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1. INTRODUCTION

As wireless sensor networks are unfolding their vast potential in a plethora of applica-
tion environments [Chong and Kumar 2003; Akyildiz et al. 2002], security still remains
one of the most critical challenges yet to be fully addressed. In particular, a vital prob-
lem in the highly distributed and resource constrained environment is node compromise,
where a sensor node can be completely captured and manipulated by the adversary. While
extensive work has focused on designing schemes that can either defend and delay node
capture or timely identify and revoke compromised nodes themselves [Chan et al. 2005],
little attention has been paid to the node compromise process itself. Inspired by recently
emerged viruses that can spread over air interfaces, and the various broadcast protocols for
transferring data/executable code across the network, we identify in this paper the threat
of epidemic spreading of node compromises in large scale wireless sensor networks. In
essence, we present a model that captures the unique topological characteristics of typi-
cally deployed sensor networks in conjunction with pairwise key schemes, and identify the
key factors determining the potential epidemic outbreaks that in turn can be employed to
devise corresponding defense strategies.

1.1 Motivation

Due to its scarce resources and hence low defense capabilities, node compromises can
be expected to be common phenomena for wireless sensor networks in unattended and
hostile environments. While extensive research efforts, including those from ourselves
[Chadha et al. 2005], have been engineered toward designing resilient network security
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mechanisms [Du et al. 2004; Chan et al. 2003; Liu and Ning 2003], the compromise itself
and, in particular, the propagation of node compromise (possible epidemics) have attracted
little attention.

While node compromise, thanks to physical capture and succeeding analysis, is naturally
constrained by the adversary’s capability, software originated compromises can be much
more damaging. An example was the recently surfaced virus Cabir1 that spread over the
bluetooth air interface and created havoc among bluetooth enabled mobile phones. This
instance clearly heralds the advent of viruses that can spread over-the-air. Wireless sen-
sor networks, with their inherent properties of high densities and large scale deployments,
coupled with the fact that they are generally deployed in mostly unattended terrains, are
undoubtedly vulnerable to possible virus/malware outbreaks. Inescapably, viruses target-
ing wireless sensor networks will emerge and, consequently, node compromise by way of
virus spreading (over the air interface) can potentially devastate the entire network in a
short period of time.

In order to further motivate our work, below we examine a few special characteristics of
a sensor network as opposed to other networks that underline its vulnerability.

—resource constraints : A sensor node is very limited in resources and indeed it requires
little effort to render it inoperative. For instance, with its very little memory capacity, a
sensor node is vulnerable to a malware that can generate data to consume all its memory
space. Moreover, bombarding a sensor node with a deluge of packets can not only cause
its buffers to overflow but can also cause its battery to drain out quickly.

—large scale and high density : Sensors are typically assumed to be deployed in significant
numbers and in large scale (battlefields, agricultural lands, etc). In addition, the density
of the network is also expected to be high. In such a scenario, a malware that can use the
communication channel to spread, can propagate very fast and compromise the whole
network causing devastating effects.

—deployment areas : A sensor network is envisioned as a network of embedded devices
that would be deployed in terrains generally inaccessible. Thus, monitoring every part
of the network often is impossible. It is only at the base station that data arriving from
the sensor network can by analyzed. Furthermore, nodes are often not individually ad-
dressable and thus it can be impossible to troubleshoot individual devices. Thus, the dif-
ference between the time when a node is compromised and when detection takes place
can be very high and in some cases, the damage would already have taken devastating
proportions.

Recently, several protocols for reprogramming the sensors over-the-air have been pro-
posed in the recent literature [Levis et al. 2004; Hui and Culler 2004; Wang 2004]. These
protocols are extremely useful in re-tasking or reconfiguring the sensor network as a whole
and deploying new applications on the devices over the air. However, these broadcast or
code dissemination protocols can easily serve as vehicles in transferring a piece of malware
across the whole network very quickly. Thus, malwares which do not have the ability to
establish communication between neighboring nodes can exploit these protocols in trans-
ferring themselves to the whole network. The density and large scale nature of wireless
sensor networks would only make matters worse and facilitate the fast propagation over
these protocols

1http://www.f-secure.com/v-descs/cabir.shtml
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Indeed, malware spreading over the Internet has been widely studied, and notably by
means of epidemic theory [Staniford et al. 2002]. However, the marked difference in the
topological aspects of the Internet with that of a sensor network often render those models
unusable in the latter. The Internet is typically characterized as a scale free network show-
ing both the properties of preferential attachment and growth which are largely missing in
wireless sensor networks. Moreover, the distance and pairwise key based schemes used
for securing the communication among sensor nodes further underlines the requirement
for an epidemic model specific to sensor networks. Although there are several algorithms
and protocols for data dissemination and routing in sensor network [Braginsky and Estrin
2002] that are based on epidemic principles, a consolidated formal model to quantify the
propagation rate and other important parameters is yet to be designed.

1.2 Our Contribution

In this paper, we investigate the spreading process of node compromise in large scale wire-
less sensor networks. Starting from a single point of failure, we assume that the adversary
can effectively compromise neighboring nodes through wireless communication and thus
can threat the whole network without engaging in full scale physical attacks. In particular,
due to security schemes employed by the sensor networks, we assume that communication
can only be performed when neighboring nodes can establish mutual trust by authenticat-
ing a common key. Therefore, node compromise is not only determined by the deployment
of sensor nodes which in turn affects node density, but also determined by the pairwise key
scheme employed therein. By incorporating these factors of the networks, we propose
an epidemiological model to investigate the probability of a breakout (compromise of the
whole network) and if not, the sizes of the affected components (compromised clusters of
nodes). Furthermore, we analyze the effect of node recovery in an active infection sce-
nario and obtain critical values for these parameters that result in an outbreak. We focus
our analysis on two specific types of node deployment scenarios, namely uniform random
deployment and group based deployment of nodes (where the actual resident points of the
nodes of a group are assumed to follow a particular spatial distribution about the group
deployment point). Through extensive simulations, we not only show that our analytical
results can closely capture the effects in a wide range of network setups, but also provide
deeper insights on the temporal dynamics of the epidemic process under each deployment
scenario.

