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ABSTRACT
While in-network data fusion can reduce data redundancy andhence
curtail network load, the fusion process itself may introduce signif-
icant energy consumption for emerging wireless sensor networks
with vectorial data. Therefore, fusion-driven routing protocols for
sensor networks cannot optimize over communication cost only –
fusion cost must also be accounted for. Towards this end, we de-
sign a novel routing algorithm, calledAdaptive Fusion Steiner Tree
(AFST), for energy efficient data gathering in sensor networks that
jointly optimizes over the costs for data transmission and data fu-
sion. Furthermore, AFST evaluates the benefit and cost of data fu-
sion along information routes and adaptively adjusts whether fusion
shall be performed. Analytically and experimentally, we show that
AFST achieves better performance than existing algorithmsinclud-
ing SLT, MFST, and SPT.

Categories and Subject Descriptors
C.2.2 [Computer-communication networks]: Network Protocols—
Routing Protocols; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—Routing
and layout; G.2.2 [Discrete Mathematics]: Graph Theory—Net-
work problems

General Terms
Algorithms, Theory

Keywords
Sensor networks, data gathering, data fusion, routing
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Energy efficient routing algorithms for data gathering is a major
concern in wireless sensor networks [5, 8, 17, 13, 6, 7, 3, 2, 15, 19].
By exploring data correlation and employing in-network process-
ing, redundancy among sensed data can be curtailed and hencethe
network load can be reduced [8]. The objective of sensor routing
algorithms is then to jointly explore the data structure andnetwork
topology to provide the optimal strategy for data gatheringwith as
minimum energy as possible.

Regardless of the techniques employed, existing strategies miss
one key dimension in the optimization space for routing correlated
data, namely thedata aggregation cost. Indeed, the cost for data ag-
gregation may not be negligible for certain applications. For exam-
ple, sensor networks monitoring field temperature may use simple
average, max, or min functions which essentially are of insignificant
cost. However, other networks may require complex operations for
data fusion1. Energy consumption of beamforming algorithm for
acoustic signal fusion has been shown to be on the same order of
that for data transmission [18]. In our own experimental study de-
scribed in [10], we show that aggregation processes such as image
fusion cost tens ofnJ per bit, which is on the same order as the
communication cost reported in the literature [5, 18].

Different from transmission cost that depends on the outputof the
fusion function, the fusion cost is mainly determined by theinputs of
the fusion function. Therefore, in addition to transmission cost, the
fusion cost can significantly affect routing decisions wheninvolving
data aggregation. In our prior work [9], we presented a randomized
algorithm termedMinimum Fusion Steiner Tree (MFST)that jointly
optimizes over both the fusion and transmission costs to minimize
overall energy consumption. MFST is proved to achieve a routing
tree that exhibits5

4
log(n + 1) approximation ratio to the optimal

solution, wheren denotes the number of source nodes.
While MFST has been shown to outperform other routing algo-

rithms includingShortest Path Tree(SPT),Minimum Spanning Tree
(MST), andShallow Light Tree(SLT) in various system settings,
it assumes that aggregation is performed at the intersection nodes
whenever data streams encounter. However, as we shall show be-
low, such a strategy may introduce unnecessary energy consump-
tion. Specifically, performing fusion at certain nodes may be less
efficient than simply relaying the data directly. This observation
motivates us to design an adaptive fusion strategy that not only opti-
mizes information routes, but also embeds the decisions as to when
and where fusion shall be performed in order to minimize the total
network energy consumption.

1In this paper we will consider “aggregation” and “fusion” inter-
changeable, denoting the data reduction process on intermediate
sensor nodes.
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1.1 Motivation
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Figure 1: Fusion benefit/disadvantage in sensor networks.

Fig. 1 depicts a sensor network where sensor nodes are deployed
on grid and sensed information of the source nodes is to be routed to
sink t. Each hop has identical unit transmission costc0. Assume the
fusion cost is linear to the total amount of incoming data, and the
unit fusion cost isq0. According to MFST, nodesu andv initially
aggregate data of areasA andB, respectively. As the sink is far
away,u andv shall further aggregate their data and then send one
fused data to the sink. Assume that nodev is selected as the aggre-
gation point and letw(u) andw̃(v) respectively denote the amount
of data atu andv before the aggregation betweenu andv. Let us
also assume that the amount of resultant aggregated data atv can be
expressed asw(v) = (w(u) + w̃(v))(1 − σuv), whereσuv repre-
sents the data reduction ratio owing to aggregation. In thisscenario,
the total energy forv to aggregate and deliver the data to the next
hop, nodes, is c0(w(u)+ w̃(v))(1−σuv)+ q0(w(u)+ w̃(v)). On
the contrary, ifv forwards bothu andv’s data directly to the next
hop without performing aggregation, the total energy consumption
at v is c0(w(u) + w̃(v)). Fromv’s point of view, to save energy,
it shall not perform data fusion but simply relayu’s data as long as
σuv < q0

c0
.

However, the above conclusion is only valid if nodev is selfish
and noncooperative, as the decision of whether to fuse or notat v
will also impact the energy consumption of the whole path from v
to sinkt. If the data is not fused atv, succeeding relaying nodes will
incur additional communication cost due to higher payload.There-
fore, in order to optimize the whole network energy consumption,
nodev’s decision has to be based on a network-centric point of view,
i.e., the effect on the total network energy consumption.

In this example, ifv performs data fusion, the total energy con-
sumption of the route fromv to t, assuming there areL hops in
between, isLc0(w(u) + w̃(v))(1 − σuv) + q0(w(u) + w̃(v)).
On the contrary, ifv does not perform data fusion, the total en-
ergy consumption of the same route is simply the total relaying cost,
Lc0(w(u) + w̃(v)). To minimize thetotal energy consumption of
the network, v should perform data fusion as long asσuv < q0

Lc0
.

