation specifies a port as its destination, and each receive operation specifies a port 
as its source.  

Fig. 1 also shows one possible scenario for applying reachability testing to the 
example program. Each sequence and race variant generated during reachability 
testing is represented by a space-time diagram in which a vertical line represents a 
thread, and a single-headed arrow represents asynchronous message passing between 
a send and receive event. The labels on the arrows match the labels on the send and 
receive statements in program CP. The reachability testing process in Fig. 1 proceeds 
as follows: 

• First, sequence Q0 is recorded during a non-deterministic execution of CP. 
Sequence V1 is a race variant of Q0 derived by changing the outcome of a race 
condition in Q0. That is, in variant V1, thread T3 receives its first message from T4 
instead of T2. The message sent by T2 is left un-received in V1. 

• During the next execution of CP, variant V1 is used for prefix-based testing. This 
means that variant V1 is replayed and afterwards the execution proceeds non-
deterministically. Sequence Q1 is recorded during this execution. Sequence Q1 is 
guaranteed to be different from Q0 since V1 and Q0 differ on the outcome of a 
race condition and V1 is a prefix of Q1. Variant V2 is a race variant of Q1 in 
which T2 receives its first message from T3 instead of T1.  

• When variant V2 is used for prefix-based testing, sequence Q2 is recorded. 
Reachability testing stops since Q0, Q1 and Q2 are all the possible SYN-sequences 
that can be exercised by this program.  

 

 

 

 
Fig. 1. The reachability testing process 

For a formal description of the above process, the reader is referred to a 
reachability testing algorithm that we reported in [13]. The challenge for reachability 
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testing is to identify races and derive race variants. This is discussed in the remainder 
of this paper. 

3   Models of Program Executions 

In this section, we present a general execution model for several commonly used 
synchronization constructs. This model provides sufficient information for replaying 
an execution and for identifying the race variants of an execution. Replay techniques 
have already been developed for these constructs [4] [20]. An algorithm for 
computing race variants is described in the next section. 

3.1   Asynchronous Message Passing 

Asynchronous message passing refers to non-blocking send operations and blocking 
receive operations. A thread that executes a non-blocking send operation proceeds 
without waiting for the message to arrive at its destination. A thread that executes a 
blocking receive operation blocks until a message is received. We assume that 
asynchronous ports (see Section 2) have unlimited capacity (which means that a send 
operation is never blocked) and use a FIFO (First-In-First-Out) message ordering 
scheme, which guarantees that messages passed between any two threads are received 
in the order that they are sent.  

    Port p; 
    Thread 1  Thread 2 
    p.send(msg)      msg = p.receive(); 

An execution of a program that uses asynchronous ports exercises a sequence of 
send and receive events. A send or receive event refers to the execution of a send or 
receive statement, respectively. A send event s and the receive event r it synchronizes 
with forms a synchronization pair <s, r>, where s is said to be the send partner of r, 
and r is said to be the receive partner of s. We use an event descriptor to encode 
certain information about each event. Each send event s is assigned an event 
descriptor (T, O, i), where T is the sending thread, O is the port, and i is the event 
index indicating that s is the i-th event in T. Each receive event r is assigned an event 
descriptor (T, O, i), where T is the receiving thread, O is the port name, and i is the 
event index indicating that r is the i-th event of T. A send event s is said to be open at 
a receive event r if s.O = r.O. 

Fig. 2 shows a space-time diagram representing an execution with three threads. 
Thread T2 receives messages from ports p1 and p2. Thread T1 sends two messages to 
port p1. Thread T3 sends its first message to port p1 and its second message to port p2. 

We note that in many applications a thread only has one port for receiving 
messages. In this special case, a thread identifier is usually specified as the destination 
of a send event, and the source of a receive event can be left unspecified. Also, a link-
based communication scheme can be simulated by using ports that are restricted to 
having only one sender. We also point out that in practical implementations, ports are 
often implemented using bounded buffers that can only hold a fixed number of 
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messages. In this case, a send operation can be blocked if the capacity of a buffer is 
reached. Our model can be applied to buffer-blocking ports without any modification. 

3.2   Synchronous Message Passing 

Synchronous message passing is the term used when the send and receive operations 
are both blocking. The receiving thread blocks until a message is received. The 
sending thread blocks until it receives an acknowledgement that the message it sent 
was received by the receiving thread.  

A selective wait construct is commonly used in synchronous message passing to 
allow a combination of waiting for, and selecting from, one or more receive() 
alternatives [1]. The selection can depend on guard conditions associated with each 
alternative of the selective wait:  

 Port port1, port2; 
 select 
  when (guard condition 1) => port1.receive(); 
 or 
  when (guard condition 2) => port2.receive(); 
 end select; 

A receive alternative is said to be open if it does not start with when(guard 
condition), or if the value of the guard condition is true. It is said to be closed 
otherwise. A select statement works as follows: 

• an open receive-alternative (i.e., one with a true guard) is selected only if that 
alternative has a waiting message.  

• if several receive-alternatives are open and have waiting messages, the alternative 
whose message arrived first is selected. 

• if one or more receive-alternatives are open but none have a waiting message, 
select blocks until a message arrives for one of the open receive-alternatives.  

• If none of the receive-alternatives are open, select throws an exception. 

We make the restriction that there can be only one receive-alternative for a given 
port.  

A send event s and the receive event r it synchronizes with form a rendezvous pair 
<s, r>, where s is the send partner of r and r is the receive partner of s. Each send 
event s is assigned an event descriptor (T, O, i), where T is the sending thread, O is 
the port, and i is the event index indicating that s is the i-th event of T. Each receive 
event r is assigned an event descriptor (T, L, i), where T is the receiving thread, L is 
the open-list of r, and i is the index indicating that r is the i-th event of T. The open-
list of a receive event r is a list containing the ports that had open receive-alternatives 
at r. Note that this list includes the source port of r. For a simple receive statement 
that is not in a selective wait, the list of open alternatives consists of the source port of 
the receive statement only. Event s is said to be open at r if the port s.O of s is in the 
open-list r.L of r.  