The remainder of the paper is organized as follows. In Section 2 we present the pre-
liminaries, including the threat model, random key pre-distribution, and epidemic theory.
In Section 3, we study the compromise propagation without node recovery and with node
recovery, and detail our analytical results. In section 4, we discuss the basic reproductive
number, which is a very important parameter of Epidemic Theory, and how it is evaluated
based on the network parameters. We perform experimental study in Section 5. Related
work is presented in Section 6 and we conclude in Section 7.

2. PRELIMINARIES

In this section, we briefly provide a preliminary overview of a a set of topics relevant to the
current work, namely pairwise key pre-distribution and epidemic theory. Subsequently, we
delineate the threat model which provides the basis of the epidemic model for compromise
spread.
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2.1 Pairwise Key Pre-distribution

In this subsection, we briefly overview the pairwise key scheme for securing the commu-
nication between neighboring nodes in a sensor network based on key pre-distribution.
This shared secret key based secure communication is especially popular in sensor net-
works owing to the prohibitive resource consumption of most public key cryptographic
techniques.

Due to the severe resource constraint of wireless sensor networks and limited networking
bandwidth, proposed pairwise key schemes have commonly adopted the pre-distribution
approach instead of online key management schemes. The concept of pre-distribution was
originated from [Eschenauer and Gligor 2002], where the authors propose to assign a num-
ber of keys, termed key ring randomly drawn from a key pool. If two neighboring nodes
share a common key on their key rings, a shared pairwise key exists and a secure com-
munication can be established. An enhanced scheme termed Q-composite was proposed
in [Chan et al. 2003], where two neighboring nodes can establish secure communication
only if at least Q keys are shared on their key rings. Pre-distribution schemes that rely on
bivariate polynomials is discussed in [Liu and Ning 2003]. In this scheme, each sensor
node is pre-distributed a set of polynomials. Two sensor nodes with the same polynomials
can respectively derive the same key. A pairwise key predistribution scheme was proposed
by the authors in [Du et al. 2005].

Regardless of the specific key distribution scheme, a common parameter capturing the
performance is the probability that two neighbors can directly establish a secure commu-
nication or, in other words, share at least one key. We denote this key sharing probability
by q. Thus, two physical neighbors can communicate securely with probability q. The
factors on which q depends, such as the key pool size or the individual key ring sizes, have
been studied in previous works [Eschenauer and Gligor 2002; Chan et al. 2003]. The
value of q is crucial in controlling the degree of connectivity of the securely communi-
cating sensor network. As we will reveal later, q plays an important role in the spreading
of node compromise, as direct communication (as explained subsequently, in the threat
model) can result in propagation of malicious code. A high value of q would make the
network highly connected while at the same time increase the network’s susceptibility to
compromise propagation.

2.2 Epidemic Theory

Originally, epidemic theory concerns about contagious diseases spreading in the human
society. The key feature of epidemiology [Anderson and May 1992; Pastor-Satorras and
Vespignani 2001b; 2001a; May and Lloyd 2001; Hethcote 2000] is the measurement of
infection outcomes in relation to a population at risk. The population at risk basically
comprises of the set of people who possess a susceptibility factor with respect to the in-
fection. This factor is dependent on several parameters including exposure, spreading rate,
previous frequency of occurrence etc., which define the potential of the disease causing the
infection. Various models have been proposed and thoroughly investigated in Epidemic
theory that characterize the infection spreading process. Example models include Suscep-
tible Infected Susceptible (SIS) Model, Susceptible Infected Recovered (SIR) Model etc.
In the former, a susceptible individual acquires infection and then after an infectious pe-
riod, (i.e., the time the infection persists), the individual becomes susceptible again. On the
other hand, in the latter, the individual recovers and becomes immune to further infections.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Of particular interest is the non-equilibrium phase transition of the spreading process that
is dependent on an epidemic threshold: if the epidemic parameter is above the threshold,
the infection will spread out and become persistent; on the contrary, if the parameter is
below the threshold, the virus will die out.

Epidemic theory indeed has been borrowed to the networking field to investigate virus
spreading. However, a commonly adopted model is perfect mixing, where it is assumed
that an infected node has equal probability of infecting any other node on the network. In
wireless sensor networks, due to distance and security constrained communication pattern,
such an assumption immediately becomes unrealistic. In this paper, we will mainly rely on
random graph models to characterize the unique connectivity of the sensor network under
different conditions of node deployment and perform the epidemic study [Stauffer 1985;
Callaway et al. 2000].

2.3 Node Recovery

In the event that a node is compromised, its secrets will be revealed to the attacker. The
network may attempt to recover the particular node. Recovery might be realized in several
possible ways. For example, the keys of the nodes might be revoked and the node may be
given a fresh set of secret keys. In this context, key revocation, which refers to the task of
securely removing keys that are known to be compromised, has been investigated as part of
the key management schemes, for example in [Chan et al. 2005]. Moreover, recovery can
also be achieved by simply removing the compromised node from the network, for exam-
ple by announcing a blacklist, or simply reload the node’s programs. More sophisticated
methods may include immunizing a node with an appropriate antivirus patch that might
render the node immune from the same virus attack.

Regardless, in our analysis, we will study virus spreading under the two cases respec-
tively depending on whether a node can be recovered or not.