This simple example reveals that to minimize total network en-
ergy consumption, the decision at an individual node has to be based
on data reduction ratio due to aggregation, its related cost, and its ef-
fect on the communication costs at the succeeding nodes. Although
the criteria can be easily obtained for this simple example,a sen-
sor network confronting various aggregation/communication costs,
and data/topology structures, undoubtedly will dramatically aug-
ment the difficulty of the fusion decisions. Hence, the motivation
of this paper is to design an energy efficient routing algorithm that
not only jointly explores the data correlation structure and network
topology, but also adaptively determines if aggregation shall occur
on the routing nodes.

1.2 Related Work
If the complete knowledge of all data correlations is available

in advance at each source, theoretically the best routing strategy is
to use a distributed source coding typified by Slepian-Wolf coding
[14]. An optimal rate allocation algorithm for nodes in the network
is proposed in [2] and SPT is employed as the routing scheme. How-
ever, implementation of distributed source coding in a practical set-
ting is still an open problem and likely to incur significant additional
cost because of the requirement on the knowledge of network wise
correlation.

Routing with data aggregation can be generally classified into two
categories: routing-driven and aggregation-driven. Routing-driven
algorithms [5, 8, 17, 6, 7] emphasize source compression at each in-
dividual node and aggregation occurs opportunistically when routes
intersect. On the contrary, routing paths in aggregation-driven algo-
rithms [3, 2, 15] are heavily dependent on data correlation in order
to fully benefit from information reduction resulting from data ag-
gregation. In [2], the authors proved that the minimum-energy data
gathering problem is NP-complete by applying reduction set-cover
problem and claimed that the optimal result is between SPT and the
travelling salesman path. In [3], a hierarchical matching algorithm is
proposed resulting in an aggregation tree with a logarithmic approx-
imation ratio to the optimal for all concave aggregation functions. In
this model, each node can theoretically obtain the joint entropy of its
subtree to receive the maximal aggregation ratio. However,aggre-
gation only depends on the number of nodes in the subtree rooted at
the aggregation node regardless of the correlation among the data.

Indeed, the idea of embedding fusion decisions in routing has
been implicitly explored in the literature. For example, LEACH [5]
is a cluster-based protocol, in which sensors directly senddata to
cluster heads where data fusion is performed. Aggregated data is
then delivered to the sink through multi-hop paths. The authors of
[15] proposed an optimal algorithm MEGA for foreign-codingand
an approximating algorithm LEGA for self-coding. In MEGA, each
node sends raw data to its encoding point using directed MST,and
encoded data is then transmitted to the sink through SPT. LEGA
uses SLT [4, 16] as the data gathering topology, and achieves2(1 +√

2) approximation ratio for self-coding. LEGA and MEGA implic-
itly assume that fusion stops after first aggregation as encoded data
cannot be recoded again. However, the decision regarding fusions
in these schemes are rather static and cannot adapt to network/data
structure changes. As demonstrated earlier, this decisionshall be
based on various conditions of the networks in order to minimize
energy consumption.

1.3 Our Contribution
In this paper, we proposeAdaptive Fusion Steiner Tree(AFST), a

routing scheme that not only optimizes over both transmission and
fusion costs, but also adaptively adjusts its fusion decisions for sen-
sor nodes. By evaluating whether fusion is beneficial to the net-
work based on fusion/transmission costs and network/data struc-
tures, AFST dynamically assigns fusion decisions to routing nodes
during the route construction process. Analytically we prove that
AFST outperforms MFST. Through an extensive set of simulations,
we demonstrate that AFST provides significant energy savingover
MFST (up to 70%) and other routing algorithms under a wide range
of system setups. By adapting both the routing tree and fusion de-
cisions to various network conditions, including fusion cost, trans-
mission cost, and data structure, AFST provides a routing algorithm
suitable for a broad range of applications.

In particular, we prove that the routing tree resulting fromAFST
is partitioned into two parts: a lower part where aggregation is al-
ways performed, and an upper part where no aggregation occurs.
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The result can be readily applied in designing clustering algorithms
in sensor networks: based on where fusion stops, the networkcan
be partitioned into clusters where data aggregation is confined to be
within the clusters only.

The remainder of this paper is organized as follows. In Section 2,
we describe the system model and formulate the routing problem.
Section 3 gives an overview of the randomized approximationalgo-
rithm MFST. Section 4 presents in detail the design and analysis of
the proposed algorithm AFST. In Section 5 we experimentallystudy
the performance of AFST. Section 6 concludes the paper.

2. SYSTEM MODEL AND PROBLEM FOR-
MULATION

2.1 Network Model
We model a sensor network as an undirected graphG = (V, E)

whereV denotes the node set andE the edge set representing the
communication links between node-pairs. We assume a setS ⊂ V
of n nodes, are data sources of interests and the sensed data needs
to be gathered at a special sink nodet ∈ V .

We refer to the process of gathering information during a cer-
tain time interval from each sensor node inS to sink t as around.
Therefore, at each round, data from all nodes inS has to be sent to
t, where it is further processed.

For a nodev ∈ S, we define node weightw(v) : S → ℜ+, denot-
ing the amount of information outgoing fromv in every round. Evi-
dently, various data fusion algorithms will result in different weights
and therefore a node’s weight isdynamicin the process of data gath-
ering.

An edgee ∈ E is denoted bye = (u, v), whereu is the start
node andv is the end node. The weight of edgee is equivalent to
the weight of its start node, i.e.,w(e) = w(u). Two metrics,t(e)
andf(e), are associated with each edge, describing the transmission
cost and fusion cost on the edge, respectively.

2.2 Transmission and Fusion Costs
Transmission cost,t(e) : E → ℜ+ denotes the cost for transmit-

ting w(e) amount of data fromu to v. We abstract the unit trans-
mission cost on edgee asc(e) and thus the transmission costt(e)
of edgee is given by

t(e) = w(e)c(e). (1)
Notice thatc(e) is edge-dependent and hence can accommodate var-
ious conditions per link, for example, different distancesbetween
nodes and local congestion situations.

