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Abstract

Motivated by recent surfacing viruses that can spread
over the air interfaces, in this paper, we investigate the
potential disastrous threat of node compromise spreading
in wireless sensor networks. Originating from a single
infected node, we assume such a compromise can prop-
agate to other sensor nodes via communication and pre-
established mutual trust. We focus on the possible epidemic
breakout of such propagations where the whole network
may fall victim to the attack. Based on epidemic theory, we
model and analyze this spreading process and identify key
factors determining potential outbreaks. In particular, we
perform our study on random graphs precisely constructed
according to the parameters of the network, such as
distance, key sharing constrained communication and node
recovery, thereby reflecting the true characteristics therein.
The analytical results provide deep insights in designing
potential defense strategies against this threat. Further-
more, through extensive simulations, we validate our model
and perform investigations on the system dynamics.

Index Terms— Sensor Networks, Epidemiology, Random Key
Predistribution, Random Graph.

I. Introduction

As wireless sensor networks are unfolding their vast
potential in a plethora of application environments [1],
security still remains one of the most critical challenges
yet to be fully addressed. In particular, a vital problem
in the highly distributed and resource constrained envi-
ronment is node compromise, where a sensor node can
be completely captured and manipulated by the adversary.
While extensive work has focused on designing schemes
that can either defend and delay node capture or timely
identify and revoke compromised nodes themselves [5],
little attention has been paid to the node compromise
process itself. Inspired by recently emerged viruses that
can spread over air interfaces, we identify in this paper
the threat of epidemic spreading of node compromises in
large scale wireless sensor networks and present a model
that captures the unique characteristic of wireless sensor

networks in conjunction with pairwise key schemes. In
particular, we identify the key factors determining the
potential epidemic outbreaks that in turn can be employed
to devise corresponding defense strategies.

A. Motivation

Due to its scarce resources and hence low defense capa-
bilities, node compromises can be expected to be common
phenomena for wireless sensor networks in unattended
and hostile environments. While extensive research efforts,
including those from ourselves [15], have been engineered
toward designing resilient network security mechanisms
[12], [13], the compromise itself and in particular the prop-
agation of node compromise (possible epidemics) have
attracted little attention.

While node compromise, thanks to physical capture and
succeeding analysis, is naturally constrained by the adver-
sary’s capability, software originated compromises can be
much more damaging. Specifically, the recently surfaced
virus Cabir1 that can spread over the air interface has
unveiled a disastrous threat for wireless sensor networks.
Inescapably, viruses targeting wireless sensor networks
will emerge. Consequently, node compromise by way of
virus spreading (over the air interface) can effortlessly
devastate the entire network in a short period of time. With
recent advancements on sensor design empowering nodes
such as MICA2 motes with over-the-air programmability,
the network becomes vulnerable to the above described
attack. Even worse, the inherent dense, large scale nature
of sensor networks undoubtedly further facilitates the virus
propagation.

While virus spreading over the internet has been widely
studied, and notably by means of epidemic theory [2], [3],
the distance and pairwise key restricted communication
pattern in wireless sensor networks uniquely distinguish
the phenomena from those on the Internet.

B. Our Contribution

In this paper, we investigate the spreading process of
node compromise in large scale wireless sensor networks.

1http://www.f-secure.com/v-descs/cabir.shtml



Starting from a single point of failure, we assume that the
adversary can effectively compromise neighboring nodes
through wireless communication and thus can threat the
whole network without engaging in full scale physical
attacks. In particular, due to security schemes employed by
the sensor networks, we assume that communication can
only be performed when neighboring nodes can establish
mutual trust by authenticating a common key. Therefore,
node compromise is not only determined by the deploy-
ment of sensor nodes which in turn affects node density,
but also determined by the pairwise key scheme employed
therein. By incorporating these factors of the networks,
we propose an epidemiological model to investigate the
probability of a breakout (compromise of the whole net-
work) and if not, the sizes of the affected components
(compromised clusters of nodes). Furthermore, we analyze
the effect of node recovery in an active infection scenario
and obtain critical values for these parameters that result
in an outbreak. Through extensive simulations, we show
that our analytical results can closely capture the effects
in a wide range of network setups.

The remainder of the paper is organized as follows. In
Section II we present the preliminaries, including the threat
model, random key pre-distribution, and epidemic theory.
In Section III, we study the compromise propagation
without node recovery and with node recovery, and detail
our analytical results. We perform experimental study in
Section IV. Related work is presented in Section V and
we conclude in Section VI.

II. Preliminaries

In this section, we present our threat model and briefly
overview pairwise key distribution in wireless sensor net-
works and epidemic theory.