Fig. 3 shows a space-time diagram representing an execution with three threads. 
Thread T1 sends two messages to port p1, and thread T3 sends two messages to port 
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p2. Thread T2 executes a selective wait with receive-alternatives for p1 and p2. 
Assume that whenever p2 is selected, the alternative for p1 is open, and whenever p1 
is selected, the alternative for p2 is closed. This is reflected in the open-lists for the 
receive events. Note that each solid arrow is followed by a dashed arrow in the 
opposite direction. The dashed arrows represent the updating of timestamps when the 
synchronous communication completes, and will be discussed in Section 4. 

 
 

3.3   Semaphores 

A semaphore is a synchronization object that is initialized with an integer value and 
then accessed through two operations named P and V.  Semaphores are provided in 
many commercial operating systems and thread libraries. There are two types of 
semaphores – counting semaphores and binary semaphores. 

A V() operation on a counting semaphore s increments the value of s. A P() 
operation decrements the value of s, but if s is less than or equal to zero when the P() 
operation starts, the P() operation waits until s is positive. For a counting semaphore 
s, at any time, the following relation, called the semaphore invariant, holds: 

(initial value of s) + (number of completed s.V() operations) ≥ (number of 
completed s.P() operations)  

A thread that starts a P() operation may be blocked inside P(), so the operation may 
not be completed right away. The invariant refers to the number of completed 
operations, which may be less than the number of started operations. For a counting 
semaphore, V() operations never block their caller and are always completed 
immediately. 

A binary semaphore must be initialized with the value 1 or the value 0 and the 
completion of P() and V() operations must alternate. (P() and V() operations can be 
started in any order, but their completions must alternate.) If the initial value of the 
semaphore is 1 the first completed operation must be P(). If a V() operation is 
attempted first, the V() operation will block its caller. Likewise, if the initial value of 
the semaphore is 0, the first completed operation must be V(). Thus, the P() and  
V() operations of a binary semaphore may block the calling threads. (Note that V() 
operations are sometimes defined to be non-blocking – executing a non-blocking  
V() operation  on  a  binary semaphore has no effect if the value of the semaphore is 1.  
In this paper, we are using a blocking V() operation. Our model can be easily adjusted 
if a non-blocking V() operation is used.) We assume that the queues of blocked 
threads are FIFO queues. 

 s4  (T1, p1, 2) 

s2  (T1, p1, 1) 

s1 (T3, p1, 1) 
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Fig. 2. A sequence of asynchronous send/ 
receive events     

Fig. 3. A  sequence  of  synchronous  send/ 
receive events 
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We model the invocation of a P() or V() operation as a pair of call and completion 
events. When a thread T calls a P() or V() operation on a semaphore S, a “semaphore-
call” event, or simply a “call” event, c is performed by T. When a P() or V() operation 
of a semaphore S is completed, a “semaphore-completion” event, or simply a 
“completion” event, e occurs on S. If the operation of a call event c is completed by a 
completion event e, we say that c and e form a completion pair <c, e>, where c is the 
call partner of e and e is the completion partner of c. This model is intentionally 
similar to the model for message passing where a synchronization pair was defined as 
a pair of send and receive events.  

Each call event c is assigned a descriptor (T, S, op, i), where T is the calling 
thread, S is the destination semaphore, op is the called operation (P() or V()), and i is 
the event index indicating that c is the i-th (call) event performed by T. A completion 
event e is assigned a descriptor (S, L, i), where S is the semaphore on which e occurs, 
L is the list of operations (P() and/or V()) that can be completed at e, and i is the event 
index indicating that e is the i-th (completion) event that occurs on S. L is also called 
the open-list of e. A call event c is open at a completion event e if c.S = e.S, and the 
operation c.op of c is in the open-list e.L of e.  

Fig. 4 shows a space-time diagram representing an execution with two threads T1 
and T2, and a binary semaphore S initialized to 1. Each of T1 and T2 performs a P() 
and V() operation on S. In this diagram, semaphore S is also represented as a vertical 
line, which contains the entry events that occurred on S. A solid arrow represents the 
completion of a P() or V() operation. The open-lists for the completion events model 
the fact that P and V operations on a binary semaphore must alternate. Note that each 
solid arrow is followed by a dashed arrow in the opposite direction. The dashed 
arrows represent the updating of timestamps when operations complete, and will be 
discussed in Section 4.  

3.4   Locks 

A mutex (for “mutual exclusion”) lock is a synchronization object that is used to 
create critical sections. The operations on a mutex lock are named lock() and unlock(). 
Unlike semaphores, a mutex lock has an owner, and ownership plays an important 
role in the behavior of a mutex lock: 

• A thread requests ownership of mutex lock K by calling K.lock(). 
• A thread that calls K.lock() becomes the owner if no other thread owns the lock; 

otherwise, the thread is blocked. 
• A thread releases its ownership of K by calling K.unlock(). If the thread does not 

own K, the call to K.unlock() generates an error. 
• A thread that already owns lock K and calls K.lock() again is not blocked. In fact, it 

is common for a thread to request and receive ownership of a lock that it already 
owns. But the thread must call K.unlock() the same number of times that it called 
K.lock(), before another thread can become K’s owner. 

Our model for lock() and unlock() operations on mutex locks is similar to our 
model for P() and V() operations on semaphores. When a thread T calls a lock() or 
unlock() operation on mutex lock K, a “mutex-call” event, or simply a “call” event, c 
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occurs on T. When T eventually finishes a lock() or unlock() operation, a “mutex-
completion” event, or simply a “completion” event, e occurs on K. If the operation of a 
call event c is completed by a completion event e, we say that c and e form a completion 
pair <c,e>, where c is the call partner of e and e is the completion partner of c. 

Each call event c is assigned a descriptor (T, K, op, i), where T is the calling 
thread, K is the destination lock, op is the called operation (lock() or unlock()), and i is 
the event index indicating that c is the i-th (call) event performed by T. A completion 
event e is assigned a descriptor (K, L, i), where K is the lock on which e occurs, L is 
the list of operations (lock() and/or unlock()) that can be completed at e, and i is the 
event index indicating that e is the i-th (completion) event that occurs on K. L is also 
called the open-list of e. If the lock is owned by some thread T when e occurs, then 
each operation in L is prefixed with T to indicate that only T can perform the 
operation. This is because if a thread T owns lock L, then only T can complete a lock() 
or unlock() operation on L. For example, if the open-list L of an entry event e on a 
lock K contains two operations lock() and unlock(), and if K is owned by a thread T 
when e occurs, then L = {T:lock(), T:unlock()}. A call event c executed by thread T is 
open at a completion event e if c.K = e.K, and the operation c.op of c is in the open-
list e.L of e, and if K is owned when e occurs then T is the owner.  