Fusion cost,f(e) : E → ℜ+ denotes energy consumption for
fusion process at theendnodev. f(e) depends on the amount of
data to be fused as well as the algorithms utilized. In this paper, we
use a variableq to abstract the unit fusion cost. Then the cost for

fusing the data of nodesu andv is f(e) = q ·
(
w(u) + w(v)

)
.

Noticeq is variable from edge to edge and dependent on the amount
of data to be fused. Since data fusion is performed by intermediate
nodes to aggregate their own data with their children’s, in order to
avoid confusion, we usẽw(·) to denote the weight of a nodebefore
current data fusion. Thus, the above fusion cost can be rewritten as

f(e) = q ·
(
w(u) + w̃(v)

)
, (2)

if nodev is the fusion point.
Although both transmission and fusion costs are link-based, we

remark that they cannot be simply combined together and hence rely
on existing techniques solely based on the transmission cost to solve
this problem. The reason is that the fusion cost on an edge is deter-
mined by the inputs of the fusion function. The inputs include both

the incoming data from other nodes and the data produced by the fu-
sion point itself. On the contrary, the transmission cost onan edge
is only determined by the weight of the start point of the edge. In
other words, for a fusion point, the transmission cost is only deter-
mined by the output of the fusion function. More evidently, this can
be seen from Equations (1) and (2).

2.3 Correlation and Data Aggregation
In-network data aggregation captures the redundancy amongdata

collected by different sensors and consequently aims at load reduc-
tion over the network. We assume that data aggregation can poten-
tially take place atany intermediate node along the route: an in-
termediate node can explore the redundance among multiple child-
nodes’ data and aggregate all into one compressed data stream.

Key to a sensor data routing protocol is the data aggregationra-
tio. Unfortunately, this ratio is heavily dependent on application
scenarios. Here, we use an abstract parameterσ to denote the data
reduction ratio due to aggregation. To be more specific, if node v
is responsible for fusing nodeu’s data (denoted byw(u)) with its
own, we havew(v) = (w(u) + w̃(v))(1 − σuv), wherew̃(v) and
w(v) denote the data amount of nodev before and after fusion. Ev-
idently,σuv is dependent on the correlation between the sensed data
of u andv: larger correlation will result in more data reduction and
hence largerσuv.

Due to aggregation cost, nodev may choose not to perform data
aggregation in order to realize maximum energy saving. Instead, it
will simply relay the incoming data of nodeu. In this case, the new
weight of nodev is simplyw(v) = (w(u) + w̃(v)).

Jointly considering both cases described above, we can summa-
rize the aggregation function at nodev as

w(v) = (w(u) + w̃(v))(1− σuvxuv), (3)
wherexuv ∈ {0, 1} denotes whether fusion occurs on edgee =
(u, v).

2.4 Problem Formulation
Given the source node setS and sinkt, our objective is to design

a routing algorithm that minimizes the energy consumption when
delivering data from all source nodes inS to the sinkt. Not only
do we need to design routing paths back hauling sensed information
driven by information aggregation, but also we have to optimize
over the decisions as to whether aggregation shall occur or not on a
particular node.

Mathematically, a feasible routing scheme is a connected sub-
graphG′ = (V ′, E′) whereG′ ⊂ G contains all sources (S ⊂ V ′)
and the sink (t ∈ V ′). Depending on whether fusion is performed or
not, the edge setE′ can be divided into two disjoint subsetsE′

f and
E′

n, whereE′
f = {e|e ∈ E′, xe = 1} andE′

n = {e|e ∈ E′, xe =
0}. Our goal is to find a feasible subgraphG∗ such that

G∗ = argminG′

∑

e∈E′

f

(
f(e) + t(e)

)
+

∑

e∈E′

n

t(e) (4)

It is evident that a non-tree solution costs more than a routing
scheme based on a tree structure [8, 1]. It has been shown thateven
if only transmission cost is considered, the aforementioned prob-
lem is NP-complete [2]. Heuristic algorithms have therefore been
designed in literature for finding approximations to the minimum
transmission cost tree [15, 2]. Since a new fusion cost is incorpo-
rated into our design, the resulting problem is NP-hard.

2.5 Discussion
If it is the policy of the network that every node performs fu-

sion, the choice on fusion will be eliminated which results in E′
n =

∅. Thus the objective function in Equation (4) will degenerate to
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∑
e∈E′(f(e) + t(e)). Towards this end, MFST [9] provides an ap-

proximation routing algorithm that jointly optimizes overboth the
transmission and fusion costs. It has been shown in [9] that the
resultant routing tree is bounded within5

4
log(n + 1) ratio to the

optimal solution.
However, from the previous section, we have concluded that this

approach is not necessarily to the best interest of the network. To in-
corporate the flexibility of fusion decision, which undoubtedly will
affect the routing structure in turn, we design in this paperAdaptive
Fusion Steiner Tree (AFST)algorithm that adaptively adjusts the fu-
sion decision in the network based on data correlation, fusion cost,
transmission cost, and network topology.

As AFST is based on MFST, in the next section we will give
a brief overview of MFST. Following that, we will detail our new
solution.

3. BRIEF OVERVIEW OF MFST

3.1 MFST Algorithm
The minimum fusion steiner tree (MFST) is based on the tech-

niques presented in [11, 3]. It first pairs up source nodes (orsource
with the sink) based on defined metrics and then randomly selects a
center node from the node-pair. The weight of the non-centernode
will be transferred to the center node, paying appropriate transmis-
sion and fusion costs on that edge. Subsequently, the non-center
node will be eliminated and the center node with aggregated weight
will be grouped as a new set of sources. This process will thenbe
repeated on the new set until only the sink is left. The algorithm is
detailed below for the sake of completeness.

MFST ALGORITHM:

1. Initialize the loop indexi = 0. DefineS0 = S ∪ {t}, and
E∗ = ∅. Let w0(v) for anyv ∈ S denote its original weight,
and letw0(t) = 0.