2.4 Threat model

We assume that a single node or a very small set of nodes are initially compromised by an
adversary. This compromise can be through physical capture of the device and subsequent
analysis of the node resulting in installation of a malware and acquisition of its key ring.
A compromised node can establish direct secure communication with any neighbor with
which it shares at least one key. We assume that a compromised node, by directly commu-
nicating with a susceptible node through their shared secure communication channel, can
transfer any malware, thereby spreading the infection and conducing to the compromise of
the susceptible node. This process can repeat itself and ultimately lead to the compromise
of the whole network or a significant portion of it.

As stated above, communication among sensor nodes is not only constrained by their
distances, but also shall be secured and thus determined by the probability of pairwise key
sharing. Therefore, the spreading of node compromise is dependent on the network de-
ployment strategy and the pairwise key sharing scheme employed therein, based on which
the network would be compromised to varying degrees.

Although a sensor network is significantly different from the Internet in its topological
properties, the spread of node compromise in a sensor network, thanks to its dense nature,
can also lead to an epidemic effect analogous to virus spreading over the Internet.

We consider this epidemic effect as the key threat to the network and hence the inves-
tigation target of this paper. To emphasize the severity of this threat, as an example, the
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recent spread of the Sasser worm paralyzed 1.5 million computers all over the Internet.
When coupled with the emergence of viruses that spread over the air, these phenomena
point to the vulnerability staring at large and dense sensor networks consisting of resource
limited nodes.

3. MODELING AND ANALYSIS OF COMPROMISE PROPAGATION

In this section, we analyze the propagation of node compromise originating from a single
node that has been affected. Our focus is to study the outbreak point of the epidemic effect
where the whole network will fall victim to the compromise procedure.

Our key method is to characterize the sensor network, including its key distribution, by
mathematically formulating it as a random graph whose key parameters are precisely deter-
mined by those of the sensor network. Therefore, the investigation of epidemic phenomena
can be performed on the random graph instead.

We perform our analysis on two types of sensor network topology models. In our first
model, we assume that the sensor nodes are uniformly randomly distributed. In our second
model, we assume a more realistic scenario where deployment knowledge is incorporated
in the analysis. We assume that nodes are deployed in groups and the resident points of
each node in a group follows a two dimensional gaussian distribution about the deployment
point. Subsequently, given these two deployment approaches, we observe the epidemic
process under two scenarios: without node recovery and with node recovery, depending
on whether infected nodes will be recovered by external measures like key revocation,
immunization, and so on.

Our goal is to analyze and compare epidemic spread progress and effect under different
topological scenarios of the sensor network. In the following two subsections, we derive
the degree distribution for the two random graph deployment models, viz. uniform random
distribution and groups of gaussian random distribution.

3.1 Network Model

In this section, we will model the network topology of the overlay key sharing graph above
the physical network. The outcome of our model is the degree distribution of the key
sharing overlay topology. In our analytical derivation, we incorporate the deployment
knowledge of the sensor nodes by using different deployment models to finally derive the
network degree distribution.

3.1.1 Uniform Random Distribution. Assume that sensor nodes are uniformly ran-
domly deployed in a region with area A. Let ρ = N

A denote the node density of the
network where N is the total number of the nodes. For a sensor node with communication
range R, the probability that l nodes are within its communication range is given by

p(l) =
(

N − 1
l

)
pl(1− p)N−1−l (1)

where p is defined by

p =
πR2

A
=

πR2ρ

N
. (2)

Thus p is the probability of a link existing at the physical level, i.e., whether the two nodes
fall within their respective communication ranges.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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We further assume that the probability that two neighboring nodes sharing at least one
key in the random pre-distribution pairwise key is q. Notice that q is determined by the
specific pairwise key scheme employed. For a particular node having l neighboring nodes,
the probability that there are k nodes, k ≤ l, sharing at least one key with it is given by

p(k|l) =
(

l

k

)
qk(1− q)l−k (3)

Therefore, with uniform random deployment, the probability of having k neighboring
nodes sharing at least one key is

pu(k) =
N−1∑

l=k

p(l)p(k|l) (4)

=
N−1∑

l=k

(
N − 1

l

)
pl(1− p)N−1−l

(
l

k

)
qk(1− q)l−k (5)

3.1.2 Group based Deployment Model : Two Dimensional Gaussian Random Distri-
bution. The other deployment model that we consider in this paper is group based deploy-
ment [Du et al. 2004; Yu and Guan 2005]. In this model, sensors are divided into groups
where each group is deployed (e.g., dropped from an airplane) at a particular location. Due
to the uncertainty of the deployment procedure, sensor nodes within each group are of-
ten randomly distributed around the targeted deployment point. Specifically, we make the
following assumptions about this model.

—N sensor nodes to be deployed are divided into t equal size groups each with n nodes.
Each group, Gi, for xi = 1, . . . , t and yi = 1, . . . , n, is deployed from the deployment
point (xi, yi).

—The deployment points are assumed to be arranged in a grid, which is commonly as-
sumed.

—During deployment, the resident points of the node k in group Gi with deployment point
(xi, yi) follow probability distribution f i

k(x, y|k ∈ Gi). An example of this distribution
is a two-dimensional Gaussian distribution around the deployment point.

In other words, when the deployment point of group Gi is at (xi, yi), we have the mean
position µ = (xi, yi) and the pdf for node k in group Gi as

f i
k(x, y|k ∈ Gi) =

1
2πσ2

e−[(x−xi)
2+(y−yi)

2]/2σ2
, (6)

where σ denotes the standard deviation. Given such a group based Gaussian deployment
model, we formulate the degree distribution of the key sharing graph based on both the
deployment and the key distribution mechanism.

