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Abstract

In this paper, we propose a routing algorithm calledMinimum Fusion Steiner Tree (MFST), for

energy efficient data gathering with aggregation (fusion) in wireless sensor networks. Different from

existing schemes, MFST not only optimizes over the data transmission cost, but also incorporates the

cost for data fusion which can be significant for emerging sensor networks with vectorial data and/or

security requirements. By employing a randomized algorithm that allows fusion points to be chosen

according to the nodes’ data amount, MFST achieves an approximation ratio of 5

4
log(k + 1), wherek

denotes the number of source nodes, to the optimal solution for extremely general system setups provided

that fusion cost and data aggregation are non-decreasing against the total input data. Consequently, in

contrast to algorithms that only excel in full or non-aggregation scenarios without considering fusion

cost, MFST can thrive in a wide range of applications.

Index Terms: wireless sensor networks, data fusion, routing, randomized algorithm, approximation.
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I. INTRODUCTION

Wireless sensor networks have attracted a plethora of research efforts due to their vast potential

applications [1][2]. In particular, an extensive set of research work has been devoted to providing

energy efficient routing algorithms for data gathering [3–18]. While a class of shortest path tree

(SPT) based routing strategies have been developed in [3, 4,9] assuming statistically independent

information, the more realistic case of correlated data hasalso been considered in [5–8, 10–13,

15–18]. By exploring data correlation and employing in-network processing, redundancy among

sensed data can be curtailed and hence the network load can bereduced [6]. The objective of

sensor routing algorithm is then to jointly explore the datastructure and network topology to

provide the optimal strategy for data gathering.

Routing with data aggregation can be generally classified into two categories: routing-driven

and aggregation-driven. Inrouting-driven algorithms [5–7, 10, 11, 13], data is routed through

shortest paths to the sink, with aggregation taking place opportunistically when data flows

encounter. Inaggregation-drivenrouting algorithms [12, 15, 16], routing paths are heavily depen-

dent on data correlation in order to fully benefit from information reduction resulted from data

aggregation. In this paper, we will use “aggregation” and “fusion” interchangeably, denoting the

data reduction process on intermediate sensor nodes.

Regardless of the techniques employed, existing strategies miss one key dimension in the

optimization space for routing correlated data, namely thedata aggregation cost. The cost for

data aggregation may be negligible for certain types of networks. For example, sensor networks

monitoring field temperature may use simple average, max, ormin functions which essentially

cost nothing. However, other networks may require complex operations for data fusion. One

example is hop-by-hop secure networks where encryption anddecryption at intermediate nodes

will significantly augment fusion cost even though the fusion function itself may be simple. It

has been shown in [19] that energy consumption of a beamforming algorithm for acoustic signal

fusion is on the same order of that for data transmission. Moveover, in our own experimental
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study described in [20], we found that a typical aggregationfunction for vectorial data, such

as image fusion, costs tens of nano Joules (nJ) per bit, which is on the same order as the

communication cost reported in the literature [19].

In this paper, we include fusion cost as another dimension tothe space of routing optimization

for correlated data. Different from transmission cost thatdepends on the output of the fusion

function, the fusion cost is mainly determined by the input of the fusion function. Therefore,

in addition to transmission cost, fusion cost can significantly affect routing decisions when

involving data aggregation. For example, high fusion cost may deter a node from employing

multi-hop transmission strategy, especially when the dataamount can not be significantly reduced.

At the same time, various pairing options among nodes and hence different fusion costs may

ultimately affect the optimal routing topology. Therefore, an optimal routing algorithm needs

to jointly optimize over the transmission and fusion costs in order to minimize the total energy

consumption. Since this problem is NP-complete [15], our objective is to design an approximation

algorithm.

A. Related Work

Routing with data aggregation targets at jointly exploringthe data structure and network

topology to reduce energy consumption for data gathering inresource limited sensor networks.

If the complete knowledge of all source correlations is available in advance at each source,

theoretically the best approach is to use distributed source coding typified by Slepian-Wolf coding

[21]. In this technique, compression is done at original sources in a distributed manner to achieve

the minimum entropy and hence avoid the need for data aggregation on the intermediate nodes.

In [15], an optimal rate allocation algorithm is proposed for nodes in the network and SPT is

employed as the routing scheme. However, implementation ofdistributed source coding in a

practical setting is still an open problem and likely to incur significant additional cost because

of the aforementioned assumption.
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Routing-driven algorithms emphasize source compression at each individual node, and aggre-

gation occurs opportunistically when routes intersect. In[11], the directed diffusion scheme was

proposed where sensors create gradients of information in their respective neighborhoods. If the

gradients match the broadcasted interests from the sink, information routes back to the sink are

formed and data is aggregated at the intersections. To improve path sharing for more energy

savings, a greedy incremental tree (GIT) is described in [10] to adjust aggregation points on the

routes. LEACH [5] is a cluster-based protocol in which sensors directly send raw data to cluster

heads where data fusion is performed. Aggregated data is then delivered to the sink through multi-

hop path. In PEGASIS [18], sensors form chains along which a node transmits and receives from

a nearby neighbor. Data aggregation is then performed whiledata moves from node to node. In

[13, 14], sensor collaboration issue in target tracking is addressed, where sensors in target area

collaborate among themselves to aggregate data, and one of them generates a data report to the

sink. This scheme focuses on dynamic tree expanding/pruning and tree reconfiguration when the

target moves. The basic routing structure in target area is simple SPT. In [15], it has been proved

that the minimum-energy data gathering problem is NP-complete by applying reduction to the

set-cover problem and claimed that the optimal result is between SPT and traveling salesman

path. A common feature in these protocols is that data correlation is not exploited explicitly.

When designing aggregation-driven algorithms, various assumptions have been made on the

model regarding data aggregation. In the single-input aggregation model, fusion of one node’s

information depends only on the information of one other node, and the encoded data can not

be recoded. This strategy best fits asynchronous sensor networks. Under this model, an optimal

algorithm MEGA for foreign-coding and an approximation algorithm LEGA for self-coding are

proposed in [16]. In MEGA, each node sends raw data to its encoding point using directed

minimum spanning tree (MST), and encoded data is then transmitted to the sink through SPT.

On the other hand, LEGA uses shallow light tree (SLT) [22, 23]as the data gathering topology,

and achieves2(1 +
√

2) approximation ratio for self-coding.
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In a multi-input aggregation model, the amount of aggregated information sent to the sink

from one node depends on the structure of the subtree rooted at that node. In this model, each

node can theoretically obtain the joint entropy of its subtree to receive the maximal aggregation

ratio. One strategy is that aggregation is performed at a node only if all input information from

its child nodes is available in order to exploit the correlation among them. Based on this model,

a hierarchical matching algorithm is proposed in [12], resulting in an aggregation tree with a

logarithmic approximation ratio to the optimal for all concave aggregation functions. However,

in this model, aggregation depends only on the number of nodes in the subtree rooted at the

aggregation node regardless of the correlation among the data.