Fig. 5 shows a space-time diagram representing an execution with two threads and 
a mutex lock K initialized to 1. Thread T1 performs two lock() operations followed by 
two unlock() operations on K, and thread T2 performs one lock() operation followed 
by one unlock() operation on K. 

   Fig. 4. A sequence of P and V events       Fig. 5. A sequence of lock and unlock events 

3.5   Monitors 

A monitor is a high-level synchronization construct that supports data encapsulation 
and information hiding and is easily adapted to an object oriented environment. We 
use an object oriented definition of a monitor in which a monitor is a synchronization 
object that is an instance of a special “monitor class”. The data members of a monitor 
represent shared data. Threads communicate by calling monitor methods that access 
the shared data.  

At most one thread is allowed to execute inside a monitor at any time. Mutual 
exclusion is enforced by the monitor’s implementation, which ensures that each 
monitor method is a critical section. If a thread calls a monitor method, but another 
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thread is already executing inside the monitor, the calling thread must wait outside the 
monitor. A monitor has an entry queue to hold the calling threads that are waiting to 
enter the monitor. 

Condition synchronization is achieved using condition variables and operations 
wait() and signal(). A condition variable denotes a queue of threads that are waiting to 
be signaled that a specific condition is true. (The condition is not explicitly specified 
as part of the condition variable.) There are several different types of signaling 
disciplines. When the Signal-and-Continue (SC) discipline is used, the signaling 
thread continues to execute in the monitor, and the signaled thread does not reenter 
the monitor immediately. We assume that the signaled thread joins the entry queue 
and thus competes with calling threads to enter the monitor. When the Signal-and-
Urgent-Wait (SU) discipline is used, the signaling thread is blocked in a queue called 
the reentry queue and the signaled thread reenters the monitor immediately. The 
difference between the entry and reentry queues is that the former holds calling 
threads that are waiting to enter the monitor for the first time while the latter holds 
threads that have entered the monitor, executed a signal operation, and are waiting to 
reenter the monitor. The SU discipline assigns a higher priority to the reentry queue, 
in the sense that a thread in the entry queue can enter the monitor only if the reentry 
queue is empty.  

We assume that a monitor’s entry queue and the queues associated with condition 
variables are FIFO queues. Thus, the only non-determinism that is present in a 
monitor is the order in which threads (re)enter the monitor. Such monitors enjoy a 
beneficial property called entry-based execution, i.e., the execution behavior of 
threads inside a monitor is completely determined by the order in which the threads 
(re)enter the monitor and the values of the parameters on the calls to the monitor 
methods [4]. Therefore, an entry-based execution can be replayed by replaying the 
sequence of (re)entry events, called the Entry-sequence, exercised by this execution. 
Note that an entry event is an event that occurs when a thread enters an SU or SC 
monitor for the first time or when a thread reenters an SC monitor after being 
signaled. Reentries into an SU monitor are not modeled because they do not involve 
any races. A replay technique for monitor-based programs with entry-based 
executions was described in [4]. In the remainder of this paper, we assume that 
monitor-based programs have entry-based executions and the order of the entries is 
the sole source of non-determinism in the programs. 

Characterizing a monitor-based execution as an Entry-sequence is sufficient for 
replaying executions, but not for identifying races. When two or more threads call a 
monitor at the same time, they race to see which one will enter first. Thus, we model 
the invocation of a monitor method as a pair of monitor-call and monitor-entry events: 

• SU Monitors: When a thread T calls a method of monitor M, a monitor-call event, 
or simply a call event, c occurs on T. When T eventually enters M, a monitor-entry 
event, or simply an entry event, e occurs on M, and then T starts to execute inside 
M.  

• SC Monitors: When a thread T calls a method of monitor M, a monitor-call event, 
or simply a call event, c occurs on T. A call event also occurs when T tries to 
reenter a monitor M after being signaled. When T eventually (re)enters M, a 
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monitor-entry event, or simply an entry event, e occurs on M, and T starts to 
execute inside M.  

In these scenarios, we say that T is the calling thread of c and e, and M is the 
destination monitor of c as well as the owning monitor of e. We also say that c and e 
form an entry pair <c, e>, where c is the call partner of e and e is the entry partner of c.  

Each call event c is assigned an event descriptor (T, M, i), where T is the calling 
thread, M is the destination  monitor,  and i is the  event index indicating that c is the 
i-th (call) event of T. Each entry event e is assigned an event descriptor (M, i), where 
M is the owning monitor, and i is the event index indicating that e is the i-th event of 
M. A call event c is open at an entry event e if the destination monitor of c is the 
owning monitor of e, i.e., c.M = e.M. 

Fig. 6 shows a space-time diagram, which represents an execution involving three 
threads T1, T2, and T3, and two SC monitors M1 and M2. Thread T1 enters M1 first 
and executes a wait() operation. The second call event performed by T1 occurs when 
T1 reenters M1 after being signaled by T2. Note that if M1 were an SU monitor, there 
would be no c3 event representing reentry. After T1 exits from M1, T1 enters and 
exits M2. This is followed by thread T3 entering and exiting M2 and then entering and 
exiting M1.  

 
 
 
 
 
 
 
 
 

Fig. 6. A sequence of monitor call and entry events 

3.6   A General Model 

In the models presented above, a program execution is characterized as a sequence of 
event pairs. For asynchronous and synchronous message-passing programs, an 
execution is characterized as a sequence of send and receive events. For semaphore-, 
lock-, and monitor-based programs, an execution is characterized as a sequence of 
call and completion events. In the remainder of this paper, we will refer to a send/call 
event as a sending event, and a receive/completion event as a receiving event. We 
also refer to a pair of sending and receiving events as a synchronization pair. 

