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ABSTRACT

While in-network data fusion can reduce data redundancyhande
curtail network load, the fusion process itself may introelsignif-
icant energy consumption for emerging wireless sensor ar&sv
with vectorial data. Therefore, fusion-driven routing foaols for
sensor networks cannot optimize over communication colst-en
fusion cost must also be accounted for. Towards this end,ewve d
sign a novel routing algorithm, calleddaptive Fusion Steiner Tree
(AFST) for energy efficient data gathering in sensor networks that
jointly optimizes over the costs for data transmission aath du-
sion. Furthermore, AFST evaluates the benefit and cost affdat
sion along information routes and adaptively adjusts wérefiision
shall be performed. Analytically and experimentally, wewstthat
AFST achieves better performance than existing algoritimelsd-
ing SLT, MFST, and SPT.

Categories and Subject Descriptors

C.2.2 [Computer-communication networkg: Network Protocols—
Routing Protocols F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and ProblemdReuting
and layout G.2.2 Discrete Mathematic§: Graph Theory—Net-
work problems
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Energy efficient routing algorithms for data gathering is aon
concern in wireless sensor networks [5, 8, 17, 13, 6, 7, 3219].

By exploring data correlation and employing in-network qass-
ing, redundancy among sensed data can be curtailed and thence
network load can be reduced [8]. The objective of sensorimgut
algorithms is then to jointly explore the data structure aativork
topology to provide the optimal strategy for data gatheririth as
minimum energy as possible.

Regardless of the techniques employed, existing strategiss
one key dimension in the optimization space for routing elated
data, namely thdata aggregation costndeed, the cost for data ag-
gregation may not be negligible for certain applicationst &am-
ple, sensor networks monitoring field temperature may usglsi
average, max, or min functions which essentially are ofjnigicant
cost. However, other networks may require complex operatfor
data fusioh. Energy consumption of beamforming algorithm for
acoustic signal fusion has been shown to be on the same drder o
that for data transmission [18]. In our own experimentatigtde-
scribed in [10], we show that aggregation processes suamagei
fusion cost tens ofiJ per bit, which is on the same order as the
communication cost reported in the literature [5, 18].

Different from transmission cost that depends on the outptite
fusion function, the fusion cost is mainly determined byitimuts of
the fusion function. Therefore, in addition to transmisstost, the
fusion cost can significantly affect routing decisions wheiolving
data aggregation. In our prior work [9], we presented a renided
algorithm termedinimum Fusion Steiner Tree (MFSiRat jointly
optimizes over both the fusion and transmission costs tonmime
overall energy consumption. MFST is proved to achieve aimgut
tree that exhibits:{log(n + 1) approximation ratio to the optimal
solution, where: denotes the number of source nodes.

While MFST has been shown to outperform other routing algo-
rithms includingShortest Path Tre€SPT),Minimum Spanning Tree
(MST), andShallow Light Treg(SLT) in various system settings,
it assumes that aggregation is performed at the intersentdes
whenever data streams encounter. However, as we shall slrow b
low, such a strategy may introduce unnecessary energy €guisu
tion. Specifically, performing fusion at certain nodes mayléss
efficient than simply relaying the data directly. This olvsdion
motivates us to design an adaptive fusion strategy thatmiptopti-
mizes information routes, but also embeds the decisions ahédn
and where fusion shall be performed in order to minimize ttalt
network energy consumption.

In this paper we will consider “aggregation” and “fusion’ten-
changeable, denoting the data reduction process on indétae
sensor nodes.



1.1 Motivation
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Figure 1: Fusion benefit/disadvantage in sensor networks.

Fig. 1 depicts a sensor network where sensor nodes are ééploy
on grid and sensed information of the source nodes is to liedaa
sink¢. Each hop has identical unit transmission egstAssume the
fusion cost is linear to the total amount of incoming dataj tre
unit fusion cost isyy. According to MFST, nodes andw initially
aggregate data of areasand B, respectively. As the sink is far
away,u andwv shall further aggregate their data and then send one
fused data to the sink. Assume that neds selected as the aggre-
gation point and letv(u) andw(v) respectively denote the amount
of data atu andv before the aggregation betweerandv. Let us
also assume that the amount of resultant aggregated dataatbe
expressed ag(v) = (w(u) + w(v))(1 — ouw), Whereo,,, repre-
sents the data reduction ratio owing to aggregation. Insttémario,
the total energy fow to aggregate and deliver the data to the next
hop, nodes, is co(w(u) + w(v))(1 — ouv) + go(w(u) + w(v)). On
the contrary, ifv forwards bothu andv’s data directly to the next
hop without performing aggregation, the total energy camstion
atv is co(w(u) + w(v)). Fromw’s point of view, to save energy,
it shall not perform data fusion but simply relais data as long as
Oy < 22,

Howéover, the above conclusion is only valid if nodés selfish
and noncooperative, as the decision of whether to fuse oatnot
will also impact the energy consumption of the whole pathfro
to sinkt. If the data is not fused at, succeeding relaying nodes will
incur additional communication cost due to higher payloHukere-
fore, in order to optimize the whole network energy consuompt
nodev’s decision has to be based on a hetwork-centric point of view
i.e., the effect on the total network energy consumption.