B. Our Contributions

In this paper, we employ a general aggregation model where data aggregation may potentially

occur at any point along a route. In particular, aggregated data may be fused again. Mathemati-

cally, the model only requires that the output data amount ofthe fusion function is not less than

any of its inputs and not more than the summation of all inputs. From this point of view, the

model is a generalization of the multi-input model. Moreover, our model does not depend on

any specific relations among information supplied by sensors nor on specific correlation models.

We define the minimum energy routing problem not only constrained by the transmission cost,

but also by the fusion cost, since fusion cost can be comparable to transmission cost in certain

sensor systems either due to data characteristics or encryption/decryption overhead. Consequently,

we formulate the problem as a combinatorial optimization problem. As the problem is NP-

complete, by proposing a new metric combining both fusion and transmission costs, we design

Minimum Fusion Steiner Tree (MFST), a randomized algorithm with provable approximation

ratio of 5
4
log(k + 1) to the optimal, wherek denotes the number of source nodes. While our

technique is rooted in [12, 24], the problem and approach aresignificantly different. On one

hand, we allow the costs of fusion and transmission to be linkdependent and model it as a
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function of the amount of data. On the other hand, there is no data aggregation in [24] nor any

fusion cost in [12], while our model incorporates a general aggregation model to describe data

reduction.

Our model is quite unrestricted. It accounts for per link transmission cost, general non-convex

fusion cost as a function of input streams, and a broad range of data aggregation models. An

extensive set of simulations show that MFST performs well under various system setups. Unlike

MST and SPT algorithms that can only perform well under certain extreme situations such as

full or non-aggregation of data without considering fusioncost, MFST adapts well to varying

sensor correlations, fusion costs, and network topologies.

The remainder of this paper is organized as follows. In Section II, we describe the system

model and formulate the routing problem. Section III details the randomized approximation

algorithm, followed by the analysis in Section IV. Section Vprovides analytic comparison

between MFST and other algorithms, while Section VI studiesthe performance of MFST through

extensive simulations. Finally, Section VII concludes thepaper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We model a sensor network as a graphG = (V, E) where V denotes the set of sensors

(nodes) andE the set of edges representing the communication links between pairs of sensors.

We assume that a setS ⊂ V of k nodes are data sources of interests and the sensed data need

to be gathered at a special sink nodet ∈ V , where it is further processed. Our focus is given to

energy efficient gathering of the information from the source nodes to the sink. Fig. 1 illustrates

an example of the data gathering process, where gray circlesrepresent sensor nodes generating

source data, dashed lines are possible communication linksamong the nodes, and the solid lines

compose a possible routing tree for data gathering.
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Intuitively, two components of the network will determine the energy consumption of a routing

strategy, namely the information amount of the source nodesand the transmission cost on each

link. For convenience, we denote the amount of information of a node to be itsweight. Formally,

for a nodev ∈ S, the node weightw(v) : S → ℜ+ denote the amount of information outgoing

from v, whereℜ+ denotes the set of positive real numbers. In addition, an edge e ∈ E is

denoted ase = (u, v), whereu is the start node andv is the end node. The weight of edgee

is equivalent to the weight of its starting node, i.e.,w(e) = w(u). Associated with edgee is

the the transmission cost which is defined ast(e) : E → ℜ+, denoting the cost for transmitting

w(e) data fromu to v.

As mentioned earlier, along the routing path,

d
a

b

c

e

t

Fig. 1. Example of data gathering tree

data from multiple nodes can be aggregated in

order to reduce the network load. For example,

data from nodea can be aggregated with that of

nodeb which will in turn forward the aggregated

data tod. We assume that data aggregation can

potentially take place at any intermediate node along the route: an intermediate node can explore

the redundancy among multiple child-nodes’ data and aggregate all into one compressed data

stream.

In this paper, we also capture the cost of aggregating data inthe network. Specifically, on

edgee = (u, v), we define fusion costf(e) : E → ℜ+, denoting energy consumption for fusion

process at nodev1. Therefore, the weight of a leaf node in the routing tree, such as nodea in

Fig. 1, is the same as its original amount of information; whereas the weight of an intermediate

node, such as noded, is the total amount of information of the subtree rooted at that intermediate

nodeafter data fusion. Since data fusion is performed by intermediatenodes to aggregate their

own data with their children’s, in order to avoid confusion,we usew̃(·) to denote the temporary

1The fusion cost is defined on the edge instead of the node for notational convenience.
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weight of a nodebefore data fusionand usew(·) to denote the weight of a node after data

fusion.

In the following, we will further detail and formally define data aggregation, transmission

cost, and fusion cost.

B. Correlation and Data Aggregation

Key to a sensor data routing protocol is the data reduction ratio after data aggregation.

Unfortunately, this ratio is heavily dependent on the application scenarios. For example, in

a sensor network detecting the maximum temperature in a field, each node only sends out one

temperature value packet after data aggregation. On the other hand, in a video sensor network

monitoring an area, images collected by different sensor nodes may offer redundancy due to

overlapping fields of view. However, even with data aggregation, information is likely to increase.

To accommodate a variety of applications, we do not constrain ourselves to any particular

model on data aggregation. The only assumption we make is that if the data of nodesu andv

is fused atv, the resulting amount of data is not less than either of the component data. In other

words, we assume

w(v) ≥ max{w(u), w̃(v)}. (1)

And evidently we shall havew(v) ≤ w(u)+w̃(v). Otherwise, aggregation shall not be performed

at all and the problem becomes trivial.

In this paper, we assume that the aggregation process for multiple inputs at a particular point

is performed step by step (fusing with nodes in turn) and hence the above formula is adequate

in characterizing the fusion process. The justification of this assumption lies in the resource

limitation of sensor nodes. Storing multiple inputs and fusing them at once may be difficult

for sensors as it requires large memory and additional processing power. Second, data reported

from different sensors cannot arrive at the same time, either due to the shared wireless medium
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or various intermediate nodes and processing. Therefore, fusing existing data with the newly

received when it arrives is a natural solution. In other words, in step by step fusion manner, the

fusion point aggregates its own data with one input first, andnext fuses the aggregation result

with another input. This process will be repeated until all the inputs are aggregated. For example,

in Fig. 1, noded fuses data from nodec with its original data and saves it as its temporary data,

then noded will aggregate it again with the data from nodeb and sends the final result along

its path to sinkt.

C. Transmission and Fusion Costs

The transmission cost over an edgee depends on two factors: the unit cost of the link for

transmitting data fromu to v, and the amount of data to be transmitted. The latter factor is simply

w(e). In practice, cost per unit data depends not only on the Euclidian distance between the two

nodes and the physical layer technology employed, but also on the various networking overhead.