2. For every pair of nodes(u, v) ∈ Si, find the minimum cost
path(u, v) in G according to the metric

M(e) = q(wi(u) + wi(v)) + α(wi(u), wi(v))c(e) (5)

whereα(wi(u), wi(v)) = wi(u)wi(v)(wi(u)+wi(v))

w2
i
(u)+w2

i
(v)

for non-

sink pair(u, v), andα(wi(u), wi(v)) = wi(u) if v is t. De-
fine Ki(u, v) to be the distance under metricM(e) of this
path.

3. Find minimum-cost perfect matching2 between nodes inSi.
Let (ui,j , vi,j) denote thejth matched pair inSi, where1 ≤
j ≤ |Si|/2. If there is only one non-sink node left after
matching, match it to itself without any cost, and consider
it as the last “single-node pair” inSi.

4. For each matched pair(u, v), add those edges that are on the
path definingKi(u, v) to setE∗.

5. For each pair of non-sink matched nodes(u, v), chooseu to

be the center with probability w2
i (u)

w2
i
(u)+w2

i
(v)

. Otherwise, node

v will be the center. For pair(u, t), chooset to be the center.

6. Transport weight of non-center node to its correspondingcen-
ter node. The weight of the center satisfieswi+1(center) =
(wi(u) + wi(v))(1− σuv).

2Minimum-cost perfect matching is a matching of edges in a graph
that guarantees the total cost (distance) for all pairs under M(e) is
minimized. For polynomial-time algorithms for this problem, see
[12].

7. Remove all non-center nodes fromSi, then the remaining
center nodes induceSi+1.

8. If Si+1 contains only the sink, we returnG∗ = (V ∗, E∗),
whereE∗ is the set of edges we constructed andV ∗ includes
the source nodes and the sink. Otherwise incrementi and
return to step 2.

3.2 Discussion
MFST jointly considers both fusion and transmission costs.It has

been shown that it yields5
4
log(n + 1) approximation ratio to the

optimal solution. Although extensive experiments [9] haveshown
that MFST can outperform other routing algorithms including SLT,
SPT, and MST, one optimizing dimension is still missing, namely
the aforementioned fusion decisions at sensor nodes. As MFST re-
quires fusion to be performed along a routing path whenever pos-
sible, unnecessary energy may be wasted due to the inefficiency of
fusion, for example, little information reduction due to weak corre-
lation and high fusion cost.

Specially, this phenomena can be magnified in the proximity of
the sink itself. As aggregated information streams are approach-
ing the sink, their correlation decreases which will introduce small
data reduction owing to fusion. At the same time, directly relay-
ing the data will not incur high communication cost as fewer hops
are needed for relaying. Naturally, in this scenario, thereis a high
probability for direct relaying to outperform aggregation.

To solve this problem, we design AFST in the next section where
adaptive fusion decisions will be incorporated into the routing con-
struction process.

4. DESIGN AND ANALYSIS OF AFST
In this section, we first introduce fusion decisions into therouting

structure generated by the MFST scheme. To solve this optimiza-
tion problem, by exploiting certain network properties, wepropose a
heuristic solution termedBinary Fusion Steiner Tree(BFST), which
is analytically shown to have better performance than MFST.How-
ever, BFST is still constrained to the tree structure from MFST. By
employing SPT rather than the structure obtained via MFST, where
proper, we improve BFST to an enhanced algorithm calledAdaptive
Fusion Steiner Tree(AFST). In turn, AFST is analytically shown to
be capable of achieving better performance than BFST.

4.1 3-D Binary Tree Structure
In order to facilitate our development from MFST to AFST, we

first employ a 3-D binary tree structure to describe the process of the
hierarchical matching technique used in MFST. Fig. 2 illustrates a
mapping example of original aggregation tree and its transforma-
tion. From bottom to top, the edges between two layers represent
the result of node matching and center selection in each iteration of
MFST.

Assuming there aren sources in the aggregation treeG∗ ob-
tained via MFST, to perform the transformation, we first cloneN =
⌈log(n + 1)⌉ copies ofG∗, denoted byG1, G2, . . . , GN . For con-
venience, we label the originalG∗ as G0 and arrange them into
vertical layers as shown in Fig. 2(b). For simplification, wewill
refer nodev’s clone in layerk asvk. Subsequently, we map the
original aggregation treeG∗ as shown in Fig. 2(a) to a new graph
Ĝ∗ embedded into these clones.Ĝ∗ is the targeted 3-D binary tree.
The process is to map the result of each matching stagek in MFST
to the edges betweenGk andGk+1. If we matchu andv in stagek
andv is selected as the center node in MFST, we first add an edgee
linking its clones inGk andGk+1 with zero unit transmission cost
c(e) = 0. This edge is termed virtual edge (dotted line). Then we
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connectuk to vk+1 with the same unit communication costc(e) as
in G∗.

The result of this transformation is a binary tree which is rooted
at the sink inGN and has all leaves inS residing inG0. For each
sourcev ∈ S, there is a path going through all clones ofG∗, from
v in G0 to the sink inGN , via exactlyN hops.

In order to guarantee that the resulting 3-D tree is binary, the num-
ber of source nodes is assumed a power of 2 minus 1. If this is not
the case, dummy nodes with weight 0 can be created as needed to
complement the binary tree, corresponding to the single node pair
matching cases. These dummy nodes have aggregation ratio 0 with
any other nodes and incur zero fusion cost. As virtual edges and
dummy nodes/edges incur zero cost for communication and fusion,
the 3-D binary tree is equivalent to the original aggregation tree.