In this example, ifv performs data fusion, the total energy con-
sumption of the route from to ¢, assuming there aré hops in
between, isLco(w(u) + w(v))(1 — ouv) + qo(w(u) + w(v)).
On the contrary, ifv does not perform data fusion, the total en-
ergy consumption of the same route is simply the total ratagost,
Leo(w(u) + w(v)). To minimize thetotal energy consumption of
the networkwv should perform data fusion as longas, < £

This simple example reveals that to minimize total netwmfk e
ergy consumption, the decision at an individual node has tueised
on data reduction ratio due to aggregation, its related aastits ef-
fect on the communication costs at the succeeding nodesouddh
the criteria can be easily obtained for this simple examalegn-
sor network confronting various aggregation/communaatosts,
and data/topology structures, undoubtedly will dramélticaug-
ment the difficulty of the fusion decisions. Hence, the naitin
of this paper is to design an energy efficient routing alfonithat
not only jointly explores the data correlation structure aetwork
topology, but also adaptively determines if aggregaticaillsbccur
on the routing nodes.
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1.2 Related Work

If the complete knowledge of all data correlations is avdéa
in advance at each source, theoretically the best routmatesly is
to use a distributed source coding typified by Slepian-Wotfing
[14]. An optimal rate allocation algorithm for nodes in thetwork
is proposed in [2] and SPT is employed as the routing scheroe- H
ever, implementation of distributed source coding in a ficatset-
ting is still an open problem and likely to incur significaxétional
cost because of the requirement on the knowledge of netwisd w
correlation.

Routing with data aggregation can be generally classifiedimo
categories: routing-driven and aggregation-driven. Ragudriven
algorithms [5, 8, 17, 6, 7] emphasize source compressioact ia-
dividual node and aggregation occurs opportunisticallgmioutes
intersect. On the contrary, routing paths in aggregatioved algo-
rithms [3, 2, 15] are heavily dependent on data correlatioorder
to fully benefit from information reduction resulting fronath ag-
gregation. In [2], the authors proved that the minimum-gpetata
gathering problem is NP-complete by applying reductiorceser
problem and claimed that the optimal result is between SETlzn
travelling salesman path. In [3], a hierarchical matchilggathm is
proposed resulting in an aggregation tree with a logarittapprox-
imation ratio to the optimal for all concave aggregationctions. In
this model, each node can theoretically obtain the joinogytof its
subtree to receive the maximal aggregation ratio. Howeaggre-
gation only depends on the number of nodes in the subtreed @bt
the aggregation node regardless of the correlation amanddta.

Indeed, the idea of embedding fusion decisions in routing ha
been implicitly explored in the literature. For example AEH [5]
is a cluster-based protocol, in which sensors directly staid to
cluster heads where data fusion is performed. Aggregatedisla
then delivered to the sink through multi-hop paths. The @nstlof
[15] proposed an optimal algorithm MEGA for foreign-codiagd
an approximating algorithm LEGA for self-coding. In MEGAaah
node sends raw data to its encoding point using directed M&T,
encoded data is then transmitted to the sink through SPTAEG
uses SLT [4, 16] as the data gathering topology, and achixies
v/2) approximation ratio for self-coding. LEGA and MEGA implic-
itly assume that fusion stops after first aggregation asdetdata
cannot be recoded again. However, the decision regardsigrfsi
in these schemes are rather static and cannot adapt to Rétetar
structure changes. As demonstrated earlier, this deciiail be
based on various conditions of the networks in order to mizem
energy consumption.

1.3 Our Contribution

In this paper, we proposkdaptive Fusion Steiner Tr§&FST), a
routing scheme that not only optimizes over both transmsand
fusion costs, but also adaptively adjusts its fusion denisfor sen-
sor nodes. By evaluating whether fusion is beneficial to thie n
work based on fusion/transmission costs and network/dat®&-s
tures, AFST dynamically assigns fusion decisions to rgutindes
during the route construction process. Analytically weverthat
AFST outperforms MFST. Through an extensive set of simonest;
we demonstrate that AFST provides significant energy sawieg
MFST (up to 70%) and other routing algorithms under a widgean
of system setups. By adapting both the routing tree and riuee
cisions to various network conditions, including fusiorstdrans-
mission cost, and data structure, AFST provides a routiggriahm
suitable for a broad range of applications.

In particular, we prove that the routing tree resulting frAFST
is partitioned into two parts: a lower part where aggregaisoal-
ways performed, and an upper part where no aggregation accur



The result can be readily applied in designing clusterigg@thms
in sensor networks: based on where fusion stops, the netweork
be partitioned into clusters where data aggregation is wedfio be
within the clusters only.

The remainder of this paper is organized as follows. In $a@;i
we describe the system model and formulate the routing enobl
Section 3 gives an overview of the randomized approximatign-
rithm MFST. Section 4 presents in detail the design and aisbf
the proposed algorithm AFST. In Section 5 we experimengiligy
the performance of AFST. Section 6 concludes the paper.

2. SYSTEM MODEL AND PROBLEM FOR-
MULATION

2.1 Network Model

We model a sensor network as an undirected g@ph (V, E)
whereV denotes the node set afitithe edge set representing the
communication links between node-pairs. We assume & sefl”

the incoming data from other nodes and the data produceceldyth
sion point itself. On the contrary, the transmission cosaonredge
is only determined by the weight of the start point of the edape

other words, for a fusion point, the transmission cost iy algter-

mined by the output of the fusion function. More evidenthjstcan

be seen from Equations (1) and (2).

2.3 Correlation and Data Aggregation

In-network data aggregation captures the redundancy anfetag
collected by different sensors and consequently aims dtrieduc-
tion over the network. We assume that data aggregation dam{po
tially take place at@ny intermediate node along the route: an in-
termediate node can explore the redundance among multijpte ¢
nodes’ data and aggregate all into one compressed datestrea

Key to a sensor data routing protocol is the data aggregation
tio. Unfortunately, this ratio is heavily dependent on agation
scenarios. Here, we use an abstract parameterdenote the data
reduction ratio due to aggregation. To be more specific, ifeno
is responsible for fusing node's data (denoted by (w)) with its

of n nodes, are data sources of interests and the sensed dasa needwn, we havewv(v) = (w(u) + w(v))(1 — ouw), Wherew(v) and

to be gathered at a special sink nade V.