The event descriptors for the sending and receiving events defined above all fit 
into a single general format:  

• A descriptor for a sending event s is denoted by (T, O, op, i), where T is the thread 
executing the sending event, O is the destination object, op is the operation 
performed, and i is the event index indicating that s is the i-th event of T. Note that 

T1                              M1                               T2                               M2                               T3 

e1 (M1,1) 

e4 (M2,1) 

e6 (M1,4) c6 (T3,M1,2) 

c5 (T3,M2,1) e5 (M2,2) 

e2 (M1,2) 

e3 (M1,3) 

c2 (T2,M1,1) 
    C1 (T1,M1,1) 

    C3 (T1,M1,21) 

    C4 (T1,M1,3) 
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for message passing, op is always a send operation, and for monitors, op is the 
called method.        

• A descriptor for a receiving event r is denoted by (D, L, i), where D is the 
destination thread or object, L is the open-list, and i is the event index indicating 
that r is the i-th event of D. Note that for asynchronous message-passing, L 
contains the source port of r  only,  and is thus represented as a single port. For a 
monitor,  L contains  all of the  methods defined on the   monitor  since  entry  into 
a monitor is never guarded. (A thread may be blocked after it enters a monitor, but 
a thread that calls a monitor method is guaranteed to eventually enter the method.)  

In programs that use shared variables, we assume that accesses to shared variables 
are always protected by semaphores, locks, or monitors. To enforce this, reachability 
testing can be used in conjunction with the techniques used in data race detection 
tools for multithreaded programs [16]. 

4   Race Analysis of SYN-Sequences 

In this section, we show how to perform race analysis on SYN-sequences. Section 4.1 
presents two schemes for assigning logical timestamps to determine the happened-
before relation between events. Section 4.2 defines the notion of a race and shows 
how to identify races based on the happened-before relation. Section 4.3 defines the 
notion of a race variant and uses an example to illustrate how to compute race 
variants.  

4.1   Timestamp Assignment 

As we will see in Section 4.2, the definition of a race between events in a SYN-
sequence is based on the happened-before relation, which is a partial order defined in 
the traditional sense [11]. Simply put, an event a happens before another event b in a 
SYN-sequence Q if a could potentially affect b. We denote this as a →Q b, or simply  
a → b if Q is implied. In a space-time diagram, if we take into account the direction 
of the (solid and dashed) arrows, a happens before b if there exists a path from a to b.  

Vector timestamps are frequently used to capture the happened-before relation 
between events. In this section, we present thread-centric and object-centric 
timestamp assignment schemes. A thread-centric timestamp has a dimension equal to 
the number of threads involved in an execution. An object-centric timestamp has a 
dimension equal to the number of synchronization objects involved. Therefore, a 
thread-centric scheme is preferred when the number of threads is smaller than the 
number of synchronization objects, and an object-centric scheme is preferred 
otherwise.  In the remainder of this section, we will use v[i] to denote the i-th 
component of a vector v, and max(v1, v2) to denote the component-wise maximum of 
vectors v1 and v2. 

4.1.1   A Thread-Centric Scheme 
A vector timestamp scheme for asynchronous message passing programs has already 
been developed [6][14]. This scheme is thread-centric by our definition and can be 



A General Model for Reachability Testing of Concurrent Programs          87 

T1 T2 T3 
s1 [ 0, 1, 1 ] 
s3 [ 1, 3, 2 ] 

r1 [ 0, 1, 1 ]

r2 [ 1, 2, 1 ]

r3 [ 1, 3, 2 ]

r4 [ 2, 4, 2 ]

s2 [ 1, 2, 1 ]

s4 [ 2, 4, 2 ]

T1 

s2 [ 1, 0, 0 ] 

T2 T3 

s4 [ 2, 0, 0 ] 

s1 [ 0, 0, 1 ]

s3 [ 0, 0, 2 ]

r1 [ 0, 1, 1 ]

r2 [ 1, 2, 1 ] 
r3 [ 1, 3, 2 ]

r4 [ 2, 4, 2 ] 

(a) (b)

used for race analysis. In this scheme, each thread maintains a vector clock. A vector 
clock is a vector of integers used to keep track of the integer clock of each thread. The 
integer clock of a thread is initially zero, and is incremented each time the thread 
executes a send or receive event. Each send and receive event is also assigned a copy 
of the vector clock as its timestamp. 

Let T.v be the vector clock maintained by a thread T. Let f.ts be the vector 
timestamp of an event f. The vector clock of a thread is initially a vector of zeros. The 
following rules are used to update vector clocks and assign timestamps to the send 
and receive events in asynchronous message passing programs: 

1. When a thread Ti executes a non-blocking send event s, it performs the following 
operations: (a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = Ti.v. Thread Ti also sends s.ts along 
with the message sent by s. 

2. When a thread Tj executes a receive event r, it performs the following operations: 
(a) Tj.v[j] = Tj.v[j] + 1; (b) Tj.v = max(Tj.v, s.ts); (c) r.ts = Tj.v, where s is the 
synchronization partner of r. 

Fig. 7(a) shows the timestamps for the asynchronous message passing program in 
Fig. 2. 

 
 
 
 
 
 
 

Fig. 7.  Traditional  timestamp  schemes  for  asynchronous  and  synchronous message passing 

A timestamp scheme for synchronous message passing has also been developed 
[6], but this scheme must be extended for race analysis. The traditional timestamp 
scheme for synchronous message passing is to assign the same timestamp to send and 
receive events that are synchronization partners: 

1. When a thread Ti executes a blocking send event s, it performs the operation Ti.v[i] 
= Ti.v[i] + 1. Thread Ti also sends Ti.v along with the message sent by s.  

2. When a thread Tj executes a receiving event r that receives the message sent by s, it 
performs the following operations: (a) Tj.v[j] = Tj.v[j] + 1; (b) Tj.v = max(Tj.v, 
Ti.v); (c) r.ts = Tj.v. Thread Tj also sends Tj.v back to thread Ti. 

3. Thread Ti receives Tj.v and performs the following operations (a) Ti.v = max(Ti.v, 
Tj.v); (b) s.ts = Ti.v. 

The exchange of vector clock values between threads Ti and Tj represents the 
synchronization that occurs between them, which causes their send and receive events 
to be completed at the same time. Fig. 7b shows the timestamps for the synchronous 
message passing program in Fig. 3. 
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In our execution model for synchronous message passing, we model the start of a 
send event, not its completion. For send and receive events that are synchronization 
partners, the start of the send is considered to happen before the receive event with 
which the send eventually synchronizes. This means that the timestamps for send and 
receive partners should not be the same. Thus, we use the timestamp of the receive 
event to update the vector clock of the sending thread, but not the timestamp of the 
send event, when the synchronization completes: 

1. When a thread Ti executes a blocking send event s, it performs the following 
operations: (a) Ti.v[i] = Ti.v[i] + 1.  (b) s.ts = Ti.v. Thread Ti also sends Ti.v along 
with the message sent by s. 