For each nodevk ∈ Ĝ∗ (the 3-D binary tree) in layerk, let
wvk

denote the weight of nodev after combining the incoming
data from lower layers (with or without data fusion). Each edge
ek = (uk, vk+1) ∈ Ĝ∗, between thek-th layer and the(k + 1)-th
layer, is characterized by four parameters: edge weightwek

= wuk
,

unit transmission costcek
, data aggregation ratioσek

, and unit fu-
sion costqek

. Note that virtual edges havecek
= 0 andσek

= 1
(full aggregation), and dummy edges havewek

= 0 andσek
= 0

(no aggregation).
To incorporate fusion decision, we usexek

∈ {0, 1} to represent
whether or not information on edgeek is fused at the end node of
this edge. Therefore, the optimal routing structure is an optimization
problem overxek

as well as the tree structure. Towards this end, we
presentBinary Fusion Steiner Tree(BFST), an approximate solution
to this routing problem.
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Figure 2: Expression of data aggregation tree in a 3-D binary
tree structure. Solid lines in (b) correspond to edges in (a)and
dotted lines represent virtual edges.

4.2 Binary Fusion Steiner Tree (BFST)
In BFST, we first obtain a routing tree using MFST algorithm,

where fusion is performed by any intermediate node. Subsequently,
we evaluate whether fusion on individual nodes will reduce the en-
ergy consumption of the network. If not, the fusion process on the
node will be cancelled and instead data will be directly relayed.

BFST ALGORITHM:

1. Run MFST algorithm to obtain routing tree with fusion at ev-
ery node possible. Convert the resulting aggregation tree to
the 3-D binary tree as described above. For all edges in the
tree, setxek

= 1.

2. From bottom to top, calculate the fusion benefit for each edge
in the aggregation tree (excluding virtual edges), which can

represent the energy saving by data fusion on that edge. Let
∆uk,vk+1

denote the fusion benefit of edgeek = (uk, vk+1).
It is defined as

∆uk,vk+1
= (wuk

+ wvk
)C(vk+1, tN )

−
(
(wuk

+ wvk
)(1 − σek

)C(vk+1, tN )

+ quk,vk+1
(wuk

+ wvk
)
)

(6)

whereC(vk+1, tN) denotes the summation of unit transmis-
sion costs fromvk+1 to tN in MFST. if ∆uk,vk+1

> 0, set
xek

= 1 ; otherwise, setxek
= 0.

3. For all edges withxuk,vk+1
= 0, setxvk,vk+1

= 0 to their
corresponding virtual edges.

In our analysis, we will employ the 3-D binary tree describedin
the previous subsection. To simplify the analysis, we assume that in
BFST, the data reduction ratioσ is non-increasing on each path from
the source to the sink while the unit fusion costq is non-decreasing,
excluding virtual edges. This assumption can be naturally justified.
First, strong correlation and thus high aggregation ratio usually are
due to spatial correlation resulting from short distances between
nodes. In turn, these short distances will lead to small unittrans-
mission cost. Based on the metricM(e) defined in MFST (which
is a combination of fusion cost and transmission cost), it will match
strongly correlated nodes before matching weakly correlated nodes.
Therefore, for edges on a source-sink path, the aggregationratio
for edges near the sink will not be larger than those further away.
Reflected on the 3-D binary tree, this will lead to non-increasing
σ on a particular source-sink path. The reason for skipping virtual
edges is that their data aggregation ratio is set to 1 and doesnot
affect the actual energy consumption of the network. Second, the
unit fusion costq is determined mainly by the complexity of the fu-
sion algorithm and the input data set. As the information is being
routed toward the sink, the data size and complexity will naturally
increase due to aggregation on the route. Therefore, performing fu-
sion thereon will incur more computation and hence more energy
consumption per unit data.

Based on this assumption, we first introduce Lemma 1.

uk vk

vk+1

pk sk

sk+1

sk+2

tN

ek+1

ek

Figure 3: A fraction of the binary fusion tree for BFST: solid
lines represent actual edges in the aggregation tree; dotted lines
denote virtual edges added for analysis, and dash-dotted lines
are paths to the sink.

LEMMA 1. xe is non-increasing on each path from a source to
the sink in BFST.

PROOF. Let Fig. 3 represent a branch of the binary fusion tree
produced by BFST. On any path from a source node to the sink, as-
sumeek is the first edge withxek

= 0. We will enumerate different
cases.
Case 1: If both ek and its succeeding edgeek+1 are not virtual
edges, as exemplified byek = (uk, vk+1) andek+1 = (vk+1, sk+2)
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shown in Fig. 3, we have∆uk,vk+1
≤ 0. From Equation (6), we

haveσuk,vk+1
C(vk+1, tN) ≤ quk,vk+1

. Asσuk,vk+1
≥ σvk+1,sk+2

andquk,vk+1
≤ qvk+1,sk+2

based on our assumption, and the to-
tal unit transmission cost fromvk+1 to tN is more than that from
sk+2 to tN , i.e., C(vk+1, tN ) > C(sk+2, tN ), we can infer that
σvk+1,sk+2

C(sk+2, tN) < σuk,vk+1
C(vk+1, tN) ≤ qvk+1,sk+2

.
This will lead to∆vk+1,sk+2

< 0. Then we havexvk+1,sk+2
= 0.

If ek is not a virtual edge but its succeeding edgeek+1 is, as
exemplified byek = (pk, sk+1) and ek+1 = (sk+1, sk+2), the
same conclusion can be obtained similarly.
Case 2: If ek is a virtual edge, as exemplified byek = (vk, vk+1),
according to BFST algorithm, its matching pair edgee′k = (uk, vk+1)
must havexuk,vk+1

= 0. From the result of Case 1, we also have
xvk+1,sk+2

= 0.
Inductively, we can conclude that all succeeding edges of anedge

that does not perform fusion will not perform fusion either.Since
the fusion decisionxek

∈ {0, 1}, it is evident thatxe is non-increasing
on the path from source to sink.

THEOREM 1. The total cost of BFST is no more than MFST.

PROOF. Since BFST retains the same tree structure as MFST, for
all edges withxek

= 1, the BFST and MFST schemes will consume
the same amount of energy. For any edge withxek

= 0, owing
to Lemma 1, any edgeei on the path from this edge to the sink
satisfyxei

= 0. This means that all edges on the path afterek have
negative effect on energy conservation. In other words, performing
fusion will introduce additional cost. Therefore, BFST is abetter
algorithm than MFST by avoiding fusion when direct relayingis a
better choice.