We refer to the process of gathering information during a cer
tain time interval from each sensor nodeSrto sinkt¢ as around
Therefore, at each round, data from all nodes§ ihas to be sent to
t, where it is further processed.

Foranode € S, we define node weight(v) : S — R, denot-
ing the amount of information outgoing fromin every round. Evi-
dently, various data fusion algorithms will result in difféat weights
and therefore a node’s weightdgnamicin the process of data gath-
ering.

An edgee € FE is denoted by = (u,v), whereu is the start
node andv is the end node. The weight of edges equivalent to
the weight of its start node, i.ew(e) = w(u). Two metrics,t(e)
andf(e), are associated with each edge, describing the transmissio
cost and fusion cost on the edge, respectively.

2.2 Transmission and Fusion Costs

Transmission cost(e) : E — R denotes the cost for transmit-
ting w(e) amount of data from: to v. We abstract the unit trans-
mission cost on edge asc(e) and thus the transmission cast)
of edgee is given by

t(e) = w(e)c(e). 1)
Notice thatc(e) is edge-dependent and hence can accommodate var-
ious conditions per link, for example, different distantetween
nodes and local congestion situations.

Fusion cost,f(e) : E — RT denotes energy consumption for
fusion process at thendnodewv. f(e) depends on the amount of
data to be fused as well as the algorithms utilized. In thpepave
use a variablg to abstract the unit fusion cost. Then the cost for
fusing the data of nodes andwv is f(e) = ¢ - (w(u) + w(v)).
Noticegq is variable from edge to edge and dependent on the amount
of data to be fused. Since data fusion is performed by intdiate
nodes to aggregate their own data with their children’s,rdeoto
avoid confusion, we us@(-) to denote the weight of a nodefore
current data fusionThus, the above fusion cost can be rewritten as

f(e) = q- (w(u) + @), @
if nodew is the fusion point.

Although both transmission and fusion costs are link-basex
remark that they cannot be simply combined together andehvehge
on existing techniques solely based on the transmissidri@sslve
this problem. The reason is that the fusion cost on an edgetés-d
mined by the inputs of the fusion function. The inputs inéumbth
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w(v) denote the data amount of noddefore and after fusion. Ev-
idently, o, is dependent on the correlation between the sensed data
of u andw: larger correlation will result in more data reduction and
hence larget .-

Due to aggregation cost, nodemay choose not to perform data
aggregation in order to realize maximum energy saving ehutit
will simply relay the incoming data of node In this case, the new
weight of nodev is simplyw(v) = (w(u) + @w(v)).

Jointly considering both cases described above, we can aumm
rize the aggregation function at nodes

w(v) = (w(u) + w(v))(1 = Turuw), ®)
wherez,, € {0,1} denotes whether fusion occurs on edge-
(u,v).

2.4 Problem Formulation

Given the source node s&tand sinkt, our objective is to design
a routing algorithm that minimizes the energy consumptidrernv
delivering data from all source nodes $hto the sinké. Not only
do we need to design routing paths back hauling sensed iafam
driven by information aggregation, but also we have to ojzém
over the decisions as to whether aggregation shall occuntavma
particular node.

Mathematically, a feasible routing scheme is a connectéd su
graphG’ = (V', E") whereG’ C G contains all sourcesS(c V')
and the sink# € V’). Depending on whether fusion is performed or
not, the edge sef’ can be divided into two disjoint subsef and
E,,whereE} = {ele € E',z. = 1} andE,, = {ele € E',z. =
0}. Our goal is to find a feasible subgragh such that

G* =argmin,, Y (f(e) —|—t(e)> + ) te)
eGE} e€El,

It is evident that a non-tree solution costs more than a mguti
scheme based on a tree structure [8, 1]. It has been showeverat
if only transmission cost is considered, the aforementiopb-
lem is NP-complete [2]. Heuristic algorithms have therefbeen
designed in literature for finding approximations to the imimm
transmission cost tree [15, 2]. Since a new fusion cost isrpe
rated into our design, the resulting problem is NP-hard.

(4)

2.5 Discussion

If it is the policy of the network that every node performs fu-
sion, the choice on fusion will be eliminated which resuftg¥, =
(. Thus the objective function in Equation (4) will degeneréat



Y ecr (f(e) 4 t(e)). Towards this end, MFST [9] provides an ap-
proximation routing algorithm that jointly optimizes ovikoth the
transmission and fusion costs. It has been shown in [9] that t
resultant routing tree is bounded withinlog(n + 1) ratio to the
optimal solution.

However, from the previous section, we have concluded thist t
approach is not necessarily to the best interest of the metwo in-
corporate the flexibility of fusion decision, which undoesty will
affect the routing structure in turn, we design in this papdaptive
Fusion Steiner Tree (AFS®&)gorithm that adaptively adjusts the fu-
sion decision in the network based on data correlationpfusost,
transmission cost, and network topology.

As AFST is based on MFST, in the next section we will give
a brief overview of MFST. Following that, we will detail ouew
solution.

3. BRIEF OVERVIEW OF MFST
3.1 MFST Algorithm

The minimum fusion steiner tree (MFST) is based on the tech-
niques presented in [11, 3]. It first pairs up source nodesdorce
with the sink) based on defined metrics and then randomlygtsete
center node from the node-pair. The weight of the non-cemide
will be transferred to the center node, paying appropri@esmis-
sion and fusion costs on that edge. Subsequently, the maefce
node will be eliminated and the center node with aggregadhw
will be grouped as a new set of sources. This process will been
repeated on the new set until only the sink is left. The atboriis
detailed below for the sake of completeness.

MEST ALGORITHM:

1. Initialize the loop index = 0. DefineSy, = S U {¢}, and
E* = 0. Letwo(v) for anyv € S denote its original weight,
and letwo (t) = 0.