2. When a thread Tj executes a receiving event r that receives the message sent by s, it 
performs the following operations: (a) Tj.v[j] = Tj.v[j] + 1; (b) Tj.v = max(Tj.v, 
Ti.v); (b) r.ts = Tj.v. Thread Tj also sends Tj.v back to thread Ti. 

3. Thread Ti receives Tj.v and performs the operation (a) Ti.v = max(Ti.v, Tj.v). 

Fig. 8 shows the timestamps that are assigned so that race analysis can be 
performed on the synchronous message passing program in Fig. 3. Note that the 
dashed arrows represent the execution of rule 3. 

 
Fig. 8. Timestamp scheme for race analysis of synchronous message passing programs 

Below we describe a new thread-centric timestamp scheme for semaphores, locks, 
and monitors. We refer to semaphores, locks, and monitors generally as 
“synchronization objects”. In this scheme, each thread and synchronization object 
maintains a vector clock. (As before, position i in a vector clock refers to the integer 
clock of thread Ti; synchronization objects do not have integer clocks and thus there 
are no positions in a vector clock for the synchronization objects.)  Let T.v (or O.v) be 
the vector clock maintained by a thread T (or a synchronization object O).  The vector 
clock of a thread or synchronization object is initially a vector of zeros. The following 
rules are used to update vector clocks and assign timestamps to events: 

1. When a thread Ti executes a sending event s, it performs the following operations: 
(a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = Ti.v; 

2. When a receiving event r occurs on a synchronization object O, the following 
operations are performed: (a) O.v = max(O.v, s.ts); (b) r.ts = O.v, where s is the 
sending partner of r; 

r3 [1,3,2 ]

r2 [1,2,1 ]

s1 [0,0,1 ]

s3 [0,1,2 ]

r1 [0,1,1 ]

r4 [2,4,2 ]

r3 [1,0,0 ] 

r3 [2,2,1 ] 

T1 T2 T3
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3. Semaphore/Lock: When a thread Ti finishes executing an operation on a semaphore 
or lock O, it updates its vector clock using the component-wise maximum of Ti.v 
and O.v, i.e., Ti.v = max(Ti.v, O.v). 

SU Monitor: When a thread Ti finishes executing a method on a monitor O, it 
updates its vector clock using the component-wise maximum of T.v and O.v, i.e., 
T.v = max(T.v, O.v). 
SC Monitor: When a thread Ti finishes executing a method on a monitor O, or 
when a thread Ti is signaled from a condition queue of O, it updates its vector 
clock using the component-wise maximum of Ti.v and O.v, i.e., Ti.v = max(Ti.v, 
O.v). 

Figs. 9a and 9b shows the thread-centric timestamps assigned for the executions in 
Figs. 4 and 6, respectively. Again, dashed arrows are also shown to indicate 
applications of the third rule.  

Thread-centric timestamps can be used to determine the happened-before relation 
between two arbitrary events, as shown below.  

Proposition 1. Let X be an execution involving threads T1, T2, …, Tn and semaphores, 
locks, or monitors. Let Q be the SYN-sequence exercised by X. Assume that every 
event in Q is assigned a thread-centric timestamp. Let f.tid be the (integer) thread ID 
of thread f.T for an event f. Let f1 and f2 be two events in Q. Then, f1 → f2 if and only 
if  

(1) <f1, f2> is a synchronization pair; or  
(2) f1.ts[f1.tid] ≤ f2.ts[f1.tid] and f1.ts[f2.tid] < f2.ts[f2.tid]. 

 

 

 

 

 
 

 

Fig. 9. Timestamp scheme for race analysis of semaphore-based and monitor-based programs 

4.1.2   Object-Centric Scheme 
In this scheme, each thread and synchronization object (port, semaphore, lock, or 
monitor) maintains a version vector. A version vector is a vector of integers used to 
keep track of the version number of each synchronization object. The version number 
of a synchronization object is initially zero, and is incremented each time a thread 
performs a sending or receiving event. Each sending and receiving event is also 
assigned a version vector as its timestamp.  

Let T.v (or O.v) be the version vector maintained by a thread T (or a 
synchronization object O). Initially, the version vector of each thread or 

c1 [1, 0, 0 ]

c3 [ 2, 1, 0 ]

c2 [ 0, 1, 0 ]
e1 [ 1, 0, 0 ]

e2 [ 1, 1, 0 ]

e3 [2, 1, 0 ]

c4 [ 3, 1, 0 ] e4 [ 3, 1, 0 ] 
e5 [ 3, 1, 1 ]

e6 [3, 1, 2 ] c6 [ 3, 1, 2 ] 
c5 [ 0, 0, 1 ] 

p1 [ 0, 1 ] 

p2 [ 1, 0  ] 
v1 [ 0, 2  ] 

v2 [ 2, 2  ] 

e1 [ 0, 1  ]

        e2 [ 0, 2  ]

e3 [ 1, 2  ] 
e4 [ 2, 2  ] 

T1 S T2 T1 T2 T3 M1 M2
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synchronization object is a vector of zeros. The following rules are used to update 
version vectors and assign timestamps to events: 

1. When a thread T executes a sending event s, T assigns its version vector as the 
timestamp of s, i.e., s.ts = T.v;. 

2. When a receiving event r occurs on a synchronization object Oi, letting s be the 
sending partner of r, the following operations are performed: (a) Oi.v = max(Oi.v, 
s.ts); (b) r.ts = Oi.v. 

3. Semaphore/Lock: When a thread T finishes a called operation on a semaphore or 
lock O, T updates its version vector using the component-wise maximum of T.v 
and O.v, i.e., T.v = max(T.v, O.v).  
SU Monitor: When a thread T finishes executing a method on a monitor O, T 
updates its version vector using the component-wise maximum of T.v and O.v, i.e., 
T.v = max(T.v, O.v). 
SC Monitor: When a thread T finishes executing a method on a monitor O, or when 
a thread T is signaled from a condition queue of O, T updates its version vector 
using the component-wise maximum of T.v and O.v, i.e., T.v = max(T.v, O.v). 