A. Threat model

We assume that a compromised node, by directly
communicating with a susceptible node, can spread the
infection and conduce to the compromise of the susceptible
node. Communication among sensor nodes is not only
constrained by their distances, but also shall be secured
and thus determined by the probability of pairwise key
sharing. Therefore, the spreading of node compromise is
dependent on the network deployment strategy and the
pairwise key scheme employed therein. We assume that
the “seed” compromise node could be originated by an
adversary through physical capture and analysis of that
node or by other similar means.

The spread of node compromise in a wireless sensor
network, particularly thanks to its dense nature, can lead
to an epidemic effect where the whole network will get
infected. We consider this epidemic effect as the key threat
to the network and hence the investigation target of this
paper.

B. Pairwise Key Pre-distribution

As the pairwise key scheme affects the communication
and hence the propagation of the node compromise, we

provide below, a brief overview of the key distribution
schemes in wireless sensor networks.

Due to the severe resource constraint of wireless sensor
networks and limited networking bandwidth, proposed
pairwise key schemes have commonly adopted the pre-
distribution approach instead of online key management
schemes with prohibitive resource consumption. The con-
cept of pre-distribution was originated from [11], where
the authors propose to assign a number of keys, termed key
ring randomly drawn from a key pool. If two neighboring
nodes share a common key on their key rings, a shared
pairwise key exists and a secure communication can be
established. Pre-distribution schemes that rely on bivariate
polynomials is discussed in [13]. In this scheme, each
sensor node is pre-distributed a set of polynomials. Two
sensor nodes with the same polynomials can respectively
derive the same key.

Regardless of the specific key distribution scheme, a
common parameter capturing the performance is the prob-
ability that two neighbors can directly establish a secure
communication. We denote this probability by q. As it shall
be revealed later, q plays an important role in the spreading
of node compromise, because direct communication, as
explained in the threat model, can result in propagation of
malicious code.

C. Node Recovery

In the event that a node is compromised, its secrets will
be revealed to the attacker. The network may attempt to
recover the particular node. Recovery might be realized
in several possible ways. For example, the keys of the
nodes might be revoked and the node may be given a
fresh set of secret keys. In this context, key revocation,
which refers to the task of securely removing keys that
are known to be compromised, has been investigated as
part of the key management schemes, for example in
[5]. Moreover, recovery can also be achieved by simply
removing the compromised node from the network, for
example by announcing a blacklist, or simply reload the
node’s programs. More sophisticated methods may include
immunizing a node with an appropriate antivirus patch that
might render the node immune from the same virus attack.

Regardless, in our analysis, we will study virus spread-
ing under the two cases respectively depending on whether
a node can be recovered or not.

D. Epidemic Theory

Originally, epidemic theory concerns about contagious
diseases spreading in the human society. The key feature
of epidemiology [2], [7] is the measurement of infection
outcomes in relation to a population at risk. The population
at risk basically comprises of the set of people who
possess a susceptibility factor with respect to the infection.
This factor is dependent on several parameters including
exposure, spreading rate, previous frequency of occurrence
etc., which define the potential of the disease causing
the infection. Example models characterizing the infection
spreading process include the Susceptible Infected Suscep-
tible (SIS) Model, Susceptible Infected Recovered (SIR)
Model etc. In the former, a susceptible individual acquires
infection and then after an infectious period, (i.e., the time
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the infection persists), the individual becomes susceptible
again. On the other hand, in the latter, the individual
recovers and becomes immune to further infections.

Of particular interest is the phase transition of the
spreading process that is dependent on an epidemic thresh-
old: if the epidemic parameter is above the threshold, the
infection will spread out and become persistent; on the
contrary, if the parameter is below the threshold, the virus
will die out.

Epidemic theory indeed has been borrowed to the
networking field to investigate virus spreading. In this
paper, we will mainly rely on a random graph model to
characterize the unique connectivity of the sensor network
and perform the epidemic study [8], [10].

III. Modelling and Analysis of Compromise
Propagation

In this section, we analyze the propagation of node
compromise originating from a single node that has been
affected. Our focus is to study the outbreak point of the
epidemic effect where the whole network will fall victim
to the compromise procedure.

Our key method is to characterize the sensor net-
work, including its key distribution, by mathematically
formulating it as a random graph whose key parameters
are precisely determined by those of the sensor network.
Therefore, the investigation of epidemic phenomena can
be performed on the random graph instead. Following
this approach, we observe the epidemic process under two
scenarios: without node recovery and with node recovery,
depending on whether infected nodes will be recovered by
external measures like key revocation, immunization, etc.