2. For every pair of nodegu, v) € S;, find the minimum cost
path(u, v) in G according to the metric
M(e) = q(wi(u) + wi(v)) + a(wi(u), wi(v))cle)  (5)

wherea(wi (), wi(v)) = L)) for non-

sink pair (u, v), anda(w;(u), w; (v)) = w;(u) if vist. De-
fine K;(u,v) to be the distance under metid (e) of this
path.

3. Find minimum-cost perfect matchihbetween nodes is;.
Let (us,5, vs,;) denote thgith matched pair irf;, wherel <
j < |Si|/2. If there is only one non-sink node left after
matching, match it to itself without any cost, and consider
it as the last “single-node pair” if;.

4. For each matched pdiu, v), add those edges that are on the
path definingK; (u, v) to setE*.

5. For each pair of non-sink matched nodesv), chooseu to
. - w?(u) .
be the center with probabilit T i) Otherwise, node
v will be the center. For paifu, t), choosé to be the center.
6. Transport weight of non-center node to its correspondarg

ter node. The weight of the center satisfies.1 (center) =
(wi(u) + wi(v))(1 = ou).

2Minimum-cost perfect matching is a matching of edges in plgra
that guarantees the total cost (distance) for all pairs undige) is
minimized. For polynomial-time algorithms for this probie see
[12].
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7. Remove all non-center nodes frafy, then the remaining
center nodes inducg; ;.

8. If S;+1 contains only the sink, we retur@™ (V*, E™),
whereE™ is the set of edges we constructed afdincludes
the source nodes and the sink. Otherwise increneatd
return to step 2.

3.2 Discussion

MFST jointly considers both fusion and transmission cdstsas
been shown that it yieldglog(n + 1) approximation ratio to the
optimal solution. Although extensive experiments [9] hahewn
that MFST can outperform other routing algorithms includBLT,
SPT, and MST, one optimizing dimension is still missing, egm
the aforementioned fusion decisions at sensor nodes. ASIMES
quires fusion to be performed along a routing path whenewsf p
sible, unnecessary energy may be wasted due to the ineffycan
fusion, for example, little information reduction due toakecorre-
lation and high fusion cost.

Specially, this phenomena can be magnified in the proxinfity o
the sink itself. As aggregated information streams are G-
ing the sink, their correlation decreases which will introd small
data reduction owing to fusion. At the same time, directliaye
ing the data will not incur high communication cost as feweps
are needed for relaying. Naturally, in this scenario, ther@ high
probability for direct relaying to outperform aggregation

To solve this problem, we design AFST in the next section eher
adaptive fusion decisions will be incorporated into thetirayicon-
struction process.

4. DESIGN AND ANALYSIS OF AFST

In this section, we first introduce fusion decisions intorihting
structure generated by the MFST scheme. To solve this qmimi
tion problem, by exploiting certain network properties,prepose a
heuristic solution termeBinary Fusion Steiner Tre@FST), which
is analytically shown to have better performance than MF&v-
ever, BFST is still constrained to the tree structure fromSWIFBy
employing SPT rather than the structure obtained via MFSiEres
proper, we improve BFST to an enhanced algorithm caéaptive
Fusion Steiner Tre@AFST). In turn, AFST is analytically shown to
be capable of achieving better performance than BFST.

4.1 3-D Binary Tree Structure

In order to facilitate our development from MFST to AFST, we
first employ a 3-D binary tree structure to describe the peoéthe
hierarchical matching technique used in MFST. Fig. 2 illaiss a
mapping example of original aggregation tree and its tansé-
tion. From bottom to top, the edges between two layers reptes
the result of node matching and center selection in eacdtioer of
MFST.

Assuming there arex sources in the aggregation trég" ob-
tained via MFST, to perform the transformation, we first eldn =
[log(n + 1)] copies ofG*, denoted byG*, G2, ..., G™. For con-
venience, we label the origin@™ as G° and arrange them into
vertical layers as shown in Fig. 2(b). For simplification, wil
refer nodev’s clone in layerk asv,. Subsequently, we map the
original aggregation tre&* as shown in Fig. 2(a) to a new graph
G* embedded into these clones? is the targeted 3-D binary tree.
The process is to map the result of each matching stageviFST
to the edges betweed” andG**!. If we matchu andv in stagek
andv is selected as the center node in MFST, we first add an edge
linking its clones inG* andG**! with zero unit transmission cost
c(e) = 0. This edge is termed virtual edge (dotted line). Then we



connectuy, to vi4+1 with the same unit communication cage) as
inG”.

The result of this transformation is a binary tree which isteal
at the sink inG" and has all leaves if residing inG°. For each
sourcev € S, there is a path going through all clones®f, from
v in G to the sink inG", via exactlyN hops.

In order to guarantee that the resulting 3-D tree is binag/num-

ber of source nodes is assumed a power of 2 minus 1. If thistis no
the case, dummy nodes with weight O can be created as needed to

complement the binary tree, corresponding to the single padr
matching cases. These dummy nodes have aggregation ratth 0 w
any other nodes and incur zero fusion cost. As virtual edges a
dummy nodes/edges incur zero cost for communication andrfus
the 3-D binary tree is equivalent to the original aggregatiee.

For each nodey, € G* (the 3-D binary tree) in layek, let
wy, denote the weight of node after combining the incoming
data from lower layers (with or without data fusion). Eaclyed
er = (ur,vry1) € G*, between thé-th layer and thék + 1)-th
layer, is characterized by four parameters: edge weight= w.,,
unit transmission cost., , data aggregation ratie., , and unit fu-
sion costg., . Note that virtual edges have, = 0 ando., =1
(full aggregation), and dummy edges havg, = 0 ando., = 0
(no aggregation).

To incorporate fusion decision, we usg_ € {0, 1} to represent
whether or not information on edge is fused at the end node of
this edge. Therefore, the optimal routing structure is amopation

problem overc., as well as the tree structure. Towards this end, we

presenBinary Fusion Steiner Tre@FST), an approximate solution
to this routing problem.