Timestamps assigned using the above rules are called object-centric timestamps. 
Note that this scheme is preferred only if the number of synchronization objects is 
smaller than the number of threads. Considering that in a message-passing program, 
each thread usually has at least one port, we do not expect that this scheme will be 
frequently used for message passing programs. Fig. 10 shows object-centric 
timestamps assigned for the executions in Fig 9. 

Fig. 10. Object-centric timestamps 

Object-centric timestamps cannot be used to determine the happened-before 
relation between two arbitrary events. However, they can be used to determine the 
happened-before relation between two events if at least one of the events is a 
receiving event, which is sufficient for our purposes.  

Proposition 2. Let X be an execution involving synchronization objects O1, O2, …, 
Om. Let Q be the SYN-sequence exercised by X. Assume that every event in Q is 
assigned  an  object-centric  timestamp. Let  r  be  a  receiving  event  on Oi, and f a 
receiving event on Oj, where 1≤ i, j≤ m. Then, e → f if and only if e.ts[i]≤ f.ts[i] and 
e.ts[j]<f.ts[j]. 
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Proposition 3. Let X be an execution involving synchronization objects O1, O2, …, 
Om. Let Q be the SYN-sequence exercised by X. Assume that every event in Q is 
assigned an object-centric timestamp. Let r be a receiving event on Oi, and s a 
sending event on Oj, where 1≤ i, j≤ m. Then, r → s if and only if r.ts[i]≤ s.ts[i]. 

In Fig. 10b, entry e3 happens before entry e4 since e3.ts[1]  = e4.ts[1] and e3.ts[2] < 
e4.ts[2]. Entry e3 happens before call c6 since e3.ts[1] = e6.ts[1]. 

4.2   Race Detection 

As we described in Section 3.6, we can characterize a program execution as a 
sequence of sending and receiving events. Intuitively, there exists a race between two 
sending events if they can synchronize with the same receiving event in different 
executions. In order to accurately determine all the races in an execution, the 
program’s semantics must be analyzed. Fortunately, for the purpose of reachability 
testing, we only need to consider a special type of race, called a lead race.  Lead races 
can be identified solely based on the SYN-sequence of an execution, i.e., without 
analyzing the program’s semantics.  

Definition 1. Let Q be a SYN-sequence exercised by an execution of a concurrent 
program CP. Let s be a sending event and r a receiving event in Q such that <s, r> is 
a synchronization pair. Let s’ be another sending event in Q. There exists a lead race 
between s’ and <s, r> in Q if s’ and r can form a synchronization pair during some 
other execution of CP provided that all the events that happen before s’ or r in Q are 
replayed in that execution.  

Note that Definition 1 requires all events that can potentially affect s’ or r in Q to 
be replayed and thus ensures the existence of c’ or e, regardless of the program’s 
implementation. As a result lead races can be identified solely based on information 
encoded in Q. In the remainder of this paper, a race is assumed to be a lead race 
unless otherwise specified. 

Next, we define the notion of a race set of a receiving event. Let Q be a SYN-
sequence. Let r be a receiving event and s a sending event in Q such that <s, r> is a 
synchronization pair. The race set of r in Q, denoted as race(r, Q) or race(r) if Q is 
implied, is the set of sending events in Q that have a race with <s, r>. Formally, 
race(r, Q) = {s’ ∈ Q | there exists a lead race between s’ and <s, r>}. 

The following proposition describes how to compute the race set of a receiving 
event. 

Proposition 4. Let Q be a SYN-sequence exercised by a program execution. A sending 
event s is in the race set of a receiving event r if (1) s is open at r; (2) r does not 
happen before s; (3) if <s, r’> is a synchronization pair, then r happens before r’; and 
(4) s and r are consistent with FIFO semantics (i.e., all the messages that were sent to 
the same destination as s, but were sent before s, have already been received before r). 

Race Set Examples: 

• Asynchronous Message Passing. The race set of each receive event in Fig. 2 is as 
follows: race(r1) = {s2}, race(r2) = race(r3) = race(r4) = {}. Note that s3 is not in 
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the race set of r1 because s3 is sent to a different port and thus s3 is not open at r1.  
For the same reason, s4 is not in the race set of r3. Also note that s4 is not in the 
race set of r1, because FIFO semantics ensures that s1 is received before s4.   

• Synchronous message passing. The race set of each receive event in Fig. 3 is as 
follows: race(r1) = {s2}, race(r2) = { }, race(r3) = {s4}, and race(r4) = { }. Since 
the alternative for p2 is open whenever T2 selects the receive-alternative for p1, the 
race set for r1 contains s2 and the race set for r3 contains s4. On the other hand, 
since the alternative for p1 was closed when T2 selected the receive-alternative for 
p2 at r2, the race set for r2 does not contain s3. 

• Semaphores. The race set of each completion event in Fig. 4 is as follows: race(e1) 
= {p2}, race(e2) = race(e3) = race(e4) = { }. Note that since P() was not in the 
open-list of e2, the race set for e2 does not contain p2. This captures the fact that 
the P() operation by T1 could start but not complete before the V() operation by T2 
and hence that these operations do not race. 

• Locks. The race set of each completion event in Fig. 5 is as follows: race(e1) = 
{l3}, race(e2) = race(e3) = race(e4) = race(e5) = race(e6) = {}. Note that since 
T2 owned lock K when the operations for events e2, e3, and e4 were started, the 
race sets for e2, e3, and e4 are empty. This represents the fact that no other thread 
can complete a lock() operation on K while it is owned by T2. 

• Monitors. The race set of each entry event in Fig. 6 is as follows: race(e1) = {c2}, 
race(e2) = race(e3) = { }, race(e4) = {c5}, and race(e5) = race(e6) = { }. Sending 
event c3 is not in the race set of e2 since c3 happened after e2. (Thread T2 entered 
monitor m at  e2 and executed a signal operation that caused T1 to issue call c3.) 

4.3   Computing Race Variants 

Let CP be a concurrent program. Let Q be the SYN-sequence exercised by an 
execution of CP. Informally, a race variant of Q is the beginning part of one or more 
SYN-sequences of CP that could well have occurred but didn’t, due to the way races 
were arbitrarily resolved during execution.  