However, to simplify our model, we abstract the unit cost asc(e) and thus the transmission cost

t(e) is

t(e) = w(e)c(e). (2)

Notice thatc(e) is link-dependent and hence can accommodate various conditions per link, for

example, different distances between nodes and local congestion situations.

The fusion cost over an edgee depends on the amount of data to be fused as well as the

algorithms utilized. In this paper, the fusion cost is expressed by a general functionq(·), such

that the cost for fusing the data of nodesu andv at nodev is given as

f(e) = q
(
w(u), w̃(v)

)
. (3)

We requireq(x, y) to possess the following properties:a) it is symmetrical ofx and y, b)

q(x, y) ≥ 0 and equality is true iffx · y = 0, c) q(x, y) is monotonically non-decreasing ofx
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and y, and d) q(x, y) is non-convex when eitherx or y is fixed. All these properties can be

naturally justified. For example, more energy is required for fusing larger amount of data and

thus justifies c). Similarly, with the increase of data, the margin of fusion cost of unit data will

decrease as overhead will be averaged down. This justifies d).

Although both transmission and fusion costs are link-based, we remark that they cannot be

simply combined together and hence rely on existing techniques solely based on the transmission

cost to solve this problem. The reason is that the fusion coston an edge is determined by the

inputs of the fusion function. The inputs include both the incoming data from other nodes and

the data produced by the fusion point itself. On the contrary, the transmission cost on an edge is

only determined by the weight of the start point of the edge. In other words, for a fusion point,

the transmission cost is only determined by the output of thefusion function. More evidently,

this can be seen from Equations (2) and (3).

D. Problem Formulation

Given the source node setS and sinkt, our objective is to design a routing algorithm that

minimizes the energy consumption when delivering data fromall source nodes inS to the sink

t. Mathematically, the goal is to find a connected subgraphG∗ = (V ∗, E∗) ⊆ G, which contains

all sources (S ⊂ V ∗) and the sink (t ∈ V ∗), such that the following sum is minimized:

∑

e∈E∗

(
f(e) + t(e)

)
. (4)

Different from existing work, the objective function includes both transmission and fusion costs.

In particular, as discussed above, the transmission cost and fusion cost are link-dependent which

can account for general application scenarios.

As each node in the network will aggregate all inputs with itsown data to form one outgoing

aggregated packet, the solution to the above problem evidently is in the form of a Steiner tree

rooted at sinkt. Therefore, our objective next is to find a routing Steiner tree that is the solution
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to Equation (4) which minimizes the total energy consumption.

III. MFST ALGORITHM DESIGN

It has been shown that even if only the transmission cost is considered, the problem defined

in the last section is NP-complete [15]. Therefore, heuristic algorithms have been designed in

the literature for finding approximations to the minimum transmission cost tree [15, 16]. Since

fusion cost is also incorporated into our design, the resultant combinatorial problem is also

NP-complete. In this section, we design a randomized approximation algorithm that is bounded

within 5
4
log(k + 1) ratio to the optimal solution, wherek denotes the number of source nodes.

As our focus is given to the joint minimization of both transmission and fusion costs, we term

our solutionMinimum Fusion Steiner Tree (MFST). To the best of our knowledge, this is the first

attempt that concurrently optimizes on both transmission and fusion costs in designing routing

algorithms for gathering correlated data in wireless sensor networks.

A. Minimum Fusion Steiner Tree

In MFST, we first pair up source nodes (or a source with the sink) based on the metric defined

below and then randomly select a fusion node from the node-pair. The weight of the non-fusion

node will be transferred to the fusion node, paying appropriate transmission and fusion costs

on that edge. Subsequently, the non-fusion node will be eliminated and the fusion node with

aggregated weight will be grouped as a new set of sources. We then repeat this process on the

new set until the sink is the only remaining node. In this paper, we term each such process a

“stage” of the algorithm. The detailed algorithm is presented below.

MFST ALGORITHM:

1) Initialize stage indexi = 0, S0 = S ∪ {t}, andE∗ = ∅. Let w0(v) for any v ∈ S equal to

its original weight, and letw0(t) = 0 wheret is the sink.

2) GivenSi for stagei, for every pair of non-sink nodes(u, v) ∈ Si:
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• Find the minimum cost path(u, v) in G according to the metric

M(e) = q(wi(u), wi(v)) + α(wi(u), wi(v))c(e), (5)

whereα(wi(u), wi(v)) = wi(u)wi(v)(wi(u)+wi(v))

w2
i
(u)+w2

i
(v)

.

• DefineKi(u, v) to be the distance under metricM(e) of this path.

3) For every non-sink nodeu ∈ Si:

• Find the minimum cost path(u, t) in G according to the metric

M(e) = q
(
wi(u), wi(t)

)
+ wi(u)c(e) (6)

• DefineKi(u, t) to be the distance under metricM(e) of this path.

4) Find minimum-cost perfect matching2 between nodes inSi. Let (ui,j, vi,j) denote thejth

matched pair inSi, where1 ≤ j ≤ |Si|/2. If there is only one non-sink node left after

matching, match it to itself without any cost, and consider it as the last “single-node pair”

in Si.

5) For each matched pair(u, v), add those edges that are on the path definingKi(u, v) to the

setE∗.

6) For each pair of non-sink matched nodes(u, v), chooseu to be the fusion node with

probability

P (u = fusion node) =
w2

i (u)

w2
i (u) + w2

i (v)
(7)

Otherwise,v will be the fusion node. For pair(u, t), chooset to be the fusion node.

7) Transport the weight of a non-fusion node to its corresponding fusion node. According to

2Minimum-cost perfect matching is a matching that guarantees the total cost (distance) for all pairs underM(e) is minimized.
Ref. [25] provides polynomial-time algorithms for this problem. An example solution is to divide all nodes into different
connected subgraphs whose edges are determined by selecting the nearest neighbor for each vertex, construct an Eular tour for
each subgraph and reduce it to a Hamiltonian, and then selectthe best matching out of all matchings on each Hamiltonian.
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Equation (1), the weight of the fusion node satisfies

wi+1(fusion node) ≥ max{wi(u), wi(v)} (8)

8) Remove all non-fusion nodes fromSi, then the remaining fusion nodes induceSi+1.

9) If Si+1 contains only the sink, we returnG∗ = (V ∗, E∗), whereE∗ is the set of edges

constructed andV ∗ includes the source nodes and the sink. Otherwise, the matching process

increment from step 2 can be executed again.

One of the key design components in the algorithm is metricM(e) for edgee = (u, v)

as defined in Equation (5). This metric is composed of two parts, the fusion cost and the

transmission cost on edgee. As transmission cost is dependent on the data amount and different

choices of fusion point (u or v) will lead to different amount of information to be transmitted,

we employα(wi(u), wi(v)) = wi(u)wi(v)(wi(u)+wi(v))

w2
i
(u)+w2

i
(v)

as the expected weight for transmission to

evaluate the transmission cost. As we will show later, this new metric will allow the algorithm

to jointly optimize over the transmission and fusion costs in order to minimize the total energy

consumption.