(a) Original aggregation tree (b) Equivalent 3D aggregation tree

Figure 2: Expression of data aggregation tree in a 3-D binary
tree structure. Solid lines in (b) correspond to edges in (ajnd
dotted lines represent virtual edges.

4.2 Binary Fusion Steiner Tree (BFST)

In BFST, we first obtain a routing tree using MFST algorithm,
where fusion is performed by any intermediate node. Sulesetyy
we evaluate whether fusion on individual nodes will redutedn-
ergy consumption of the network. If not, the fusion processhe
node will be cancelled and instead data will be directlyyeth

BEST ALGORITHM:

1. Run MFST algorithm to obtain routing tree with fusion at ev
ery node possible. Convert the resulting aggregation tree t

the 3-D binary tree as described above. For all edges in the

tree, set., = 1.

2. From bottom to top, calculate the fusion benefit for eacfeed
in the aggregation tree (excluding virtual edges), which ca

represent the energy saving by data fusion on that edge. Let

Ay vy, denote the fusion benefit of edge = (ux, vi+1).
Itis defined as
A’uk,’uk+1 = (wuk + ka)C’(th tN)

— (W +w0)(1 = 00)C ks, L)

T Quyvpgg (Way, + W, )) (6)
whereC'(vk+1, tn) denotes the summation of unit transmis-

sion costs fromuy.1 to tx in MEST. if Ay, 0, ., > 0, set
ze, = 1; otherwise, set., = 0.
3. For all edges withey,, v, , = 0, Sétzy, ., = 0 to their

corresponding virtual edges.

In our analysis, we will employ the 3-D binary tree descrilired
the previous subsection. To simplify the analysis, we asstinat in
BFST, the data reduction ratéois hon-increasing on each path from
the source to the sink while the unit fusion cgs$$ non-decreasing,
excluding virtual edges. This assumption can be natura8ifjed.
First, strong correlation and thus high aggregation rasigally are
due to spatial correlation resulting from short distancetwvben
nodes. In turn, these short distances will lead to small waits-
mission cost. Based on the metii¢(e) defined in MFST (which
is a combination of fusion cost and transmission cost), litmatch
strongly correlated nodes before matching weakly cordlabdes.
Therefore, for edges on a source-sink path, the aggregediom
for edges near the sink will not be larger than those furtheaya
Reflected on the 3-D bhinary tree, this will lead to non-insieg
o on a particular source-sink path. The reason for skippinai
edges is that their data aggregation ratio is set to 1 and wnlates
affect the actual energy consumption of the network. Secthel
unit fusion cosy is determined mainly by the complexity of the fu-
sion algorithm and the input data set. As the informationeim
routed toward the sink, the data size and complexity willrety
increase due to aggregation on the route. Therefore, pairfgrfu-
sion thereon will incur more computation and hence moregner
consumption per unit data.

Based on this assumption, we first introduce Lemma 1.

LAy

Figure 3: A fraction of the binary fusion tree for BFST: solid

lines represent actual edges in the aggregation tree; dotidines
denote virtual edges added for analysis, and dash-dottednles
are paths to the sink.

LEMMA 1. z. is non-increasing on each path from a source to
the sink in BFST.

PROOF Let Fig. 3 represent a branch of the binary fusion tree
produced by BFST. On any path from a source node to the sirk, as
sumeey, is the first edge witlx., = 0. We will enumerate different
cases.

Case 1: If both e, and its succeeding edge.; are not virtual
edges, as exemplified by, = (uk, vg+1) andex+1 = (Vk+1, Sk+2)



shown in Fig. 3, we havé\,, ., ., < 0. From Equation (6), we
haveo ., vy 1 C(Vk+1,IN) < Quy v p1- ASTuy v ys = Tugig spps
andqu,, v,y < Qugy1.sn.. Dased on our assumption, and the to-
tal unit transmission cost fromy,1 to ¢ is more than that from
Sk+2 0 tw, i.e., C(vgy1,tn) > C(sk+2,tn), We can infer that
01’k+115k+2c(8k+27 tn) < Uukal’k+1c(vk+17 tn) < Quig 1,842
This will lead toA., ., ,s,.,, < 0. Thenwe haver,, , ,s,,, = 0.

If er is not a virtual edge but its succeeding edge; is, as
exemplified byer = (pi,sk+1) andexr1 = (Sk+1,Sk+2), the
same conclusion can be obtained similarly.

Case 2: If ey, is a virtual edge, as exemplified by = (vi, vet1),
according to BFST algorithm, its matching pair edge= (ux, vi+1)
must haver., .,,, = 0. From the result of Case 1, we also have
Logp1,sp42 — Y-

Inductively, we can conclude that all succeeding edges efige
that does not perform fusion will not perform fusion eith&ince
the fusion decision., € {0, 1}, itis evident that. is hon-increasing
on the path from source to sink[]

THEOREM 1. The total cost of BFST is no more than MFST.

PROOF Since BFST retains the same tree structure as MFST, for
all edges withe.,, = 1, the BFST and MFST schemes will consume
the same amount of energy. For any edge with = 0, owing
to Lemma 1, any edge; on the path from this edge to the sink
satisfyz., = 0. This means that all edges on the path afichave
negative effect on energy conservation. In other wordSppming
fusion will introduce additional cost. Therefore, BFST ibetter
algorithm than MFST by avoiding fusion when direct relayiag
better choice. [J

Intuitively, Lemma 1 depicts that the routing tree genetdyg
BFST can be divided into two parts: the lower part where dgta a
gregation is always performed and the upper part wheretdizty-
ing is employed. As no data aggregation is performed in theeup
part of the tree, instead of sticking to MFST, we can further i
prove the routing structure to reduce energy consumptiaspited
thereby, we develop AFST.