Definition 2. Let Q be a SYN-sequence and V be a race variant of Q. Let partner(r, Q) 
(or partner(r, V)) be the sending partner of a receiving event r in Q (or in V). Variant 
V is another SYN-sequence that satisfies the following conditions: 

1. Let r be a receiving event in Q. If r is also in V, and if call(r, Q) != call(r, V), then 
call(r, V)  must be in race(r, Q).  

2. Let f be a sending or receiving event in Q. Then, f is not in V if and only if there 
exists a receiving event r in Q such that r →Q f in Q and partner(r, Q) != partner(r, 
V). 

3. There exists at least one receiving event r in both Q and V such that partner(r, Q) != 
partner(r, V). 

The first condition says that if we change the sending partner of a receiving event 
r, the new sending partner must be a sending event in the race set of r. The second 
condition says that if and only if we change the sending partner of a receiving event r, 
we remove all the events that happen after r. The third condition says that there must 
be at least one difference between Q and V.  
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s1 
s2 

s4 
s3 

r1 

Note that the second condition is a conservative approach to ensuring that a race 
variant is always feasible (i.e., it can be exercised by at least one program execution), 
regardless of the program’s control and data flow. This condition is necessary since 
after the sending partner of a receiving event r is changed, all the events that happen 
after r could potentially be affected. That is, what happens after r might depend on the 
program’s control and data flow.  Note that this is a conservative approach since it 
removes events that happen after r even if they are not affected and are still feasible. 

An algorithm for computing race variants of semaphore-based programs was 
described in [13]. This algorithm is easily adapted to the general execution model 
presented in this paper so we briefly describe it here. The race variants of a SYN-
sequence are generated by building a so-called “race table”, where each row of a race 
table corresponds to a race variant. The composition of a race table is described as 
follows. There is a column for each receiving event whose race set is non-empty. Let 
r be the receiving event corresponding to column j, V the race variant to be derived 
from row i, and v the value at row i, column j. Value v indicates how receiving event r 
is changed in variant V: 

1. v =  -1 indicates that r is removed from V 
2. v = 0 indicates that the sending partner of r is left unchanged in V 
3. v > 0 indicates that, in V, the sending partner of r is changed to the v-th event in 

race(r), where the sending events in race(r) are arranged in an arbitrary order and 
the index of the first event in race(r) is 1.  

Note that when we change the sending partner of event r, we need to remove all 
the events that happened after r in the original execution. This is to be consistent with 
the second condition in Definition 2. The algorithm in [13] generates a race table 
whose rows contain all possible combinations of values for the receiving events. 

 
(a) race table 

 r1 r3 
1 0 1 
2 1 -1 

 

 

 

 

 
             (b) race variant V1 

 

      (c) race variant V2 

Fig. 11. Race variant examples 

Fig. 11(a) shows the race table for the sample execution in Fig. 3. Recall that r1 
and r3 are the only receiving events whose race sets are non-empty: race(r1) = {s2} 
and race(r3) = {s4}. Fig. 11(b) shows the variant derived from the first row, where the 
sending partner of r3 is changed from s3 to s4. Fig. 11(c) shows the variant derived 
from the second row, where the sending partner of r1 is changed from s1 to s2, and 
event r3 is removed since r3 happened after r1. See [13] for details about this 
algorithm. 

s1 r1 
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s4 
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r3 
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5   Empirical Results 

We implemented our reachability testing algorithms in a prototype tool called 
RichTest. RichTest is developed in Java, and consists of three main components: a 
synchronization library, a race variant generator, and a test driver. The 
synchronization library provides classes for simulating semaphores, locks, monitors, 
and message passing with selective waits. The synchronization classes contain the 
necessary control for replaying variants and tracing SYN-sequences. The race variant 
generator inputs a SYN-sequence and generates race variants of the sequence as 
discussed in Sections 4. The test driver is responsible for coordinating the exchange 
of variants and SYN-sequences between the synchronization classes and the variant 
generator. These three components and the application form a single Java program 
that performs the reachability testing process presented in Section 2. 

We wish to stress that RichTest does not require any modifications to the JVM or 
the operating system. Instead, the synchronization classes contain the additional 
control necessary for reachability testing. In trace mode, the synchronization classes 
record synchronization events at appropriate points and assign timestamps to these 
events. In replay mode, the synchronization classes implement the replay techniques 
that have been developed for the various constructs. We are applying this same 
approach to build portable reachability testing tools for multithreaded C++ programs 
that use thread libraries in Windows, Solaris, and Unix. 

As a proof-of-concept, we conducted an experiment in which RichTest was used 
to apply reachability testing to several components. The components chosen to carry 
out the experiment include: (1) BB – a solution to the bounded-buffer problem where 
the buffer is protected using either semaphores, an SC monitor, an SU monitor, or a 
selective wait; (2) RW – a solution to the readers/writers problem using either 
semaphores, an SU monitor, or a selective wait; (3) DP – a solution that uses an SU 
monitor to solve the dining philosophers problem without deadlock or starvation.  

Table 1 summarizes the results of our experiment. The first column shows the 
names of the components. The second column shows the test configuration for each 
component. For BB, it indicates the number of producers (P), the number of 
consumers (C), and the number of slots (S) in the buffer. For RW, it indicates the 
number of readers (R) and the number of writers (W). For DP, it indicates the number 
of processes. The third column shows the number of sequences generated during 
reachability testing. To shed some light on the total time needed to execute these 
sequences, we observe that, for instance, the total execution time for the DP program 
with 5 philosophers is 7 minutes on a 1.6GHz PC with 512 MB of RAM.   

Note that RichTest implements the reachability testing algorithm presented in 
[13]. The algorithm has a very low memory requirements, but it could generate 
duplicate SYN-sequences (i.e., exercise a given SYN-sequence more than once) for 
certain communication patterns. The reader is referred to [13] for more discussion on 
duplicates. In our experiment, the only case where duplicates were generated was for 
program BB-Semaphore. Since the number of duplicates may vary during different 
applications of reachability testing, we performed reachability testing on BB-
Semaphore ten times and reported the average number of sequences exercised. We 
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note that the program has 324 unique sequences, and thus, on average, 64 sequences 
(or 18% of the total sequences) exercised during reachability testing were duplicates.  