Let us consider any node location H = (x, y) in the rectangular deployment field.
Therefore, the probability that a node ni from group i with deployment point (xi, yi) re-
sides within the rectangular area dxdy centered at point H is given by

1
2πσ2

exp− (diH)2

2σ2
· dxdy
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Fig. 1. Deployment points and resident point distribution

where (diH)2 = (x− xi)2 + (y − yi)2. We denote

f(diH|ni ∈ i) =
1

2πσ2
e−

(diH)2

2σ2 (7)

and have the following result.

LEMMA 3.1. If g(x, y|j) denotes the probability that a node nj from group j is within

transmission radius R of point H = (x, y), then g(x, y|j) = 1{h < R}
[
1− e−

(R−h)2

2σ2

]
+

∫ h+R

|h−R| f(l|nj ∈ j) · 2lcos−1
(

l2+h2−R2

2lh

)
dl, where 1{·} is the set indicator function.

PROOF. When a sensor node resides at the point H = (x, y) as shown in Fig. 1,
the probability that the sensor node nj from group j resides within the circle centered at
location H with radius R is defined as g(h|nj ∈ groupj), where h = djH , is the distance
between H and the deployment point of group j. When h > R, as shown in the first
diagram of Fig. 1,

g(x, y|j) =
∫ h+R

|h−R|
f(l|nj ∈ j) · 2lcos−1

(
l2 + h2 −R2

2lh

)
dl,

where the length of arc of the ring centered at j is calculated and then integrated over all
possible values of l.

When h < R, as shown in the second diagram of Fig. 1,

g(x, y|j) =
∫ R−h

0

l · 2πf(l|nj ∈ j)dl +
∫ R+h

R−h

2lcos−1

(
l2 + h2 −R2

2lh

)
f(l|nj ∈ j)dl.

Thus,

g(x, y|j) = 1{h < R}
[
1− e−

(R−h)2

2σ2

]
+

∫ h+R

|h−R| f(l|nj ∈ j) · 2lcos−1
(

l2+h2−R2

2lh

)
dl,

where 1{·} is the set indicator function whose value is 1 when the evaluated condition is
true and 0 otherwise, and f(l|nj ∈ j) is given by Eqn. 7.
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THEOREM 3.2. The probability distribution of the degree of the key sharing topol-
ogy, pg(k), assuming that the nodes are deployed in groups and reside according to a
two dimensional gaussian distribution around the deployment points, is given by pg(k) =∫ Y

0

∫ X

0

∑N
l=k

(
l
k

)
qk(1 − q)l−kNb(l, x, y) where Nb(l, x, y) is the probability that a node

is at point (x, y) and it has l neighboring nodes.

PROOF. Let d = g(x, y) denote the probability that a node resides within a radius R of
point (x, y). Then from Lemma 1, we get

d = g(x, y) =
∑

j

g(x, y|j)Pr[j] (8)

where Pr[j] is the probability that a deployed node belongs to group j. We assume that a
sensor node is selected to be in each group with an equal probability and is equal to 1

tn .
Let p(l|x, y) be the probability that there are l nodes within radius R of (x,y). Therefore,

p(l|x, y) =
(

N

l

)
dl(1− d)N−l (9)

where N is the total number of nodes deployed. The probability that a deployed node is at
point H = (x, y), is given by

∑

i

f(diH|ni ∈ i) · Pr[i]dxdy

Let Nb(l, x, y) be the probability that a node is at (x, y) and it has l neighboring nodes.
Thus,

Nb(l, x, y) = p(l|x, y)
∑

i

f(diH|ni ∈ i) · Pr[i]dxdy (10)

Now, let pg(k|l, x, y) be the probability that a node which is located at (x, y) and has l
neighbors shares keys with exactly k neighbors. Hence,

pg(k|l, x, y) =
(

l

k

)
qk(1− q)l−k (11)

where q is the key sharing probability. Therefore,

pg(k, x, y) =
N∑

l=k

pg(k|l, x, y)Nb(l, x, y) (12)

Thus, integrating over the entire region, the degree distribution of a group based deployed
network with each group deployed in a gaussian manner, is given by

pg(k) =
∫ Y

0

∫ X

0

pg(k, x, y) =
∫ Y

0

∫ X

0

N∑

l=k

pg(k|l, x, y)Nb(l, x, y) (13)

Thus, based on both physical proximity and the probability of key sharing between
neighbors, we get a degree distribution p(k) for each of the graphs representing the two
different deployment strategies. We will now perform our epidemic propagation analysis
on these two types of random networks under the two scenarios of node recovery and
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without node recovery. The random graph in our analysis is denoted by G, and pu(k)
(for uniform deployment) and pg(k) (for group based deployment) characterize the degree
distribution under the respective deployment strategies.

3.2 Network Connectivity

Before we consider our analysis of the epidemic processes on the overlay key sharing graph
of the sensor network, it is essential to ensure that the graph is connected. We borrow
the results from the works on connectivity in ad hoc networks presented in [Bettstetter
2002; Penrose 1999]. From their results, a geometric random graph with N nodes is k-

connected with probability P (k-connected) =
(

1−∑k−1
i=0

(ρπR2)i

i! · e−ρπR2
)N

, where

ρ is the network density and R is the transmission radius. Since we are considering 1-
connectivity, the probability that the graph is connected is given by

P (connected) =
(
1− e−ρπR2

)N

(14)

Our goal is to make this probability almost equal to 1.
Without loss of generality on the deployment strategy, let p(k) denote the degree dis-

tribution of the key sharing topology. Thus, δ =
∑N−1

k=1 kp(k) is the expected degree of
the network. We observe that, in the expression for the aforementioned probability of con-
nectivity of the network, ρπR2 is the expected number of neighbors that a node has. In
other words, it can be interpreted as the expected number of neighboring nodes that fall
within the transmission range of a given node. Thus, for our network with expected degree
denoted by δ, the probability that the network is connected is given by

P (connected) =
(
1− e−δ

)N
(15)

For our analysis, we consider the minimum value of the key sharing probability q to be
such that it is well above the threshold in order to keep the network connected with very
high probability.