4.3 Adaptive Fusion Steiner Tree (AFST)

AFST further improves BFST by introducing SPT into the rogti
tree. Similar to BFST, it performs a matching process as irsMF
in order to jointly optimize over both transmission and éustosts.
During the matching process, it also dynamically evaludtesion
shall be performed or not. If it is determined at a particydamt
that fusion is not beneficial to the network, as shown by ttedyais
of BFST, we can conclude that any succeeding nodes on thiagout
path shall not perform fusion either. Consequently, we capley
shortest path as the strategy for the remainder of the reugha@test
path is optimal for routing information without aggregatioOur
analysis shows that AFST achieves better performance tR&TB
and thereon MFST.

Below, we summarize AFST algorithm. The process is simdar t
MFST but with fusion decision incorporated.

AFST ALGORITHM:

1. Initialize the loop index = 0. DefineSy, = S U {¢}, and
E* = (. Letw,, for anyv € S equal to its original weight,
and letw;, = 0.

. For every pair of nodeéu, v) € S, find the minimum cost
path(u, v) in G according to the metric
M(e) = Qui,vipr (Wu; + Wo;) + (W, , wo,; )c(e)
and definek; (u, v) to be the distance under metid (e) of
this path.
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3. Find minimum-cost perfect matching between nodes; inf
there is only one non-sink node left after matching, mattd it
itself without any cost, and consider it as the last “singbele
pair’in S;.

4. For each matched pdjt, v), calculate the fusion benefit for

nodeu andv respectively according to this new definition:
A“'Lv'UH»l = (wui + wvi)SP(vivt)

~((wa, +w0,)(1 = 00, )SP (i, 1)

FGui v (wui + W, )) ) (7)
whereS P(v;, t) denotes the summation of unit transmission
cost fromw; to the sinkt using shortest path.

We call (u, v) a non-fusion pair if there is no fusion benefit
regardless which node is selected as the center. It means tha
the two following inequations are satisfied
Ay <0 and Ay, <O0.
Otherwise, we call them a fusion pair.

(8)

5. For each non-fusion paiu, v), add those edges that are on
the shortest paths @t, t) and (v, t) to setE;,, remove both

nodesu andv from S;.
. For each fusion paifu, v),

e Add those edges that are on the path defimfidu, v)
to setE; .

e chooseu to be the center with probability»—=>

w2
w2
w

. v;

Otherwisev will be the center. For paifu, t), chooset
to be the center.

e Transport weight of non-center node to its correspond-
ing center node. According to Equation (3), the weight
of the center satisfies; 1 (center) = (wu, +w,,; ) (1—
Uum’vi)'

e Remove all non-center nodes fros, then the remain-
ing center nodes iNnduce, ;1.

7.

If S;+1 is empty or contains only the sink, retu@*
(V*, Ef+Ey), whereE} andE;, are the sets of fusion edges
and non-fusion edges, respectively, dnt includes source
nodes and the sink. Otherwise, incremgand return to step
2.

The size of setS; is reduced at least half after one run of the
algorithm. However, the process may terminate sooner tha8™
and BFST if fusion is deemed unworthy in the early iterations

THEOREM 2. The total cost of AFST is no more than BFST.

PROOF The tree resulting from AFST also contains a lower part
where aggregation is always performed and an upper parewiter
aggregation occurs. The lower part of AFST is the same athat
BFST due to their MFST based matching procedure and thussincu
the same cost as well. The task left is then to show that fonany
fusion pair(u, v) satisfying inequality (8), their transmission costs
based on SPT in AFST is no more than the corresponding routing
costs, including fusion and transmission costs, incurre8FST.
The proof is given below.

From (8), we havery,, v, , SP(vk,t) < quy,v;,, and
O gy s SP (U, t) < Qug,upy, WhereSP(vg,t) denotes the sum-
mation of unit transmission cost from, to the sinkt using short-
est path. Without loss of generality, we assume that selected
as the center in BFST, and our goal is to pravg SP(vk,t) +



Way, SP(Uk, t) < Wy, (U s Vit1)FQuy vgeq 1 (Way, FWop, )4 (W, +
Woy, ) (1 = Ouyvp41 )SP(vkr1, t). FOr that, we have
Wy, SP(Vk, t) + Wuy SP(uk, t)

< Wy, SP(Vkg1,t) + way (c(uk, Vk41) + SP(vk41,1))
(wuk + wﬂk)SP(vk+lv t) + wukc(ukv UkJrl)
(wuk + w”k)(l — Oupvpyr T Uukv”k+1)SP(vk+17t)

F W, (Uk, Vit1)

(wuk + w”k)(l - Uukv”k+1)SP(vk+17t)

+Quk,uk+1 (wuk + ka) + wukc(uk, ’Uk+1)

IA

O

When it is determined that the fusion benefit is positive farg
node, the tree structure obtained from AFST degeneratée tivde
from MFST. However, when fusion is not always beneficial fibr a
nodes, AFST will significantly outperform MFST, which willeb
demonstrated in our experimental study.

4.4 Application in Clustering

Clustering in sensor networks is often used to group closmise-
lated sensor together in order to perform local decisioningakle-
tection, or classification. To facilitate these operatjdasion and
transmission cost shall be considered due to severe resoare
straints. While the concept of clustering has been widelyliag,
clustering itself is often based on static techniques rpdiaked on
geographic proximity, fixed cluster number, or certain ®usizes.