Table 1. Experimental Results 

Program Config # Seqs. Program Config # Seqs. Program Config # Seqs. 
BB-Select 3P + 3C + 2S 144 RW-

Semaphore 
2R + 2W 608 DP-

Monitor
SU 

3 30 

BB-
Semaphore 

3P + 3C + 2S 384 
(avg.
) 

RW-
Semaphore 

2R + 3W 12816 DP-
Monitor
SU 

4 624 

BB-
Monitor 
SU 

3P + 3C + 2S 720 RW-
Semaphore 

3R + 2W 21744 DP-
Monitor
SU 

5 19330 

BB-
Monitor 
SC 

3P + 3C + 2S  12096 RW-
Monitor 
SC 

3R + 2W 70020    

     RW-
Monitor 
SU 

3R + 2W 13320    

   RW-Select 3R + 2W 768    

The results in Table 1 show that the choice of synchronization construct has a big 
effect on the number of sequences generated during reachability testing. SC monitors 
generate more sequences than SU monitors since SC monitors have races between 
signaled threads trying to reenter the monitor and calling threads trying to enter for 
the first time. SU monitors avoid these races by giving signaled threads priority over 
calling threads. Selective waits generated fewer sequences than the other constructs. 
This is because the guards in the selective waits are used to generate open-lists that 
reduce the sizes of the race sets. 

6   Related Work 

The simplest approach to testing concurrent programs is non-deterministic testing. 
The main problem with non-deterministic testing is that repeated executions of a 
concurrent program may exercise the same synchronization behavior. Most research 
in this area has focused on how to increase the chances of exercising different 
synchronization behaviors, and thus the chances of finding faults, when a program is 
repeatedly executed. This is typically accomplished by inserting random delays [23] 
or calls to a randomized scheduling function [17] into carefully selected program 
locations.  

An alternative approach is deterministic testing, which is used to determine 
whether a specified sequence can or cannot be exercised. The main challenge for 
deterministic testing is dealing with the test sequence selection problem. A common 
method for selecting test sequences for deterministic testing is to derive a global state 
graph of a program (or of a model of the program) and then select paths from this 



96           R.H. Carver and Y. Lei 

graph [21]. This method, however, suffers from the state explosion problem. 
Moreover, it is possible to select two or more paths that correspond to the same partial 
order, which is inefficient. Most research [10] [22] in this area has focused on how to 
address these two problems.  

Reachability testing combines non-deterministic and deterministic testing. In [9], a 
reachability testing technique was described for multithreaded programs that use read 
and write operations. A reachability testing approach for asynchronous message-
passing programs was reported in [19] and was later improved in [12]. These two 
approaches use different models to characterize program executions as well as 
different algorithms for computing race variants. Our work in this paper presents a 
general model for reachability testing. In addition, these approaches compute race 
variants by considering all possible interleavings of the events in a SYN-sequence. 
This is less efficient than our table-based algorithm where we deal with partial orders 
directly.  

Recently, there is a growing interest in techniques that can systematically explore 
the state space of a program or a model of the program. The main challenge is dealing 
with the state explosion problem. The tools Java PathFinder I [8] and Bandera [5] first 
derive an abstract model of a Java program and then use model checkers such as SPIN 
to explore a state graph of the model. Techniques such as slicing and abstraction are 
used to reduce the size of the state graph. One problem these tools encounter is the 
semantic gap between programming languages and modeling languages, which makes 
some programming language features difficult to model. To overcome this problem, 
tools such as Java PathFinder II, VeriSoft [7] and ExitBlock [3] directly explore the 
state space of actual programs, i.e., without constructing any models.  These tools use 
partial order reduction methods to reduce the chances of executing sequences that 
only differ in the order of concurrent events.  

Reachability testing also directly explores the state space of actual programs. 
However, unlike VeriSoft, ExitBlock, and Java PathFinder II, our reachability testing 
algorithm deals with partial orders directly. In contrast, partial order reduction still 
generates total orders but tries to reduce the chances of generating total orders that 
correspond to the same partial order. In addition, the SYN-sequence framework used 
by reachability testing is highly portable. This is because the definition of a SYN-
sequence is based on the language-level definition of a concurrency construct, rather 
than the implementation details of the construct. Our Java reachability testing tools do 
not require any modifications to the Java Virtual Machine (JVM) or the thread 
scheduler, and are completely portable. Our C/C++ tools for Windows, Unix, and 
Solaris, do not require any modifications to the thread scheduler either. In contrast, 
VeriSoft, ExitBlock and Java PathFinder II all rely on access to the underlying thread 
scheduler to control program execution, and the latter two tools also rely on a custom 
JVM to capture program states. As a result, these tools have limited portability.  

7   Conclusion and Future Work 

In this paper, we described a general model for reachability testing of concurrent 
programs. The main advantages of reachability testing can be summarized as follows: 
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• Reachability testing uses a dynamic framework to derive test sequences. This 
avoids the construction of static program models, which are often inaccurate and 
may be too large to build. 

• If desired, reachability testing can systematically exercise all the behaviors of a 
program. This maximizes test coverage and has important applications in program-
based verification. 

• Reachability testing tools can be implemented in a portable manner, without 
modifying the underlying virtual machine, runtime-system or operating system. 

We note that since reachability testing is implementation-based, it cannot by itself 
detect “missing sequences”, i.e., those that are valid according to the specification but 
are not allowed by the implementation. In this respect, reachability testing is 
complimentary to specification-based approaches that select valid sequences from a 
specification and determine whether they are allowed by the implementation [10]. 

We are continuing our work on reachability testing in the following directions. 
First, we are considering additional synchronization constructs, such as else/delay 
alternatives in selective wait statements. Second, exhaustive testing is not always 
practical due to resource constraints. Towards a more scalable solution, we are 
developing algorithms that can selectively exercise a set of SYN-sequences according 
to some coverage criteria. Third, there is a growing interest in combining formal 
methods and testing. Formal methods are frequently model based, which means that a 
model must be extracted from a program. Static analysis methods for model 
extraction have difficulty handling dynamic activities like creating threads and heap 
management. These things are easier to handle in a dynamic framework. Since 
reachability testing is dynamic and can be exhaustive, we are investigating the use of 
reachability testing to construct complete models of the communication and 
synchronization behavior of a concurrent program. 
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