3.3 Compromise Spread Without Node Recovery

Given the random graph construction based on the two deployment strategies, we now
analyze the case of compromise spread when no node recovery is performed. In other
words, a compromised sensor node will remain infectious indefinitely.

Let G0(x) be the generating function of the degree distribution p(k) of a randomly
chosen vertex in G and is defined by

G0(x) =
∞∑

k=0

p(k)xk (16)

The average degree z of G is denoted by

z =
∑

k

kp(k) = G′0(1) (17)

Similarly, G1(x) denotes the degree distribution of the vertices at the end of randomly
chosen edges. The distribution of degrees of vertices reached by following edges is pro-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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portional to kp(k) and thus the generating function for those degrees is
∑

k kp(k)xk

∑
k kp(k)

=
xG′0(x)
G′0(1)

(18)

To elucidate further G1(x) represents the distribution of the number of ways of leaving
these vertices excluding the edge we come along, which is the degree minus 1 and is given
by

G1(x) =
1
z
G′0(x) (19)

If λ denotes the infection probability of a node being infected by communicating with a
compromised node, then the number c of compromised edges around a randomly chosen
vertex is generated by

G0(x;λ) =
∞∑

c=0

∞∑

k=c

p(k)
(

k

c

)
λc(1− λ)k−cxc

=
∞∑

k=0

p(k)
k∑

c=0

(
k

c

)
(xλ)c(1− λ)k−c =

∞∑

k=0

p(k)(1− λ + xλ)k

= G0(1− λ + xλ). (20)

Similarly, G1(x; λ) = G1(1− λ + xλ).
Let H1(x;λ) be the generating function that denotes the distribution of the sizes of the

cluster of vertices or components reached by following a randomly chosen edge that is
compromised. The degree of such an end vertex can vary from 0 to N − 1. Moreover, if
the degree is at least one, then following each edge out of that vertex would lead to more
vertices whose degree distribution is also H1(x;λ). If there are k edges emanating from
the vertex at the other end of the random edge, then the distribution of the sum of the sizes
of the k clusters that each edge from the end vertex leads to, is given by H1(x;λ)k.

The generating function H1(x; λ) for the total number of nodes reachable or compro-
mised as a result of a single transmission along an edge of the network is, thus, generated
by a self consistency relation of the form [Newman et al. 2001; Newman 2002]

H1(x; λ) = xG1(H1(x; λ); λ). (21)

We are interested in the distribution of the size of the component to which a randomly
chosen vertex belongs. In other words, the distribution of the number of nodes affected by
an outbreak when the infection starts at a single infective node is generated by

H0(x; λ) = x

N−1∑

k=0

p(k)[H1(x; λ)]k = xG0(H1(x;λ); λ). (22)

The average size of the outbreak cluster is derived as s = H ′
0(1; λ) and is given by

s = 1 +
λG′0(1)

1− λG′1(1)
. (23)

Infection probability λ essentially captures the spreading capability of the virus that could
compromise the network: the larger it is, the stronger the virus is. We assume that its value
can be obtained by means of measurement or analysis.
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We remark here that in traditional epidemiology, the parameter λ, denoting the infection
probability, generally represents the portion of the population that is susceptible to the
infection. However, in a sensor network, it is typically assumed that all the nodes are
homogeneous and therefore equally susceptible. Thus, in this case, instead of considering
a fraction of the network as susceptible, we consider the whole network to be susceptible
and subsequently, at t=0, all N−1 nodes are susceptible with one node being infected. The
parameter λ, in this case, tries to capture the characteristic of the malware that is spreading
and what technique it adopts, i.e., whether it has the properties of a worm, virus, or trojan,
etc. In other words, using the variable λ, we try to parametrically capture the infectivity of
a malware or the probability by which an infection spreads on a link between any pair of
infected and susceptible node.

Thus, λ succeeds in differentiating between different malwares and their propagation
characteristics and is assumed to be fixed for a particular spread but may vary from time to
time based on the type of malware and what systemic technique it adopts to spread.

We, thus, use λ to connect the infection probability of the malware to the physical prop-
erties of the network (expressed in terms of p and q) and see if there is a resultant epidemic.

Given the above result, we can see that the outbreak point for the network is λ =
1/G′1(1) which marks the onset of an epidemic. For λ > 1/G′1(1) we have an epidemic
in the form of a giant component in the random network. We observe that H0(1; λ) which
is the distribution of the cluster formation is only valid below the threshold point beyond
which it becomes invalid because in a giant component there could be loops and the recur-
sive distribution of the end node degree of an edge as stated by Eqn. 21 would not hold.
Thus, beyond the threshold point, we define H0(1; λ) to be the distribution of isolated clus-
ters which do not have loop formations. If Ψm denotes the cluster size distribution of size
m, then we observe that the fraction of the network forming the giant component is given
by S = 1−∑

m Ψm = 1−H0(1; λ).
Rearranging and substituting from Eqn 22, we have S = 1−G0(u; λ).
Here u is the root of the self-consistency relation

u = G1(u; λ).

Intuitively, the above conclusion reveals that if λ ≤ 1/G′1(1), the component of compro-
mised nodes is finite in size regardless of the size of the network and each node’s proba-
bility of being compromised is zero for large networks. On the contrary, if λ > 1/G′1(1),
there always exists a finite probability for a node to be compromised.