The two-layer structure of AFST naturally provides a nevstsu-
ing technique for sensor networks. Separated by the routags
not performing fusion, the lower part of AFST routing tree@n-
posed of discrete branches within which data of every memiler
be fused together. These branches can be considered asrlust
decided by energy consumption due to fusion and commuaitati
Therefore, AFST provides a clustering algorithm as a bypcod
that is energy efficient for gathering correlated data. 8enis the
same cluster will employ MFST based routing structure whliles-
ter heads (roots of the branches) will directly send the egaped
data to the sink via shortest path without fusion. Since ARST
randomized algorithm, we can rerun the process to generdife a
ferent structure and therefore re-assign the role of alustads to
different nodes. Load balancing in terms of fusion is thusirzly
implemented.

5. EXPERIMENTAL STUDY

In this section, we compare the performance of AFST with othe
routing algorithms. In particular, we select MFST, SPT, M&id
SLT to represent the class of routing schemes where fusiomrsc
on all routing nodes if possible. For routing schemes thasdo
not perform aggregation, we employ SPT as it is the optimat-ro
ing strategy in this class. To distinguish it from the SPTesnb
with data aggregation opportunistically occurs where rimfation
streams intersect, we denote the SPT without performingeggg
tion by SPT-nf, short name for SPT-no-fusion.

We study the impact of network connectivity, correlatioreco
ficient, and unit fusion cost on different algorithms. Coming
with our design goal and analysis of the AFST algorithm, aey k
finding of the experiments is that AFST can adapt itself to dewi
range of data correlations and fusion cost. While otherrétyos
may achieve better performance in some extreme cases, fiey s
from varying situations and hence perform poorly in genscahar-
ios. Furthermore, AFST can adaptively adjust the numbeusibh
nodes according to the varying network situations, whiafthter
improves its performance especially when compared to MFST.
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5.1 Simulation Environment

In our setup, 100 sensor nodes are uniformly distributedri+ a
gion of ab0m x 50m square. We assume that each node sends one
400-byte packet as original sensed data to the sink at arcofrttés
square in each round. All sensors act as both sources aretsout
We also performed sets of experiments of different numbeeatf
sors and different sizes of field, the results are similar amitted
here.

We assume the maximal communication radius of a sensor is
i.e, if and only if two sensor nodes are withip, there exists a com-
munication link between them. By varying, we can control the
network connectivity and hence equivalently the networksitg.
Based on the model presented in [5], we instantiate unisimés
sion cost on each edgge) = Bd” +¢, when node distancé < r..
We sety = 2 and3 = 100p.J/bit/m? to calculate the energy con-
sumption on the transmit amplifiet. denotes energy consumption
per bit on the transmitter circuit and receiver circuit. ibgh values
of £ range from20 to 200n.J/bit according to [18]. We set it to be
100nJ/bit in our simulation.

The correlation model employed here is an approximatedagpat
model where the correlation coefficient (denoted d)ydecreases
with the distance between two nodes provided that they atf@rwi
the correlation range;;. If two nodes are more than, distance
apart, simply the correlation coefficiept = 0. Otherwise, it is
given byp = 1 — d/rs, whered denotes the distance between the
nodes. If nodev is responsible for fusing node's data (denoted
by w(w)) with its own, we assume that the weight of nadafter
fusion is given by

w(v) = max(w(w), B(v)) + min(w(u), D)) (1 - puw)
wherew(v) andw(v) respectively denote the data amount of node
v beforeandafter fusion.

Recall that we use to denote the data reduction ratio due to ag-
gregation. From Equation (3)(v) = (w(u) + w(v))(1 — ouo),
we can get that the data reduction radip, is proportional to the
correlation coefficienp. By varying the correlation range;, we
can control the average correlation coefficient of the ndtwand
further control the average data reduction after data fusk@r ex-
ample, a very smait; essentially eliminates the correlation among
sensors 4 — 0), so that the amount of output data is equal to the
summation of all input data. While an extremely largemakes the
sensed data completely redundamt-G 1), as a result, the fused
data size equals to the bigger data size between the two diapait
In our simulation, we use instead ofs to describe the impact of
data structure for ease of understanding. For the fusion wesas-
sume thay is constant and use to denote the average fusion cost
per bit at each node.

5.2 Impact of Network Connectivity

By varyingr., the communication range of a node, we can control
the connectivity of the network. The largeris, the more strongly
the network is connected. Here we set the average unit fasistrto
be 80n.J/bit,which is a typical value for image fusion [10], and set
the correlation range to b®m to simulate a network with moderate
data reduction. Fig. 4 summarizes the performance of akalgns
studied.

As we can see, MST wastes precious energy on data fusion at
numerous relaying nodes and hence incurs high cost wherathe d
reduction is not high. On the contrary, SPT wastes energn@wi
to redundant data transmissions and also induces highicgstis
tends to use fewer hops to reach the sink. As SLT is a hybré tre
structure balancing MST and SPT, it achieves better pedooa
than both of them. However, inherently constrained by geathm
construction, energy consumption of SLT is still relativbigh.
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Figure 4: Impact of network connectivity to energy consump-
tion.

As MFST explicitly considers fusion cost, it can effectivélade
off between multi-hop relay benefitting from high data retbhre
ratio and single-hop transmission benefitting from les®fusost.

In a dense network with strong network connectivity, thedfigén
due to this flexibility to the network energy cost is more appé
Whenr. is larger than 20m, MFST performs better than all other
algorithms except AFST.

As expected, AFST performs well in all communication ranges
almost steadily outperforming all other algorithms. Thas e ex-
plained as follows. In a network with moderate data coriefadata
from nodes that are far apart has little correlation and désads to
small reduction ratio if aggregated. Therefore, perfogrdata fu-
sion over them cannot significantly benefit the network hliiistur
the fusion cost. AFST can effectively avoid such situatiopgval-
uating fusion benefit. If the data reduction ratio due to elation
together with the fusion cost could not justify the fusiomgass,
it employs the shortest paths toward the sink by using dielal.
Therefore, the cost of AFST continuously decreases alotiytive
increase of communication range. Notably, it has signifigdass
energy cost for weakly connected network resulting fronristmm-
munication range as well, which can be reasoned in the same wa
As shown in Fig. 4(b), the proposed AFST can save dé en-
ergy compared to MST, up 6% energy to SPT, and abou0%
to SLT when connectivity degree is high. Compared with MFST,
AFST can save around 10% of energy in weakly connected envi-
ronment while maintaining the same or better performancenwh
network is strongly connected.