Notice that the size of the setSi is reduced to half after each stage of the algorithm.

Therefore, the process terminates afterlog(k + 1) stages. Furthermore, since the fusion node

is randomly selected according to a probability based on thenode weights, the fusion process is

randomly distributed among all sensor nodes. To utilize this property, the algorithm can be rerun

periodically to generate a new realization of the tree. As a byproduct, the algorithm can then

balance fusion costs among sensor nodes naturally and henceprevents certain node’s battery

power from being exhausted due to heavy fusion in a short time.

IV. A NALYSIS OF MFST

In this section, we prove that the approximation ratio of MFST to the optimal solution is

5
4
log(k+1), wherek is the number of source nodes. LetT ∗ denote the optimal solution tree. The
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optimal cost (minimum-energy consumption) onT ∗ is defined asC∗ =
∑

e∈T ∗(f(e)+ t(e)). We

measure MFST’s performance againstC∗. Since MFST is randomized, we analyze its expected

performance.

In each stage, the algorithm incurs transmission and fusioncosts on the setSi, which is the

source set in the(i + 1)th stage, for merging nodes. LetGi denote the total expected cost of

ith stage. The expected cost of the algorithm is then the summation of the expected costs of

all stages. DefineC∗
i as the cost of the optimal routing tree forSi. Obviously,C∗

0 = C∗. Our

approach for proof is to first upper bound the expected cost ofthe optimal routing algorithm,

C∗
i , for Si in Lemma 1. Then in Lemmas 3 and 4, we prove thatGi+1 is in turn bounded by

(5
4
)C∗

i . Combining these lemmas, the desired result is derived in Theorem 1.

Before proceeding further, we first introduce the followingassumption needed in the analysis.

In the data gathering tree, a link may reside on multiple routes for different sources. If nodesv

andu are physically in proximity, the probability of a link residing on the route ofu to the sink

and the probability of it residing on the route ofv to the sink are equal. This assumption can be

intuitively justified for sensor networks with dense deployment and also where the sink is not

deployed in the monitored environment together with the sensor nodes. Given this assumption,

we can obtain the following lemma.

Lemma 1: For each stagei, i ≥ 1, the expected costE[C∗
i ] ≤ C∗

i−1.

Proof: Let wi(v) denote the weight of source nodev in stagei. Let (ui,j, vi,j) represent

the jth matching pair constructed in the(i + 1)th stage of the MFST algorithm. For a giveni,

construct a sequenceD∗
i,j, for 0 ≤ j ≤ ⌈|Si|/2⌉, whereD∗

i,j is the cost of the optimal solution

for the residual problem3 after jth random fusion node selection during the(i+1)th stage. Note

that the last pair may be the special “pair” with only one node. By definition, we haveD∗
i,0 = C∗

i

andD∗
i,⌈|Si|/2⌉ = C∗

i+1 = D∗
i+1,0.

3For simplification in this proof, we useresidual problemto represent the routing problem for the remaining source nodes
after current fusion node selections in one stage.
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In order to proveE[C∗
i ] ≤ C∗

i−1, we first prove that the sequenceD∗
i,j is super-martingale for

a fixed value ofi. That is: for all0 ≤ i < log(k + 1) and0 ≤ j < ⌈|Si|/2⌉, E[D∗
i,j+1] ≤ D∗

i,j.

Let T ∗
i,j denote the optimal tree for the residual problem after thejth random fusion node

selection during the(i + 1)th stage, where0 ≤ j < ⌈|Si|/2⌉. For an edgee in tree T ∗
i,j, let

w(e) denote the total data routed throughe. After the (j + 1)th fusion node selection, letw′(e)

be the total data through this edge for the new residual problem on treeT ∗
i,j . Notice that the

optimal treeT ∗
i,j+1 for the new residual problem might be quite different fromT ∗

i,j. For a node

pair (ui,j+1, vi,j+1), there are three cases before fusion node selection:

1) Edgee lies on the paths from bothui,j+1 andvi,j+1 to the sink inT ∗
i,j.

2) Edgee lies on neither of the paths.

3) Edgee only lies on the path ofui,j+1 or vi,j+1, but not on both.

In the first two cases,w′(e) ≡ w(e) regardless of which node is chosen as the fusion node.

In the last case, letp be the probability of selectingu as a fusion node, then the probability

of selectingv is (1− p). After the selection,w′(e) will increase by△w(v) with probability p

or increase by△w(u) with probability (1 − p), depending on which node is chosen, as extra

data will be routed through it. Similarly,w′(e) will decrease by△w(v) with probability p or

decrease by△w(u) with probability (1− p) when data, routed through it earlier, changes path.

As ui,j+1 and vi,j+1 are nodes to be paired together, they shall be within proximity of each

other, as compared with other nodes remaining inSi. Otherwise, the high transmission cost will

factor in and deter the fusion. Using the aforementioned assumption, the probability of an edge

being on either path to the sink shall be equal. Given this condition, it is easy to show that the

expected value ofw′(e) in the third case is alsow(e). For special “single node pair”ui,j+1, only

the first two cases are possible before fusion node selection. Therefore, by exhausting all cases

we haveE[w′(e)] = w(e).

Let Di,j+1 denote the cost of the treeT ∗
i,j for the residual problem after the(j + 1)th fusion

node selection. In other words,Di,j+1 is the cost ofT ∗
i,j with new weight on each edge. Since
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D∗
i,j+1 is the cost of the optimal treeT ∗

i,j+1 for the same set of nodes, it must be less thanDi,j+1.

Formally, we have

D∗
i,j+1 ≤ Di,j+1 =

∑

e∈T ∗

i,j

(
q
(
w′(e), w̃p(e)

)
+ w′(e)c(e)

)

If e = (u, v) and v is parent ofu in T ∗
i,j , then w̃p(e) is the weight ofv before the fusion on

e occurs. Since functionq(x, y) is non-convex when eitherx or y is fixed, based on Jensen’s

inequality [26], we haveE
[
q(x, y)

]
≤ q(E[x], y) if y is fixed. Substitutingy andx with w̃p(e)

andw′(e) respectively, we obtain the following inequality on the expected value ofD∗
i,j+1

E[D∗
i,j+1] ≤ E

[ ∑

e∈T ∗

i,j

(
q
(
w′(e), w̃p(e)

)
+ w′(e)c(e)

)]

≤
∑

e∈T ∗

i,j

(
q
(
E[w′(e)], w̃p(e)

)
+ E[w′(e)]c(e)

)

=
∑

e∈T ∗

i,j

(
q
(
w(e), w̃p(e)

)
+ w(e)c(e)

)

= D∗
i,j

Consequently, we obtainE[C∗
i ] ≤ C∗

i−1 asC∗
i = D∗

i,0 = D∗
i−1,⌈|Si|/2⌉.