Intuitively, Lemma 1 depicts that the routing tree generated by
BFST can be divided into two parts: the lower part where data ag-
gregation is always performed and the upper part where direct relay-
ing is employed. As no data aggregation is performed in the upper
part of the tree, instead of sticking to MFST, we can further im-
prove the routing structure to reduce energy consumption. Inspired
thereby, we develop AFST.

4.3 Adaptive Fusion Steiner Tree (AFST)
AFST further improves BFST by introducing SPT into the routing

tree. Similar to BFST, it performs a matching process as in MFST
in order to jointly optimize over both transmission and fusion costs.
During the matching process, it also dynamically evaluatesif fusion
shall be performed or not. If it is determined at a particularpoint
that fusion is not beneficial to the network, as shown by the analysis
of BFST, we can conclude that any succeeding nodes on the routing
path shall not perform fusion either. Consequently, we can employ
shortest path as the strategy for the remainder of the route as shortest
path is optimal for routing information without aggregation. Our
analysis shows that AFST achieves better performance than BFST
and thereon MFST.

Below, we summarize AFST algorithm. The process is similar to
MFST but with fusion decision incorporated.

AFST ALGORITHM:

1. Initialize the loop indexi = 0. DefineS0 = S ∪ {t}, and
E∗ = ∅. Let wv0

for anyv ∈ S equal to its original weight,
and letwt0 = 0.

2. For every pair of nodes(u, v) ∈ Si, find the minimum cost
path(u, v) in G according to the metric

M(e) = qui,vi+1
(wui

+ wvi
) + α(wui

, wvi
)c(e)

and defineKi(u, v) to be the distance under metricM(e) of
this path.

3. Find minimum-cost perfect matching between nodes inSi. If
there is only one non-sink node left after matching, match itto
itself without any cost, and consider it as the last “single-node
pair” in Si.

4. For each matched pair(u, v), calculate the fusion benefit for
nodeu andv respectively according to this new definition:

∆ui,vi+1
= (wui

+ wvi
)SP (vi, t)

−
(
(wui

+ wvi
)(1 − σek

)SP (vi, t)

+qui,vi+1
(wui

+ wvi
)
)
, (7)

whereSP (vi, t) denotes the summation of unit transmission
cost fromvi to the sinkt using shortest path.
We call (u, v) a non-fusion pair if there is no fusion benefit
regardless which node is selected as the center. It means that
the two following inequations are satisfied

∆ui,vi+1
< 0 and ∆vi,ui+1

< 0. (8)
Otherwise, we call them a fusion pair.

5. For each non-fusion pair(u, v), add those edges that are on
the shortest paths of(u, t) and(v, t) to setE∗

n, remove both
nodesu andv from Si.

6. For each fusion pair(u, v),

• Add those edges that are on the path definingKi(u, v)
to setE∗

f .

• chooseu to be the center with probability
w2

ui

w2
ui

+w2
vi

.

Otherwisev will be the center. For pair(u, t), chooset
to be the center.

• Transport weight of non-center node to its correspond-
ing center node. According to Equation (3), the weight
of the center satisfieswi+1(center) = (wui

+wvi
)(1−

σui,vi
).

• Remove all non-center nodes fromSi, then the remain-
ing center nodes induceSi+1.

7. If Si+1 is empty or contains only the sink, returnG∗ =
(V ∗, E∗

f +E∗
n), whereE∗

f andE∗
n are the sets of fusion edges

and non-fusion edges, respectively, andV ∗ includes source
nodes and the sink. Otherwise, incrementi and return to step
2.

The size of setSi is reduced at least half after one run of the
algorithm. However, the process may terminate sooner than MFST
and BFST if fusion is deemed unworthy in the early iterations.

THEOREM 2. The total cost of AFST is no more than BFST.

PROOF. The tree resulting from AFST also contains a lower part
where aggregation is always performed and an upper part where no
aggregation occurs. The lower part of AFST is the same as thatof
BFST due to their MFST based matching procedure and thus incurs
the same cost as well. The task left is then to show that for anynon-
fusion pair(u, v) satisfying inequality (8), their transmission costs
based on SPT in AFST is no more than the corresponding routing
costs, including fusion and transmission costs, incurred in BFST.
The proof is given below.

From (8), we haveσuk,vk+1
SP (vk, t) < quk,vk+1

and
σvk,uk+1

SP (uk, t) < qvk,uk+1
whereSP (vk, t) denotes the sum-

mation of unit transmission cost fromvk to the sinkt using short-
est path. Without loss of generality, we assume thatv is selected
as the center in BFST, and our goal is to provewvk

SP (vk, t) +
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wuk
SP (uk, t) < wuk

c(uk, vk+1)+quk,vk+1
(wuk

+wvk
)+(wuk

+
wvk

)(1 − σuk,vk+1
)SP (vk+1, t). For that, we have

wvk
SP (vk, t) + wuk

SP (uk, t)

≤ wvk
SP (vk+1, t) + wuk

(c(uk, vk+1) + SP (vk+1, t))

= (wuk
+ wvk

)SP (vk+1, t) + wuk
c(uk, vk+1)

= (wuk
+ wvk

)(1 − σuk,vk+1
+ σuk,vk+1

)SP (vk+1, t)

+wuk
c(uk, vk+1)

≤ (wuk
+ wvk

)(1 − σuk,vk+1
)SP (vk+1, t)

+quk,vk+1
(wuk

+ wvk
) + wuk

c(uk, vk+1)

When it is determined that the fusion benefit is positive for every
node, the tree structure obtained from AFST degenerates to the tree
from MFST. However, when fusion is not always beneficial for all
nodes, AFST will significantly outperform MFST, which will be
demonstrated in our experimental study.