We plot the effect of different key sharing probabilities on the epidemic outbreak on our
two deployment strategies, viz uniform random and a collection of group based deployment
strategies. Fig. 2 depicts this effect for a uniform random network with N = 10000
nodes deployed in a 600 × 600unit2 area with different key sharing probabilities q. The
underlying physical topology is determined by the communication range of each node
which is equal to 20 units. Given the physical deployment, we vary the probability of direct
pairwise key sharing (q) and study the point of outbreak. As we can see in Fig. 2, while
undoubtedly increasing q can facilitate communication in the network, the network also
becomes more vulnerable to virus spreading. Specifically, when q = 0.3, network wide
breakout is only possible when a compromised node has an infection probability (λ) larger
than 0.15 to infect a neighbor. We note that in this case, we have an expected node degree
of 15. On the contrary, λ only needs to be around 0.05 when q = 0.8 which subsequently
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) Non-epidemic cluster size vs. infection probability (λ)
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(b) Epidemic size vs. infection probability (λ)

Fig. 2. Size of compromised node clusters for Uniform Deployment: (a) depicts the aver-
age size of infected clusters when there is no epidemic and (b) shows the epidemic size as
the fraction of the entire network. The point where non-zero value appears indicates the
transition from non-epidemic to epidemic

makes the expected node degree around 30. Fig. 2(b) illustrates the fraction of the network
that is ultimately infected as the infection probability is increased beyond the critical point
of the onset of outbreak. For instance, we observe that when key sharing probability is
high (q = 0.8), the whole network is compromised with a λ value of around 0.4. On
the contrary, with q = 0.3, the network could be compromised with only a high value of
λ = 0.7. Although Fig. 2 (b) is a continuation of Fig. 2 (a) when the epidemic spreads to
the entire network, a separate depiction provides a clear picture of the extent to which the
network is infected before and after an epidemic. In summary, Fig. 2 clearly indicates the
tradeoff between key sharing probability among sensor nodes and the vulnerability of the
network to compromise.

In Fig. 3, we depict the same process with the deployment scheme changed to a group
based one. The deployment points are arranged in a 10 × 10 grid with 100 nodes per
group. The nodes in each group reside in a two-dimensional gaussian manner about their
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(a) Non-epidemic cluster size vs. infection probability (λ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Infection Probability (λ)

F
ra

ct
io

n 
of

 N
et

w
or

k 
C

om
pr

om
is

ed

Epidemic Size for Gaussian Deployment

q = 0.3
q = 0.5
q = 0.8

(b) Epidemic size vs. infection probability (λ)

Fig. 3. Size of compromised node clusters for Gaussian Deployment: (a) depicts the av-
erage size of infected clusters when there is no epidemic and (b) shows the epidemic size
as the fraction of the entire network. The point where non-zero value appears indicates the
transition from non-epidemic to epidemic

mean deployment point with σ = 10. We observe that the potency of the propagation
process is affected by the change in deployment. The λ values at which the epidemic starts
to spread into the whole network has increased. For instance, for q = 0.3, the transition
point is around λ = 0.32 as compared to be around 0.15 for the uniform deployment case.
The reason for the decrease in the epidemic effect is caused by the fact that the expected
node degree of the network is lowered when the nodes are deployed in groups distributed
in a gaussian manner. This, obviously, has a crippling effect on the propagation process
and thus helps in delaying the onset of the epidemic. However, this effect, as expected,
slowly diminishes with increase in the variance of the gaussian distribution of each group,
which gradually pushes the distribution to a more uniform nature. Thus, when we increase
sigma to around 40 in our deployment scenario with 10000 nodes, there is practically
little difference between the two deployment strategies. This analysis shows that tuning
the deployment parameters to a certain extent could result in making the network robust
ACM Journal Name, Vol. V, No. N, Month 20YY.
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against viral propagation without considerably hampering its connectivity.

3.4 Compromise Spread With Node Recovery

In this case, we assume that the network has the capability to recover some of the compro-
mised nodes by either immunization or removal from the network. To capture this recovery
effect, we assume that an infected node recovers or is removed from the network after an
average duration of infectivity τ . In other words, a node in the sensor network remains
infective for an average period τ after which it is immunized. During this infective period,
the node transmits the epidemic to its neighbors with the infection rate β, denoting the
probability of infection per unit time. Evidently, the parameter τ is critical to the analysis
as it measures how soon a compromised node recovers. Naturally, we will perform our
analysis following the SIR model in epidemic theory [Newman 2002].

First, consider a pair of adjacent nodes where one is infected and the other is suscep-
tible. We define T as the compromise transmission probability, or in other words, the
transmissibility of the infection. Given the above definitions for β and τ , we can say that
the probability that the disease will not be transmitted from the infected to the susceptible
is given by

1− T = lim
δt→0

(1− βδt)τ/δt = e−βτ . (24)

Subsequently, we have the transmissibility

T = 1− e−βτ .

In other words, the compromise propagation can be considered as a Poisson process, with
average βτ . The outcome of this process is the same as bond percolation and T is basically
analogous to the bond occupation probability on the graph representing the key sharing
network. Thus, the outbreak size would be precisely the size of the cluster of vertices that
can be reached from the initial vertex (infected node) by traversing only occupied edges
which are occupied with probability T . Notice that T explicitly captures node recovery in
terms of the parameter τ .