Lemma 2: Given a treeT = (V, E) and a set of nodesS ⊆ V , there exists a perfect matching

of the nodes in S that uses each edge ofT at most once.

Proof: We will prove this lemma by induction on the number of edges inthe tree. If the

tree has only one node, the result is trivially true since there is no edge. For a tree with more

than one node, supposev ∈ V is the deepest leaf of this tree. Ifv /∈ S, we can removev and

the edge connecting it to its parent from the tree to produce asmaller tree,T ′. We inductively

produce a perfect matching of the nodes inS on T ′ and use the same matching forT . If v ∈ S,

we instead considerv’s parent node,par(v).

If par(v) has even number of children, we match every pair of sibling nodes with edges via

their parent. Every edge connected to these children is usedonly once. On the other hand, if
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par(v) has odd number of children, we match every pair of sibling nodes with edges via their

parent, and match the last child with the parent. Every edge connected to these children is also

used only once. We then remove all matched nodes and their edges from the treeT to produce

a smaller treeT ′.

Notice that, Ifpar(v) has even number of children and it belongs toS, it remains inT ′; if

par(v) has even number of children and it does not belong toS, it will remain out of T ′. If

par(v) has odd number of children and it belongs toS, it remains out ofT ′; if par(v) has odd

number of children and it does not belong toS, it will remain in T ′ (and also inS) on behalf

of nodeu that is matched withpar(v). The reason forpar(v) to remain inT ′ is that u shall

obtain its real matching pair viapar(v) in the future in this case.

Then we inductively match the rest of S onT ′, until all nodes are matched or only the root

(sink) is left. In this process, the desired matching is produced, and each edge inT is used at

most once.

Lemma 3: LetKi be the total distance of matchings in stagei + 1. Then, the expected cost

of that stage, denoted byGi+1, is the same asKi,

Proof: The objective of the(i + 1)th stage is to find the perfect matching inSi and

match them. The cost of the process consists of the total costof transferring weight of matched

nodes from non-fusion nodes to their fusion nodes and the total cost of fusing data at fusion

nodes. Suppose we matchu andv with weightwi(u) andwi(v). The fusion costq(wi(u), wi(v))

is independent of which node is chosen to be the fusion node since the fusion cost is only

determined by the fusion function itself and its inputs. However, the transmission cost is different

when using different fusion nodes. If we selectv as the fusion node, we need to transportu’s

data tov. This introduces a transmission cost ofwi(u)c(e). On the other hand, if we selectu

as the fusion node, the transmission cost will bewi(v)c(e). Let Gi+1(u, v) denote the cost of

matchingu andv, andGi+1 denote the total cost in the(i + 1)th stage. The expected value of
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Gi+1(u, v) is given by

E[Gi+1(e)]
∣∣∣
e=(u,v)

= P (fuse at u)
(
fi(e) + ti(u← v)

)
+ P (fuse at v)

(
fi(e) + ti(u→ v)

)

=
w2

i (u)

w2
i (u) + w2

i (v)

(
q
(
wi(u), wi(v)

)
+ wi(v)c(e)

)

+
w2

i (v)

w2
i (u) + w2

i (v)

(
q
(
wi(u), wi(v)

)
+ wi(u)c(e)

)

= q
(
wi(u), wi(v)

)
+ α

(
wi(u), wi(v)

)
c(e)

whereα
(
wi(u), wi(v)

)
= wi(u)wi(v)(wi(u)+wi(v))

w2
i
(u)+w2

i
(v)

. Notice that this expected cost is exactlyKi(u, v)

defined in Equation (5). It follows that the expected cost of the (i + 1)th stage is equal to the

total Ki-distance of the matchings found. LetXi+1 denote the set of matched edges in(i + 1)th

stage, thus

E[Gi+1] = E[
∑

e∈Xi+1

Gi+1(e)] =
∑

e∈Xi+1

E[Gi+1(e)] =
∑

e∈Xi+1

Ki(e) = Ki.

Next we examine the relationship betweenKi andC∗
i .

Lemma 4: The total distance of matchings in the(i + 1)th stage satisfiesKi ≤
(

5
4

)
C∗

i .

Proof: Let T ∗
i denote the optimal tree forSi. By matching the nodes inSi in the proper

way described in Lemma 2, we can get a perfect matchingXi+1 which guarantees that we use

only edges inT ∗
i and use no edge more than once. InT ∗

i , let wT ∗

i
(·) denote the total node

weight in this optimal tree, only leaf nodes havewT ∗

i
(u) = wi(u). Intermediate nodes satisfy

wT ∗

i
(u) ≥ wi(u) due to data aggregation. To illustrate the remaining proof,we will use Fig. 2

as an example. This figure is a subtree ofT ∗
i with 4 nodes wherep is the parent,u, v ands are

children, and solid lines are the edges. According to the matching scheme described in Lemma

2, we can get two matches:(s, p) as the parent-child matching, and(u, v) as the sibling-sibling

matching. Below we enumerate these two different kinds of matchings and analyze their fusion

cost and transmission cost individually.
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p

s

vu

Fig. 2. Example of perfect matching using edges inT ∗
i . Here, the dashed lines connect the

matching pairs and the solid lines are the available communication links.

For all sibling-sibling matching(u, v),

Ki(u, v) = q
(
wi(u), wi(v)

)
+ α

(
wi(u), wi(v)

)
c(u, v) (9)

includes two parts. The first part ofKi(u, v) is the fusion costfi(u, v) = q
(
wi(u), wi(v)

)
. We

bound it by the fusion cost of edges(u, p) and (v, p) at p in T ∗
i as

q
(
wi(u), wi(v)

)
= q

(
wi(u), 0

)
+ q

(
wi(u), wi(v)

)

≤ q
(
wi(u), wi(p)

)
+ q

(
wi(v), max(wi(u), wi(p))

)

≤ q
(
wi(u), wi(p)

)
+ q

(
wi(v), w̃i(p)

)

≤ q
(
wT ∗

i
(u), w̃T ∗

i
(p)

)
+ q

(
wT ∗

i
(v), ˜̃wT ∗

i
(p))

)
(10)

Here,wi(p) is the information amount atp before fusion ofu andp, whereasw̃i(p) denotes the

information amount atp after fusion ofu andp and before fusion ofv andp. Similarly, w̃T ∗

i
(p)

and ˜̃wT ∗

i
(p) respectively denote the information amount atp before fusion ofu andp, and after

fusion of u and p but before fusion ofv and p in T ∗
i . The first line in Inequality (10) is the

fusion cost inKi(u, v), and the last line is the fusion cost of(u, p) and (v, p) in T ∗
i .