A. Network Model as Random Graph

Assume that sensor nodes are uniformly deployed in
a disc area with radius R. Let ρ = N

R2 denote the node
density of the network where N is the total number of
the nodes. For a sensor node with communication range r,
the probability that l nodes are within its communication
range is given by

p(l) =
(

n

l

)
pl(1− p)n−l (1)

where p is defined by

p =
r2

R2
=

r2ρ

N
. (2)

Thus p is the probability of a link existing at the physical
level, i.e., whether the two nodes fall within their respective
communication ranges.

We further assume that the probability that two neigh-
boring nodes sharing at least one key in the random pre-
distribution pairwise key is q. Notice that q is determined
by the specific pairwise key scheme employed. For a
particular node having l neighboring nodes, the probability
that there are k nodes, k ≤ l, sharing at least one key with
it is given by

p(k|l) =
(

l

k

)
qk(1− q)l−k (3)

Therefore, the probability of having k neighboring nodes
sharing at least one key is

p(k) =
∞∑

l=k

p(l)p(k|l) (4)

=
∞∑

l=k

(
n

l

)
pl(1− p)n−l

(
l

k

)
qk(1− q)l−k (5)

Thus, based on both physical proximity and the proba-
bility of key sharing between neighbors, we get a degree
distribution p(k). Notice that this degree distribution can
be employed to generate a random graph G. Since G pos-
sesses the same property in terms of secure communication
pattern as the sensor network of concern, we will next
perform the analysis on G instead.

B. Compromise Spread Without Node Re-
covery

Given the random graph construction, we now analyze
the case of compromise spread when no node recovery
is performed. In other words, a compromised sensor node
will remain infectious indefinitely.

Let G0(x) be the generating function of the degree
distribution of a randomly chosen vertex in G and is
defined by

G0(x) =
∞∑

k=0

p(k)xk (6)

Moreover, with G1(x) given by

G1(x) =
1

G′0(1)
G′0(x) (7)

and with λ denoting the infection probability of a node
being infected by communicating with a compromised
node, then following the analysis presented in [8], the
average size of the outbreak is derived as

s = 1 +
λG′0(1)

1− λG′1(1)
. (8)

Infection probability λ essentially captures the spreading
capability of the virus that could compromise the network:
the larger it is, the stronger the virus is. We assume that
its value can be obtained by means of measurement or
analysis.

Given the above result, we can see that the outbreak
point for the network is λ = 1/G′1(1) which marks
the onset of an epidemic. For λ > 1/G′1(1) we have
an epidemic in the form of a giant component in the
random network and the size S of the epidemic, where
S denotes the expected fraction of the network that will
be compromised if an outbreak happens, is given by

S = 1−G0(u).

Here u is the root of the self-consistency relation

u = G1(u).

Intuitively, the above conclusion reveals that if λ ≤
1/G′1(1), the component of compromised nodes is finite
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Fig. 1. Size of compromised node clusters: (a)
depicts the average size of infected clusters when there
is no epidemic and (b) shows the epidemic size as the
fraction of the entire network. The point where non-zero
value appears indicates the transition from non-epidemic
to epidemic

in size regardless of the size of the network and each
node’s probability of being compromised is zero for large
networks. On the contrary, if λ > 1/G′1(1), there always
exists a finite probability for a node to be compromised.

Fig. 1 depicts this effect for a network with N = 1000
nodes with different key sharing probabilities q. The under-
lying physical topology, determined by the communication
range and node density, has an average edge probability
of p = 0.25. Given the physical deployment, we vary the
probability of direct pairwise key sharing (q) and study
the point of outbreak. As we can see in Fig. 1, while
undoubtedly increasing q can facilitate communication in
the network, the network also becomes more vulnerable
to virus spreading. Specifically, when q = 0.01, network
wide breakout is only possible when a compromised node
has an infection probability (λ) larger than 0.4 to infect a
neighbor. We note that in this case, we have an average
node degree of 2.5. On the contrary, this probability only

needs to be around 0.05 when q = 0.1 which subsequently
makes the node degree 25. Fig. 1(b) illustrates the fraction
of the network that is ultimately infected as the infection
probability is increased beyond the critical point of the
onset of outbreak. For instance, we observe that when
q = 0.1, the whole network is compromised with a λ value
of less than 0.2. On the contrary, with q = 0.01, 80% of
the network could be compromised with only a high value
of λ = 0.8.

In summary, Fig. 1 clearly indicates the tradeoff be-
tween key sharing probability among sensor nodes and the
vulnerability of the network to compromise.