5.3 Impact of Correlation Coefficient

In this simulation, we fix the transmission range3tn and unit
fusion cost to50n.J/bit, and study the impact of correlation co-
efficient to the performance of AFST. We increase the caimela
range,rs, from 0.2 to 2000m which corresponds to varyingfrom
Oto 1.

Fig. 5 depicts the total energy costs for AFST and other algo-
rithms like MFST, SPT, SLT, and SPT-nf. Naturally, costs bf a
algorithms with data fusion decrease @increases. This exem-
plifies that data aggregation in sensor networks can gréathgfit
the routing performance by reducing redundancy among ledeict
data. As SPT-nf totally ignores data aggregation, its cestains
constant.

When the data correlation in the network is very weak-+¢ 0),
AFST follows SPT-nf, the optimal solution, by avoiding angta
aggregation. When the data correlation in the network as®s,
AFST dynamically adjusts its decisions accordingly by parfing
data fusion partially in order to benefit from data aggregatnd
resultant data reduction. When the data in network is higloly
related p — 1), AFST follows MFST to pursue the most energy

87

Total cost (mJ)

200
— MFST
—e— AFST

- SPT-nf
a La s |

Total cost (mJ)

0.25 1 4 16 64
Correlation range r (m)

256 2048

Figure 5: Impact of average correlation coefficient to eneryg
consumption.

saving by performing data fusion at each possible node. Btlag
dynamic adjustment, the cost of AFST is extremely smootthén t
whole range of the correlation coefficient and steadily etfggms
others.

5.4 Impact of Unit Fusion Cost

In this set of experiments, we study the impact of varying uni
fusion cost to the algorithms. Fig. 6 illustrates the resulhenw,
the unit fusion cost, increases frarinJ/bit to 200n.J /bit.

90|
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10}

100 150 200
Unit fusion cost & (nJ/bit)

(b) Number of fusion clusters

100 150
Unit fusion cost & (nJ/bit)

(a) Total cost

Figure 6: Impact of unit fusion cost to energy consumption{..
30m, rs = 20m).

Fig. 6(a) shows the total cost of AFST as compared with other
algorithms as the unit fusion cost increases. As we can kedot
tal costs of MFST and SLT increase unboundedly along with the
increase ofv, even though MFST has a lower slope. On the con-
trary, AFST follows the performance curve of MFST first andrth
leans towards SPT-nf, the optimal solution when fusion oisigh.

The figure can be best explained when we jointly examine i wit
Fig. 6(b), which depicts the number of clusters, the brasdid¢he
routing tree that always perform aggregation on their nodésal-
gorithms with full fusion are unable to stop fusion even whesion
cost is extremely high. However, for AFST, as shown in Fidy)6(
whenw is very small, there are only two fusion clusters. This de-
notes that data fusion is performed almost on all nodes,wthies
advantage of the low fusion cost. Wherincreases, AFST reduces
the number of fusion clusters due to reduced fusion beneditdar

to balance the fusion cost and transmission cost. And whé
too large, AFST can achieve the same constant cost as SRT-nf b
completely stopping data fusion.

As described in Section 2, fusion cost may vary widely frorz ne
work to network, from application to application. Our exipgents
show that among all algorithms, AFST can adapt best to a wide
range of fusion costs and hence be applicable to a varietppi-a
cations.



5.5 The Number of Fusion Clusters in AFST

Number of fusion clusters
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Figure 7: The number of fusion clusters in AFST.

Fig. 7 illustrates the number of fusion clusters with vagyoor-
relation coefficient and unit fusion cost. When— 0, the cluster

number equals 100, denoting that no data fusion occurs. \Wigen

unit fusion cost is small, the number of fusion clusters dases

rapidly with the increase of. Whenp approaches 1, the cluster

number becomes 1, meaning that all nodes will perform fuaruh

the network becomes a full fusion tree. At the same time, when

unit fusion cost increases, AFST will tradeoff the fusiorstcaith
transmission cost. As a result, the decreasing of the clostaber
slows down. For example, fav = 80n.J/bit, a unit fusion cost
comparable to the average unit transmission cost, ther83afe-

sion clusters whep — 1. This means on average, there are only

three nodes in a cluster performing data fusion. The fuséal ata
then forwarded to the sink via shortest paths directly wiitipde re-

laying. If w keeps increasing, fewer nodes perform fusion to avoid

the high fusion cost.

6. CONCLUSION

In this paper, we propose AFST, a routing algorithm for gathe

ing correlated data in sensor networks. AFST not only oi@si
over both the transmission and fusion costs, but also addyp&d-
justs fusion decisions for sensor nodes as to whether figiafi
be performed. Generalized from MFST, an algorithm guasméa
approximation ratio o& log(n+1) to the optimal solution, AFST is
analytically shown to be a better algorithm than its ance&trten-
sive experiments show that AFST achieves near optimalisakit
under various networking conditions, including broad s=opf fu-
sion/transmisison costs and network/data structures.

Furthermore, our analytical result indicates that AFSTipans
the routing tree into two distinct parts based on whetherexgagion
is performed or not. Naturally, AFST also provides a clusatgr
scheme with near optimal routing performance, where fusim
be confined within the clusters only.

As an ongoing effort, we are quantifying theoretically ther-p

formance improvement of AFST over MFST. In our future work,
we plan to develop an online algorithm based on AFST that ean b

executed in a distributed manner by sensor nodes.
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