The second part ofKi(u, v) is the expectation of transmission cost

ti(u, v) =
wi(u)wi(v)(wi(u) + wi(v))

w2
i (u) + w2

i (v)
· c(u, v).

We will bound it by the transmission cost ofu andv to p in T ∗
i . Sincew2

i (u)+(2wi(u)−wi(v))2 ≥
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0, we have

wi(u)wi(v)(wi(u) + wi(v))

w2
i (u) + w2

i (v)
≤ 5

4
wi(u)

wi(u)wi(v)(wi(u) + wi(v))

w2
i (u) + w2

i (v)
≤ 5

4
wi(v) (11)

As (u, v) are matched together using edges(u, p) and (v, p), we havec(u, v) = c(eup) + c(evp).

Therefore,

wi(u)wi(v)(wi(u) + wi(v))

w2
i (u) + w2

i (v)
· c(u, v)

≤ 5

4
min

(
wi(u), wi(v)

)
·
(
c(eup) + c(evp)

)

≤ 5

4

(
wi(u)c(eup) + wi(v)c(evp)

)

≤ 5

4

(
wT ∗

i
(u)c(eup) + wT ∗

i
(v)c(evp)

)
(12)

The first line in Inequality (12) is the transmission cost inKi(u, v), and the last line is5
4

times

the transmission cost of(u, p) and (v, p) in T ∗
i .

For all parent-child matching, like(s, p), againKi(s, p) includes two parts. We bound them

in the same way as what we did for the sibling-sibling matching. Towards this end, we conclude

that for any node pair(u, v) in Si, the total distanceKi(u, v) is no more than5
4

times the cost

of mergingu andv in the optimal treeT ∗
i . Therefore,

Ki =
∑

e=(u,v)∈Xi+1

Ki(u, v) ≤
∑

e=(u,v)∈T ∗

i

5

4

(
q
(
wT ∗

i
(u), w̃T ∗

i
(v)

)
+ wT ∗

i
(u)c(e)

)
=

(5

4

)
C∗

i (13)

The above lemmas lead to the following theorem.

Theorem 1: The approximation ratio of MFST is no more than5
4
log(k + 1) to the optimal.

Proof: The expected cost of MFST is equal to the sum of the expected costs of all stages.
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This yields

E[G] = E

[ log(k+1)∑

i=1

Gi

]
≤

log(k+1)∑

i=1

E[Ki−1].

Using Lemmas 1 and 4, we conclude

E[G] ≤
log(k+1)∑

i=1

5

4
E[C∗

i−1]

≤
(5

4

) log(k+1)∑

i=1

C∗
0 =

5

4
log(k + 1)C∗

We remark that for the simplified case analyzed in [12], MFST can achieve the same ap-

proximation ratio. There the authors assume that 1) each node has the same amount of original

information, and 2) the amount of information after fusion is just a function of the number of

incoming nodes. Under these assumptions, for any nodeu, v in Si, we havewi(u) = wi(v).

Therefore,

wi(u)wi(v)(wi(u) + wi(v))

w2
i (u) + w2

i (v)
= wi(u).

In other words, Inequality (13) can be improved toKi ≤ C∗
i . As a result, the approximation ratio

can be improved tolog(k+1) as derived in [12]. Although in this sense MFST is a generalization

of the algorithm described in [12], the generalized assumptions and introduction of fusion cost

involve significantly different design and proof of MFST.

V. COMPARISON WITH OTHER ALGORITHMS

In this section we perform a comparison between MFST and other algorithms such as SPT,

MST, and SLT. Recall that SLT is a routing algorithm proposedin [23], targeting at simultane-

ously approximating both MST and SPT for a given node. SLT is used in [16] as an approximation

solution to solve the aggregation tree problem. From the comparison, we will conclude that MFST

can better approximate the optimal solution with differentcorrelation coefficients.
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A. Scenario

Consider a sensor network where nodes are deployed as anN × N square grid, where only

N nodes in the left column are sources. The sink is located at the rightmost bottom corner. We

assume that each source generates unit dataI0 that is to be gathered at the sink. Data packets

will be aggregated when they encounter on their paths to the sink. The fusion cost at the sink

is naturally ignored from the total routing cost since a sinkusually has abundant energy.

Nodes in the grid can only communicate with their neighbors.The cost for transmitting one

bit of data between neighboring nodes is assumed to bec0. Let q0 be the cost for fusing two

source data packets ofI0. For fusion to be meaningful, the fusion costq0 shall be smaller than

the transmission costc0I0. Otherwise, intermediate nodes will prefer forwarding data directly

instead of doing fusion for energy saving.

Under this setup, we compare four routing schemes, namely SPT, MST, SLT and MFST. We

consider two extreme scenarios to demonstrate their performance differences.

• In the first scenario, the gathered data are identical for every sensor. In other words, the

data aggregation ratio among sensors is100%.

• In the second scenario, there is no redundancy among the information gathered by different

sensors, i.e., data aggregation ratio is0.

B. When Data Aggregation Ratio is100%

In this scenario, the routes established by four algorithmsare depicted in Fig. 3. Since it reaches

the highest aggregation ratio, at each intermediate routing node, two completely redundant data

packetsI0 are aggregated without increasing of the data amount, resulting in anotherI0 packet.

In this case, it is easy to verify that MST is the optimal solution while SPT is the worst one.

In SPT, the distance from each source node to the sink is(N − 1) hops. In MST, the farthest

source is2(N − 1) hops from the sink. Since2(N − 1) < (1 +
√

2)(N − 1), according to [23],

SLT will degrade into MST for this scenario. Since MFST is a randomized algorithm, we will
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Fig. 3. Data aggregation tree for MST, SPT and MFST when data aggregation ratio is100%.

only analyze its best case and worst case performance.

In the following we will examine the cost of MST (SLT), SPT, and MFST for this network.

For the sake of simplicity, we assumeI0 = 1.

The cost for MST,CMST , can be derived as

CMST =
N−1∑

i=1

(c0 + q0) +
N−1∑

i=1

c0 = (2c0 + q0)(N − 1) (14)

The cost for SPT is

CSPT =
N−1∑

i=1

ic0 +
N−1∑

i=1

c0 +
N−2∑

i=1

q0 = c0
N(N − 1)

2
+ c0(N − 1) + q0(N − 2) (15)

For MFST, since data aggregation ratio is100%, matching between adjacent nodes is perfect.

When N = 2n, all sources connect to one node which in turn will connect tothe sink via the

shortest path as shown in Fig. 3(c). Hence the cost is the sameas MST which is the optimal.