C. Compromise Spread With Node Recov-
ery

In this case, we assume that the network has the
capability to recover some of the compromised nodes
by either immunization or removal from the network. To
capture this recovery effect, we assume that an infected
node recovers or is removed from the network after an
average duration of infectivity τ . In other words, a node in
the sensor network remains infective for an average period
τ after which it is immunized. During this infective period,
the node transmits the epidemic to its neighbors with the
infection rate β, denoting the probability of infection per
unit time. Evidently, the parameter τ is critical to the
analysis as it measures how soon a compromised node
recovers. Naturally, we will perform our analysis following
the SIR model in epidemic theory [10], [8].

First, consider a pair of adjacent nodes where one
is infected and the other is susceptible. If T denotes
the compromise transmission probability, given the above
definitions for β and τ , we can say that the probability
that the disease will not be transmitted from the infected
to the susceptible is given by

1− T = lim
δt→0

(1− βδt)τ/δt = e−βτ . (9)

Subsequently, we have the transmission probability

T = 1− e−βτ .

In other words, the compromise propagation can be consid-
ered as a Poisson process, with average βτ . The outcome
of this process is the same as bond percolation and T is
basically analogous to the bond occupation probability on
the graph representing the key sharing network. Thus, the
outbreak size would be precisely the size of the cluster
of vertices that can be reached from the initial vertex
(infected node) by traversing only occupied edges which
are occupied with probability T . Notice that T explicitly
captures node recovery in terms of the parameter τ .

Replacing λ with T in Equation 8, and following similar
steps, we get the size of the average cluster as

s = 1 +
TG′0(1)

1− TG′1(1)
. (10)

and the epidemic size is obtained by

S = 1−G0(u;T ). (11)

where u is obtained by

u = 1−G1(u;T ), (12)
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Fig. 2. Size of compromised node clusters: (a)
depicts the average size of infected clusters when there
is no epidemic and (b) shows the epidemic size as the
fraction of the entire network. The point where non-zero
value appears indicates the transition from non-epidemic
to epidemic

and G0(u; T ) and G1(u; T ) are given respectively by

G0(u; T ) = G0(1 + (u− 1)T ), (13)

and

G1(u; T ) = G1(1 + (u− 1)T ). (14)

Fig. 2 summarizes this effect, depicting the epidemic
outbreak against the average recovery time τ for the
respective infection rates β. The plots are for a sensor
network with typical average degree of 10. In Fig. 2(a),
we can identify the average duration that an infected
node is allowed to remain infective before an epidemic
outbreak occurs. We notice that, when the infection rate
is 0.01, infected nodes have to be recovered/removed on
the average in less than 100 time units in order to prevent
an epidemic. As expected, this time is much lower when
the infection rate is 0.2. Fig. 2(b) depicts the epidemic
outbreak point for different infection rates β in terms of
the average duration of infectivity of a node.

We remark that both the analytical and experimental
results have significant implication for security scheme
design in terms of revoking/immunizing compromised
nodes in wireless sensor networks: it dictates the speed at
which the network must react in order to contain/prevent
the effect of network wide epidemic.

IV. Simulation

We employ a discrete event-driven simulation to accu-
rately simulate the propagation of the infection spreading
process. In this section, we first outline our discrete-event
driven simulation model for the gradual progress of the
spread of node compromise. Then we use this model to
capture the time dynamics of the spread of the compromise
in the whole population.

A. Simulation Setup

In our simulation, we assume the number of sensor
nodes in the network to be 1000. The sensor network
is produced by uniformly distributing the sensors in a
1200×1200 unit2 area. The communication range of each
node is assumed to be 100 units. Our goal is to make
the physical network fairly connected with an average
node degree of around 20 to 25. We use the key sharing
probability on top of this network to further reduce the
average node degree of the final key sharing network to
typical values of 3 and 10.

We employ the random key pre-distribution scheme
described in [11] to establish the pairwise key among
sensor nodes. By tuning the parameters of the scheme,
we can achieve any specific values for the probability of
any two neighbors to share at least one key.

Our simulation works in two phases. In the first phase,
we form the network where each node identifies its set of
neighbors and entries are made into a neighbor table. The
average degree of the key sharing network is controlled by
changing the value of the key sharing probability between
neighbors. The entry for each node in the neighborhood
table can indicate whether a node is susceptible, infected or
recovered. We use typical values obtained for the average
node degree of the network, namely, 3 and 10.