Replacing λ with T in Equation 23, and following similar steps, we get the size of the
average cluster as

s = 1 +
TG′0(1)

1− TG′1(1)
. (25)

and the epidemic size is obtained by

S = 1−G0(u; T ). (26)

where u is obtained by

u = 1−G1(u; T ), (27)

and G0(u; T ) and G1(u; T ) are given respectively by

G0(u; T ) = G0(1 + (u− 1)T ), (28)

and

G1(u; T ) = G1(1 + (u− 1)T ). (29)
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(a) Non-epidemic cluster size vs. infectivity duration τ
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(b) Epidemic size vs. infectivity duration τ
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(c) Epidemic size vs. infectivity duration τ
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(d) Epidemic size vs. infectivity duration τ

Fig. 4. Extent of Epidemic Size with Varying Infectivity Duration (Uniform Deployment): (a) Pre-Epidemic
Cluster Size with Low Infection Probability (b) Post-Epidemic Infected Fraction with Low Infection Probability
(c) Pre-Epidemic Cluster Size with High Infection Probability (d) Post-Epidemic Infected Fraction with High
Infection Probability

Figs. 4 and 5 summarize this effect for the uniform and group based deployment respec-
tively. They depict the epidemic outbreak against the average recovery time τ for low and
high infection rates β = 0.2 and β = 0.8. The network setup is the same as before with
N = 10000 and a 10×10 grid for the group deployment scheme. For uniform deployment,
Figs. 4(a) and (b) depict the pre-epidemic and post-epidemic scenario when the infection
rate is low (β = 0.2). In Figs. 4(c) and (d), the infection rate is high (β = 0.8). The plots
are for different values of the key sharing probability q which governs the connectivity of
the key sharing sensor topology. Fig. 5 shows the plots when the nodes are deployed in
groups. Comparing the plots in Figs. 4 and 5 we observe similar characteristics as ob-
served in the non-recovery case. Here, in the group based plots, the compromise process
attains epidemic proportions at higher values of the infectivity duration τ . For instance,
comparing Fig. 4(d) and Fig. 5(d), when q = 0.3 and β = 0.8, the epidemic outbreak for
the group deployment starts at around τ = 500, whereas in the uniform deployment sce-
nario, its onset is when τ is around 150. This indicates that the potency of the compromise
is reduced by the gaussian distribution deployment model. In other words, the nodes in
the group based deployment model would need to stay infective for a larger average dura-
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(a) Non-epidemic cluster size vs. infectivity durationτ
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(b) Epidemic size vs. infectivity duration τ
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(c) Epidemic size vs. infectivity duration τ

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Infectivity Duration(τ)

F
ra

ct
io

n 
of

 N
et

w
or

k 
C

om
pr

om
is

ed

Epidemic Size for Gaussian Deployment

β = 0.8

q = 0.3
q = 0.5
q = 0.8

(d) Epidemic size vs. infectivity duration τ

Fig. 5. Extent of Epidemic Size with Varying Infectivity Duration (Gaussian Deployment): (a) Pre-Epidemic
Cluster Size with Low Infection Probability (b) Post-Epidemic Infected Fraction with Low Infection Probability
(c) Pre-Epidemic Cluster Size with High Infection Probability (d) Post-Epidemic Infected Fraction with High
Infection Probability

tion in order to spread to the entire network than when uniformly deployed. The expected
duration of a node’s infectivity could be a possible measure of the degree of potency of
the viral infection and this comparison is indicative of which deployment scheme is better
poised to resist against an outbreak.

In next section we will discuss about an important parameter in epidemic theory whose
value indicates whether an infection can potentially result in an epidemic. We derive an
expression for this parameter for our sensor network model and investigate its behavior.

4. BASIC REPRODUCTIVE NUMBER

In epidemiology, the Basic Reproductive Number R0 is defined as the expected number of
people that a single infective individual can infect in a pool of mostly susceptible candi-
dates. Its importance lies in the fact that it characterizes the epidemic growth at the start
of an outbreak: the infection will eventually die out when R0 < 1 and when R0 > 1, the
disease will spread exponentially and consequently may lead to a large epidemic.

Since we have proposed an epidemic model for the spread of node compromise, it is es-
sential that we verify how our network parameters contribute to the derivation of the impor-
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tant epidemic parameter R0. We know that the epidemic threshold for R0 is 1. Therefore,
expressing R0 in terms of the relevant network parameters like the key sharing probabil-
ity q, the infection rate β, the infectivity duration τ , etc., would shed more light on what
parameter to control in order to prevent an epidemic outbreak.

The resultant expression of the basic reproductive number would also be indicative of
the correctness of our epidemic model.

THEOREM 4.1. If T denotes the transmissibility and u denotes the probability that the
vertex at the end of a randomly chosen edge remains uninfected during an epidemic, then
the basic reproductive number R0 is given by
R0 =

∑
j j

∑
k

(
k
j

)
T j(1− T )k−j (1−vk)p(k)P

k[(1−vk)p(k)]
, where v = 1− T + Tu.

PROOF. Let I denote the set of infected nodes in the sensor network. Moreover, let ni

denote the number of nodes that are infected by node i and di represent the degree of node
i. We are interested in the probability Pr[ni = j|i ∈ I]. This can be written as

Pr[ni = j|i ∈ I] = (30)∑

k

Pr[ni = j|di = k, i ∈ I]Pr[di = k|i ∈ I]

From Equation (30), using Bayes’ Rule, we can write

Pr[di = k|i ∈ I] =
Pr[i ∈ I|di = k]p(k)

Pr[i ∈ I]
. (31)

where p(k) is the degree distribution of the network. Given that β is the infection proba-
bility per unit time and τ is the average recovery time of an infected node, we have from
Equation (24) the probability with which each link is occupied as

T = 1− e−βτ . (32)

From Equation (26) and (27), we have the size of the epidemic as S and u is simply the
probability that the vertex at the end of a randomly chosen edge remains uninfected during
an epidemic. Thus, the probability that a vertex does not become infected via one of its
edges is

v = 1− T + Tu, (33)

where 1−T is the probability that the edge is unoccupied, and Tu denotes that probability
that it is occupied but connects to an uninfected vertex. Consequently, the total probability
of being uninfected if a vertex has degree k is vk. This leads to

Pr[i ∈ I|di = k] = 1− vk. (34)

Hence, we have

Pr[i ∈ I] =
∑

k

(1− vk)p(k) (35)