WhenN = 2n−1, the perfect matching algorithm will divide the sources into n clusters with node
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numbers20, 21, . . . , 2n−1 respectively. Nodes within each cluster will be connected to a center

which is connected to the sink via the shortest path as shown in Fig. 3(d). Since the largest

number of shortest paths are employed as compared with the cases when2n−1 ≤ N ≤ 2n − 1,

it is indeed the worst case for MFST. Because MFST is a randomization algorithm, different

centers in each cluster will induce different paths and consequently have different total costs.

However, we can examine the worst case scenario for the randomization when the center is

selected as the farthest node to the sink in each cluster. In this worst realization,

CWorst
MFST =

n−1∑

i=1

(2i − 1)(c0 + q0) +

n−1∑

i=1

(2i+1 − 2)c0 + (

N−1∑

i=1

c0 +

n−2∑

i=1

q0) (16)

The first component of Equation (16) represents the fusion and transmission costs in each cluster,

the second component summarizes the transmission costs from center nodes to the fusion points

on the bottom line, and the third component captures the fusion and transmission costs on the

bottom line. SinceN = 2n − 1, the above equation can be simplified as

CWorst
MFST = (4N − 3n− 1)c0 + (N − 2)q0 (17)

Comparing the worst case cost of MFST in Equation (17) with that of MST, we have

CWorst
MFST

CMST

=
(4N − 3n− 1)c0 + (N − 2)q0

2c0(N − 1) + q0(N − 1)
< 2

Evidently, provided thatN exceeds a certain threshold, even the worst case MFST always

outperforms SPT. And with increasingN , their difference is unbounded as demonstrated in the

equation below.

CSPT − CWorst
MFST =

c0

2
(N2 − 7N + 6 log(N + 1)) ≥ 0 (when N ≥ 3)

If the fusion cost at the sink is not ignored, the same conclusions can still be drawn by

following similar analysis. We remark that MFST can actually approximate to the optimal
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solution within a factor of 2 in this case. Simultaneously, it is always better than SPT, and

their difference is unbounded.

C. When Data Aggregation Ratio is0

Since there is no redundancy, the amount of data will not be reduced at each fusion point.

In this case, SPT is the optimal solution and MST is the worst solution. As explained before,

SLT is the same as MST in this network. MFST, derived by our randomized approximation

algorithm, lies in between them. Similar to the previous section, we can conclude that MFST

also outperforms MST (and hence SLT) in this extreme scenario. And the cost difference between

MFST and MST is unbounded. WhenN > 4, the approximation ratio of MFST to SPT, i.e., the

optimal solution, is less than 3.

The above analysis concludes that MFST can trade off MST (SLT) and SPT in different

scenarios while SPT and MST (SLT) can only excel in certain extreme cases. Indeed, the data

aggregation ratio is usually between 0 and 1. In the next section, we will give extensive simulation

results to illustrate the outperforming of MFST under more general system setups.

VI. SIMULATION STUDY

In this section, we present an extensive set of simulations to evaluate the performance of our

proposed routing algorithm. For sensor nodes randomly deployed in a 2-D field, we compare the

performance of MFST with other routing algorithms based on SPT, MST, and SLT. The impact

of network connectivity, correlation coefficient, and unitfusion cost on different algorithms are

carefully studied.

Concurring with our design goal and analysis of the MFST, ourkey finding of the experiments

is that MFST can adapt itself to a wide range of data correlation among sensor nodes and fusion

costs. While other algorithms may achieve better performance in some extreme cases, they suffer

from varying conditions and hence perform poorly in generalscenarios.
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A. Simulation Environment

We consider 100 sensors uniformly distributed in a square region of size50m × 50m. We

assume that each node produces one unit data (I0) and sends it to the sink located at the bottom-

right corner. All sensors act as both sources and routers. Wealso performed a set of experiments

with different numbers of sensors and different sizes of fields, the results are similar and omitted

here.

We assume the maximal communication radius isrc, i.e, if and only if two sensor nodes are

within rc, there exists a communication link between them, and hence an edge in graphG. By

varying rc, we can control the network connectivity and hence topologyof the network. We

instantiate unit transmission cost on each edge,c(e), using the first order radio model presented

in [5]. The transmission cost for sendingI amount of information from one node to another node

d distance away is given byI(βdγ + ε) whend < rc. We setγ = 2 andβ = 100pJ/bit/m2 to

calculate the energy consumption on the transmit amplifier.Here,ε denotes energy consumption

per bit on the transmitter and receiver circuit. The typicalvalue ofε is 10− 100nJ/bit [19] and

is set to40nJ/bit in our simulation.

To possibly accommodate a wide range of scenarios, we abstract data redundancy among two

sensor nodes using a single valueρ termedcorrelation coefficient. ρ will determine the amount

of data reduction due to aggregation. Given the correlationcoefficient between nodeu andv, if

their parent node fuse their data together, we assume that the weight of the parent node equals

to

max(w(u), w(v)) + min(w(u), w(v))(1− ρ(u, v)) (18)

wherew(u) andw(v) are weights ofu andv beforedata fusion.

The correlation model employed here is an approximated spatial model where the correlation

coefficient decreases with the distance between two nodes provided that they are within a

correlation rangers. If two nodes are more thanrs distance apart, simply the correlation
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coefficient is 0. Otherwise, the correlation coefficient isρ = 1 − d/rs, whered denotes the

distance between the nodes. By varying the correlation range rs, we can control the average

correlation coefficient of the network.

In order to distinguish the correlation between data originated from two nodes and that among

aggregated data, we use a “forgetting” factor on the correlation coefficient among aggregated

data. For example, the correlation between aggregated information at two parent nodes is only

a fraction of their own data correlation calculated according to their distance. Throughout the

simulation, we use a factor of 0.8. A set of other values are also studied which lead to similar

results and are omitted here.

For the fusion cost, in the simulation, we assume thatq(x, y) = ω · (x + y), whereω denotes

fusion cost of unit data. In other words, fusion cost is linear with the total amount of data to be

fused. Table I summarizes the parameters and values used in our simulation.

TABLE I

SIMULATION PARAMETERS

Term Definition Range of Value
N number of sensors 100
I0 data size of original data 400 Bytes
β cost at transmit amplifier 100pJ/bit/m2

ε cost at TX and RX electronic 40nJ/bit
rc communication range 5 ∼ 40m
rs correlation range 0.1 ∼ 4000m
ω unit fusion cost 1 ∼ 50nJ/bit

B. Impact of Network Connectivity

Sincerc denotes the transmission range of a node, by varyingrc, we can control the connec-

tivity of the network. Naturally, different connectivity (node degrees) will affect the behaviors

of different routing algorithms.

1) Without fusion cost:In this set of experiments, we first disregard fusion cost. Notice that

MFST is an algorithm designed with fusion cost. By disregarding fusion cost, we can validate
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its performance in a scenario that actually favors those dedicated their optimization solely to the

transmission cost. Surprisingly, our results show that MFST has comparable performance with

SLT while outperforming MST and SPT in varying scenarios.
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Fig. 4. Total cost as a function of network connectivity (Fusion cost is zero,rc = 5 ∼ 40m).