In the second phase, we simulate actual virus propaga-
tion. Initially, at t = 0, the number of infected nodes,
denoted by I(0) is set to be 1. At any time point t,
the population is divided into the group of susceptible
nodes, S(t), and the group of infected nodes, I(t). In
the situation where we have nodes that are immunized
and thus recovered, we denote that this set of recovered
nodes by R(t). The sub-population dynamics is obtained
by observing the population counts after fixed simulation
intervals of 1 time unit. We assume that the time it takes
for an infected node to infect its susceptible neighbor is
negative exponentially distributed with a mean of 1 unit
time.

There are two simulation scenarios corresponding to our
analysis.

B. Simulation Results and Discussion

1) Simulation Results for No Recovery Case: The sim-
ulation results for the case without recovery are shown
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Fig. 3. System dynamics without recovery

in Fig. 3. We vary the value of the infection probability
β under different network connectivities and study the
time dynamics of the infected population. We notice, as
expected, that an increase in the average node degree
from 5 to 10 has an impact on the rate of compromise
of the network. For instance, the curve with the lowest
β value(0.05) has compromised the entire network by
simulation time 700 when the average node degree is 10.
However, with the node degree at 5, a β value of 0.05
could compromise upto 70% of the network by that same
simulation time. Thus, we find that in the no-recovery case
the two key parameters affecting the network compromise
rate are infection probability β and the average node
degree.

2) Simulation Results for Recovery Case: Fig. 4 and 5
show the simulation results for the three sub-populations
(infected, immunized, and susceptible) in the situation
where nodes do recover.

In Fig. 4 we see the effects of the infectivity duration τ
and infection rate β on the dynamics of the epidemic. In
Fig. 4(c), the highest point is reached very fast because of
the high value of β. Thereafter, its recovery also takes less
time. However, in Fig. 4(a), β is smaller but τ0 is higher

(i.e., 30), the infection rises slowly and also falls slowly
because of the high recovery time.

In comparison, Fig. 5 has better connectivity of average
node degree of 5 which in turn increases the rate of
infection significantly. Comparing Fig. 4(c) and Fig. 5(c),
we observe that infection penetration is higher in the latter
even in presence of a smaller value of β. In Fig. 5(c), it
shows that even with a low value of β, the infection still
rises to above 60%.

Therefore, we observe that network connectivity has
a high impact on the infection propagation and on the
speed of reaching the maximal point of outbreak. However,
thereafter during the recover phase, τ0 affects aggressively
the time it takes to recover the whole network.

V. Related Work

The mathematical modeling of epidemics is well doc-
umented [2], [7]. In fact, visualizing the population as a
complex network of interacting individuals has resulted in
the analysis of epidemics from a network or graph theoretic
point of view [8], [9], [10].

Node compromise in sensor networks and the need for
their security has also received immense attention [4]. A
large portion of current research on security in sensor
networks has been focused on protocols and schemes for
securing the communication between nodes [12], [13].
Revocation of keys of compromised nodes has been studied
in [14]. In [4], the authors demonstrate the ease with which
a sensor node can be compromised and all its information
extracted. Unfortunately, little work has been done on the
defense strategies when the compromise of a single node
could be used to compromise other nodes over the air. In
this paper, we take the first step to model this potential
disastrous propagation. In [6], the authors used an epi-
demic modeling technique for information dissemination in
a MANET. However, they assumed homogeneous mixing
which is not possible in a static sensor network as ours.

In our work, we adopted some of the results presented in
[8] where the author proposes a percolation theory based
evaluation of the spread of an epidemic on graphs with
given degree distributions. However, little has been shown
there on the temporal dynamics of the epidemic spread and
the authors only studied the final outcome of an infection
spread.

VI. Conclusion

In this paper, we investigate the potential threat for com-
promise propagation in wireless sensor networks. Based
on epidemic theory, we model the process of compromise
spreading from a single node to the whole network. In
particular, we focus on the key network parameters that
determine a potential epidemic outbreak in the network.
Due to the unique distance and key sharing constrained
communication pattern, we resort to a random graph model
which is precisely generated according to the parameters of
the real sensor network and perform the study on the graph.
Furthermore, we introduce the effect of node recovery after
compromise and adapt our model to accommodate this
effect. Our results reveal key network parameters in de-
fending and containing potential epidemics. In particular,
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Fig. 4. The dynamics of the population with recovery for average degree of 3
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Fig. 5. The dynamics of the population with recovery for average degree of 10

the result provides benchmark time period for the network
to recover a node in order to defend against the epidemic
spreading. Our extensive simulation results validate our
analyses and moreover, provide insights of the dynamics
of the system in terms of temporal evolution.
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