4.4 Application in Clustering
Clustering in sensor networks is often used to group closelycorre-

lated sensor together in order to perform local decision making, de-
tection, or classification. To facilitate these operations, fusion and
transmission cost shall be considered due to severe resource con-
straints. While the concept of clustering has been widely applied,
clustering itself is often based on static techniques mainly based on
geographic proximity, fixed cluster number, or certain cluster sizes.

The two-layer structure of AFST naturally provides a new cluster-
ing technique for sensor networks. Separated by the routingnodes
not performing fusion, the lower part of AFST routing tree iscom-
posed of discrete branches within which data of every memberwill
be fused together. These branches can be considered as clusters
decided by energy consumption due to fusion and communication.
Therefore, AFST provides a clustering algorithm as a byproduct
that is energy efficient for gathering correlated data. Sensors in the
same cluster will employ MFST based routing structure whileclus-
ter heads (roots of the branches) will directly send the aggregated
data to the sink via shortest path without fusion. Since AFSTis a
randomized algorithm, we can rerun the process to generate adif-
ferent structure and therefore re-assign the role of cluster heads to
different nodes. Load balancing in terms of fusion is thus naturally
implemented.

5. EXPERIMENTAL STUDY
In this section, we compare the performance of AFST with other

routing algorithms. In particular, we select MFST, SPT, MST, and
SLT to represent the class of routing schemes where fusion occurs
on all routing nodes if possible. For routing schemes that does
not perform aggregation, we employ SPT as it is the optimal rout-
ing strategy in this class. To distinguish it from the SPT scheme
with data aggregation opportunistically occurs where information
streams intersect, we denote the SPT without performing aggrega-
tion by SPT-nf, short name for SPT-no-fusion.

We study the impact of network connectivity, correlation coef-
ficient, and unit fusion cost on different algorithms. Concurring
with our design goal and analysis of the AFST algorithm, our key
finding of the experiments is that AFST can adapt itself to a wide
range of data correlations and fusion cost. While other algorithms
may achieve better performance in some extreme cases, they suffer
from varying situations and hence perform poorly in generalscenar-
ios. Furthermore, AFST can adaptively adjust the number of fusion
nodes according to the varying network situations, which further
improves its performance especially when compared to MFST.

5.1 Simulation Environment
In our setup, 100 sensor nodes are uniformly distributed in are-

gion of a50m × 50m square. We assume that each node sends one
400-byte packet as original sensed data to the sink at a corner of this
square in each round. All sensors act as both sources and routers.
We also performed sets of experiments of different number ofsen-
sors and different sizes of field, the results are similar andomitted
here.

We assume the maximal communication radius of a sensor isrc,
i.e, if and only if two sensor nodes are withinrc, there exists a com-
munication link between them. By varyingrc, we can control the
network connectivity and hence equivalently the network density.
Based on the model presented in [5], we instantiate unit transmis-
sion cost on each edge,c(e) = βdγ +ε, when node distanced < rc.
We setγ = 2 andβ = 100pJ/bit/m2 to calculate the energy con-
sumption on the transmit amplifier.ε denotes energy consumption
per bit on the transmitter circuit and receiver circuit. Typical values
of ε range from20 to 200nJ/bit according to [18]. We set it to be
100nJ/bit in our simulation.

The correlation model employed here is an approximated spatial
model where the correlation coefficient (denoted byρ) decreases
with the distance between two nodes provided that they are within
the correlation range,rs. If two nodes are more thanrs distance
apart, simply the correlation coefficientρ = 0. Otherwise, it is
given byρ = 1 − d/rs, whered denotes the distance between the
nodes. If nodev is responsible for fusing nodeu’s data (denoted
by w(u)) with its own, we assume that the weight of nodev after
fusion is given by

w(v) = max(w(u), w̃(v)) + min(w(u), w̃(v))(1 − ρuv)

wherew̃(v) andw(v) respectively denote the data amount of node
v beforeandafter fusion.

Recall that we useσ to denote the data reduction ratio due to ag-
gregation. From Equation (3),w(v) = (w(u) + w̃(v))(1 − σuv),
we can get that the data reduction ratioσuv is proportional to the
correlation coefficientρ. By varying the correlation rangers, we
can control the average correlation coefficient of the network, and
further control the average data reduction after data fusion. For ex-
ample, a very smallrs essentially eliminates the correlation among
sensors (ρ → 0), so that the amount of output data is equal to the
summation of all input data. While an extremely largers makes the
sensed data completely redundant (ρ → 1), as a result, the fused
data size equals to the bigger data size between the two inputdata.
In our simulation, we useρ instead ofσ to describe the impact of
data structure for ease of understanding. For the fusion cost, we as-
sume thatq is constant and useω to denote the average fusion cost
per bit at each node.

5.2 Impact of Network Connectivity
By varyingrc, the communication range of a node, we can control

the connectivity of the network. The largerrc is, the more strongly
the network is connected. Here we set the average unit fusioncost to
be80nJ/bit,which is a typical value for image fusion [10], and set
the correlation range to be50m to simulate a network with moderate
data reduction. Fig. 4 summarizes the performance of all algorithms
studied.

As we can see, MST wastes precious energy on data fusion at
numerous relaying nodes and hence incurs high cost when the data
reduction is not high. On the contrary, SPT wastes energy owing
to redundant data transmissions and also induces high cost since it
tends to use fewer hops to reach the sink. As SLT is a hybrid tree
structure balancing MST and SPT, it achieves better performance
than both of them. However, inherently constrained by its algorithm
construction, energy consumption of SLT is still relatively high.
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Figure 4: Impact of network connectivity to energy consump-
tion.

As MFST explicitly considers fusion cost, it can effectively trade
off between multi-hop relay benefitting from high data reduction
ratio and single-hop transmission benefitting from less fusion cost.
In a dense network with strong network connectivity, the benefit
due to this flexibility to the network energy cost is more apparent.
Whenrc is larger than 20m, MFST performs better than all other
algorithms except AFST.