Fig. 4 summarizes the results. Two extreme cases are studied. In both cases,rc is varied from

5m to 40m, denoted by the x-axis. In the first case shown in Fig.4(a), rs is set to0.1m; in

the second case shown in Fig. 4(b),rs is set to4000m. According to the correlation model

ρ = 1− d/rs whend < rs, a very smallrs essentially eliminates the correlation among sensors

(ρ→ 0) while an extremely largers makes the sensed data completely redundant (ρ→ 1). Our

simulation results correspond to those described in [15]. In a weakly correlated network, SPT is

the optimal solution while MST is the worst. On the contrary,in a strongly correlated network,

MST is the optimal solution and SPT is the worst. Similar to SLT, MFST can balance SPT and

MST and has comparable performance with SLT even though balancing SPT and MST is not

the main objective of MFST.

2) With fusion cost:In this set of simulations, we include fusion cost and study its impact on

the performance of routing algorithms. We setω, the fusion cost for unit data, to be15nJ/bit.

Again the cases forrs = 0.1m andrs = 4000m are studied and the results are depicted in Fig.

5.

Compared with the results shown in Fig. 4, asρ→ 0 (illustrated in Fig. 5(a)), the performance
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Fig. 5. Total cost as a function of network connectivity (ω = 15nJ/bit, rc = 5 ∼ 40m).

of MFST is the closest one to the optimal solution SPT. The approximation ratio is below

1.5 through the range of communication radius. Notably, with the increase of communication

radius, the approximation ratio gets smaller. This can be explained as follows. In a network with

poor correlation, nodes shall send data directly to the routing nodes near the sink instead of

relaying information through multiple hops, as fusion at each hop is not efficient in reducing the

data amount. As MFST explicitly considers fusion cost, thisphenomenon can be captured and

exploited. On the contrary, SLT results in a fixed routing structure according to network topology

and a fixed approximation ratio to MST and SPT, and hence can not adapt to the change of

data correlation. Therefore, whenρ approaches zero, SLT can not recognize the advantage of

transmitting over direct links and results in poor performance. Whenρ→ 1 as illustrated in Fig.

5(b), MFST performs better than all other algorithms. This is due to the waste of energy for

fusion at every node in MST and the waste of transmission energy in SPT for using shortest paths

with long hop distance. In contrast, MFST and SLT can balancebetween data aggregation and

direct transmission and thus produce better performance. Since SLT gets the benefit implicitly

and and MFST explicitly targets at this balance, we observe that the cost of MFST decreases

faster than SLT. Longer transmission range and thus better network connectivity of the network

is in favor of MFST as it can employ more direct shortest pathsto prevent unnecessary fusion

cost at each node.
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C. Impact of Correlation Coefficient

Next, we fix the transmission range of the sensor nodes and study the impact of correlation

coefficient on the routing performance. Here, we setrc to be 30m and the unit fusion costω is

set to be15nJ/bit. We increasers from 1 to 4000m which corresponds to varyingρ from 0 to

1. Fig. 6(a) illustrates the total costs of the four algorithms.
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Fig. 6. Total cost and cost ratio as a function of correlation coefficient (rc = 30m, ω = 15nJ/bit,
rs = 1 ∼ 4000m).

Costs of all algorithms decrease with the increase ofρ, the correlation coefficient. This

exemplifies that data aggregation in sensor networks can greatly benefit the routing performance

by reducing redundancy among correlated data. Whenρ is small, SPT performs well. However,

it does not benefit from the increase ofρ as the total cost only incurs slight drop. Although both

MFST and SLT are more balanced than MST and SPT, we observe that MFST performs much

better than SLT, especially whenrs < 64m. The main reason is that MFST recalculates node’s

weight in every stage to get perfect matching and thus can adapt to the correlation among nodes.

Fig. 6(b) shows the cost ratio of MFST to other algorithms. Aswe can see, MFST achieves the

optimal tradeoff over the entire range of correlations. It can save nearly 20% of energy compared

with SLT, whenρ is small, while retaining almost the same performance as SLTwhenρ is large.

On the other hand, MFST can save more than 60% energy comparedwith MST, whenρ is small,

and maintaining comparable performance whenρ is large. Finally, compared with SPT, MFST
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can save about 25% of energy whenρ is large at the cost of spending slightly more energy

(less than 15%) whenρ is small. As the correlation among nodes often vary from application

to application, from node to node, and even from time to time,only a general algorithm such

as MFST optimized for a wide range of the value ofρ can accommodate versatile scenarios.

D. Impact of Unit Fusion Cost

Since MFST includes fusion cost in the routing constraint, it will evidently outperform other

algorithms with the increase of fusion cost. In this set of experiments, we study the performance

gain of MFST as compared with other algorithms when the unit fusion cost is increased.
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Fig. 7. Total cost and cost ratio as a function of unit fusion cost (rc = 30m, rs = 20m,
ω = 1 ∼ 50nJ/bit).

Fig. 7 illustrates the results whenω is increased from1nJ/bit to 50nJ/bit. The total cost

of SPT, MST and SLT exhibit linearity withω as shown in Fig. 7(a). However, MFST shows

logarithmic increase withω. The reason is that SPT, MST and SLT generate routes only based

on network topology and do not take fusion cost into account.Therefore, the resulting routing

trees are fixed and hence the total cost will increase linearly with ω. Since MFST explicitly

exploits the fusion cost when optimizing routes, it can bestadjust to the change of fusion cost.

Fig. 7(b) clearly shows that with increasingω, MFST can continually distant itself from others.

As described in Section II, the fusion cost per unit data may vary widely from network

to network. As an example, a temperature surveillance sensor network has little fusion cost
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to calculate the max, min, or average temperature. On the other hand, a wireless video sensor

network may incur significant fusion cost when performing image fusion. Our experiments show

that MFST can adapt well to a wide range of fusion costs and hence applicable to a variety of

applications.

VII. CONCLUSION

In this paper, we propose a randomized algorithm, termedMinimum Fusion Steiner Tree

(MFST), for routing correlated data in sensor networks. MFST incorporates the missing di-

mension of fusion cost into the problem formulation and guarantees an approximation ratio

of 5
4
log(k + 1) to the optimal solution. Analytical and experimental results show that MFST

adapts well to varying network conditions including network topology, fusion cost, and the

degree of correlation. Therefore, MFST provides a feasiblegeneral routing scheme for wireless

sensor networks facing various applications, unpredictable environments, and time evolving

reconfigurations.

As an ongoing effort, we are designing an online algorithm based on MFST that can be

executed in a distributed manner by sensor nodes. At the sametime, we are investigating the

robustness of the proposed algorithm and possible enhancements.
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