As expected, AFST performs well in all communication ranges,
almost steadily outperforming all other algorithms. This can be ex-
plained as follows. In a network with moderate data correlation, data
from nodes that are far apart has little correlation and hence leads to
small reduction ratio if aggregated. Therefore, performing data fu-
sion over them cannot significantly benefit the network but still incur
the fusion cost. AFST can effectively avoid such situationsby eval-
uating fusion benefit. If the data reduction ratio due to correlation
together with the fusion cost could not justify the fusion process,
it employs the shortest paths toward the sink by using directrelay.
Therefore, the cost of AFST continuously decreases along with the
increase of communication range. Notably, it has significantly less
energy cost for weakly connected network resulting from short com-
munication range as well, which can be reasoned in the same way.
As shown in Fig. 4(b), the proposed AFST can save over40% en-
ergy compared to MST, up to35% energy to SPT, and about10%
to SLT when connectivity degree is high. Compared with MFST,
AFST can save around 10% of energy in weakly connected envi-
ronment while maintaining the same or better performance when
network is strongly connected.

5.3 Impact of Correlation Coefficient
In this simulation, we fix the transmission range to30m and unit

fusion cost to50nJ/bit, and study the impact of correlation co-
efficient to the performance of AFST. We increase the correlation
range,rs, from 0.2 to 2000m which corresponds to varyingρ from
0 to 1.

Fig. 5 depicts the total energy costs for AFST and other algo-
rithms like MFST, SPT, SLT, and SPT-nf. Naturally, costs of all
algorithms with data fusion decrease asρ increases. This exem-
plifies that data aggregation in sensor networks can greatlybenefit
the routing performance by reducing redundancy among correlated
data. As SPT-nf totally ignores data aggregation, its cost remains
constant.

When the data correlation in the network is very weak (ρ → 0),
AFST follows SPT-nf, the optimal solution, by avoiding any data
aggregation. When the data correlation in the network increases,
AFST dynamically adjusts its decisions accordingly by performing
data fusion partially in order to benefit from data aggregation and
resultant data reduction. When the data in network is highlycor-
related (ρ → 1), AFST follows MFST to pursue the most energy
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Figure 5: Impact of average correlation coefficient to energy
consumption.

saving by performing data fusion at each possible node. Due to this
dynamic adjustment, the cost of AFST is extremely smooth in the
whole range of the correlation coefficient and steadily outperforms
others.

5.4 Impact of Unit Fusion Cost
In this set of experiments, we study the impact of varying unit

fusion cost to the algorithms. Fig. 6 illustrates the results whenω,
the unit fusion cost, increases from10nJ/bit to 200nJ/bit.
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Figure 6: Impact of unit fusion cost to energy consumption(rc =
30m, rs = 20m).

Fig. 6(a) shows the total cost of AFST as compared with other
algorithms as the unit fusion cost increases. As we can see, the to-
tal costs of MFST and SLT increase unboundedly along with the
increase ofω, even though MFST has a lower slope. On the con-
trary, AFST follows the performance curve of MFST first and then
leans towards SPT-nf, the optimal solution when fusion costis high.
The figure can be best explained when we jointly examine it with
Fig. 6(b), which depicts the number of clusters, the branches of the
routing tree that always perform aggregation on their nodes. All al-
gorithms with full fusion are unable to stop fusion even whenfusion
cost is extremely high. However, for AFST, as shown in Fig. 6(b),
whenω is very small, there are only two fusion clusters. This de-
notes that data fusion is performed almost on all nodes, which takes
advantage of the low fusion cost. Whenω increases, AFST reduces
the number of fusion clusters due to reduced fusion benefit inorder
to balance the fusion cost and transmission cost. And whenω is
too large, AFST can achieve the same constant cost as SPT-nf by
completely stopping data fusion.

As described in Section 2, fusion cost may vary widely from net-
work to network, from application to application. Our experiments
show that among all algorithms, AFST can adapt best to a wide
range of fusion costs and hence be applicable to a variety of appli-
cations.
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5.5 The Number of Fusion Clusters in AFST
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Figure 7: The number of fusion clusters in AFST.

Fig. 7 illustrates the number of fusion clusters with varying cor-
relation coefficient and unit fusion cost. Whenρ → 0, the cluster
number equals 100, denoting that no data fusion occurs. Whenthe
unit fusion cost is small, the number of fusion clusters decreases
rapidly with the increase ofρ. Whenρ approaches 1, the cluster
number becomes 1, meaning that all nodes will perform fusionand
the network becomes a full fusion tree. At the same time, when
unit fusion cost increases, AFST will tradeoff the fusion cost with
transmission cost. As a result, the decreasing of the cluster number
slows down. For example, forω = 80nJ/bit, a unit fusion cost
comparable to the average unit transmission cost, there are33 fu-
sion clusters whenρ → 1. This means on average, there are only
three nodes in a cluster performing data fusion. The fused data are
then forwarded to the sink via shortest paths directly with simple re-
laying. If ω keeps increasing, fewer nodes perform fusion to avoid
the high fusion cost.

6. CONCLUSION
In this paper, we propose AFST, a routing algorithm for gather-

ing correlated data in sensor networks. AFST not only optimizes
over both the transmission and fusion costs, but also adaptively ad-
justs fusion decisions for sensor nodes as to whether fusionshall
be performed. Generalized from MFST, an algorithm guarantees an
approximation ratio of5

4
log(n+1) to the optimal solution, AFST is

analytically shown to be a better algorithm than its ancestor. Exten-
sive experiments show that AFST achieves near optimal solutions
under various networking conditions, including broad scopes of fu-
sion/transmisison costs and network/data structures.

Furthermore, our analytical result indicates that AFST partitions
the routing tree into two distinct parts based on whether aggregation
is performed or not. Naturally, AFST also provides a clustering
scheme with near optimal routing performance, where fusioncan
be confined within the clusters only.

As an ongoing effort, we are quantifying theoretically the per-
formance improvement of AFST over MFST. In our future work,
we plan to develop an online algorithm based on AFST that can be
executed in a distributed manner by sensor nodes.
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