Substituting this into Equation (31) gives

Pr[di = k|i ∈ I] =
(1− vk)p(k)∑
k(1− vk)p(k)

. (36)
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Fig. 6. Fraction of network infected vs. basic reproductive number R0

Furthermore, we have

Pr[ni = j|di = k, i ∈ I] =
(

k

j

)
T j(1− T )k−j (37)

and substituting this into Equation (30) gives

Pr[ni = j|i ∈ I] =
∑

k

(
k

j

)
T j(1− T )k−j (1− vk)p(k)∑

k[(1− vk)p(k)]
. (38)

Finally, the basic reproductive number R0 is given by

R0 =
∑

j

jPr[ni = j|i ∈ I]. (39)

Equation (39) gives an expression where R0 is expressed in terms of the transmissibility
T which is dependent on two factors, namely, the infection rate β and the infective duration
τ . Fig. 5 illustrates the epidemic size based on the basic reproductive number R0. As
expected, we find that in our random graph based sensor network model, the transition
point of R0 is 1, above which an epidemic outbreak occurs. This result further proves the
correctness of the model for capturing the epidemic propagation of a malware infection in
a securely communicating sensor network.

5. SIMULATION

We employ a discrete-event dynamic system and therefore event-driven simulation to accu-
rately simulate the propagation of the infection spreading process. We have used JProwler
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[jpr ], a probabilistic, event-driven wireless network simulator in Java, for our experiments.
JProwler, which is a java implementation of the Prowler simulator is capable of simulating
the non-deterministic nature of the communication channel and the low-level communica-
tion protocol of wireless sensor nodes. A probabilistic radio channel model is used with
the received signal strength function defined as

Prx =
Ptx

1 + dγ
· [1 + α(d)] · [1 + β(t)] (40)

where Ptx is the transmit power and d is the distance between two nodes. The parameters α
and β are normal random variables and model the probabilistic nature of the radio channel.
A packet error rate perror simulates the effect of any unmodeled effects on the transmission
probability. In this section, we outline our discrete-event driven simulation model setup for
the gradual progress of the spread of node compromise. We then use this model to capture
the time dynamics of the spread of the compromise which we have largely omitted in our
random graph based epidemic model. In our random graph analytical model, we obtained
the static values of the maximum fraction of the network that was compromised. Through
our simulation, we aim to capture the dynamics of the infection spread. This way, we not
only concern the final stable state results but also investigate the temporal effects of node
recovery on the extent of infection spread.

5.1 Simulation Setup

In our simulation, we assume the number of sensor nodes in the network to be 10000.
The sensor network is produced by distributing the sensors in a 600 × 600 unit2 area.
The communication range of each node is assumed to be 25 units. The mean data rate
of the wireless links is set to 40 Kbps with the packet length set to 48 bytes. The mean
packet transmission time is calculated accordingly. The MAC layer is a simple CSMA
based scheme modeling the Berkeley motes’ MAC layer. We have used the default settings
of JProwler for the standard deviations of α and β as 0.45 and 0.02, respectively and the
packet loss rate is set to 0.1. Each point in our simulation is the result of 30 runs and is
depicted as the average of these 30 runs with a 95% confidence interval.

For the uniform random deployment, the location of each node is selected from a uni-
form distribution within the region. For the group based gaussian deployment scenario,
the deployment points are arranged in a 10 × 10 grid in the monitored area and there
are 100 nodes in each group. For each group, the location of a node is selected from a
two-dimensional gaussian distribution with the deployment point as the mean and standard
deviation σ = 10.

We employ the random key pre-distribution scheme described in [Eschenauer and Gligor
2002] to establish the pairwise shared keys among sensor nodes. For each pair of neigh-
bors, a small subset of keys are chosen randomly from a large pool such that they share at
least one key with probability q.

Our simulation works in two phases. In the first phase, we form the network where each
node identifies its set of neighbors and entries are made into a neighbor table. Based on
typical communication distances between nodes and their respective locations, we derive
the set of neighbors for each node. The degree of the key sharing network is controlled
by changing the value of the key sharing probability q between neighbors. It is in the first
phase that the key sharing topology for the epidemic propagation is derived based on the
value of q between each pair of neighboring nodes and from the manner in which the nodes
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are deployed.
In the second phase, we simulate actual virus propagation. Initially, at t = 0, the number

of infected nodes, denoted by I(0) is set to be 1. At any time point t, the population is
divided into the group of susceptible nodes, S(t), and the group of infected nodes, I(t). In
the situation where we have nodes that are immunized and thus recovered, we denote this
set of recovered nodes by R(t).

The timeline of these sub-populations is obtained by observing the population counts
after fixed simulation intervals of 1 time unit. The average incubation time at an infected
node is assumed to follow a poisson distribution with a considerably low mean of 1 unit.
This denotes the time period for a node to evolve from an infected state to an infective
state. The low average value essentially dictates that an infected node at simulation time t
will be ready to infect its neighbors at time (t + 1) with a high probability. Furthermore,
when this incubation period is over, we assume that the time it takes for the infected node
to infect its susceptible neighbor is negative exponentially distributed with a mean of 1 unit
time.

There are two simulation scenarios corresponding to our analysis.

5.1.1 No Recovery. First we perform the simulation for the case where nodes once
compromised are not recovered. Here, the simulation is based primarily on one event
- the Infection Event which is an infected packet transmitted from an infected node to
its susceptible neighbor. Associated with each Infection event packet are the node ID of
the source and the ID of the destination node that has been infected by this source. The
seed for the simulation is a single Infection event with a randomly selected node ID from
among its neighbors as the infected destination and the source as null. The simulation is
started by inserting this event into the event priority queue with the prioritization based
on the event times. When an Infection Event is popped from the queue, the list of its
neighbors are looked up in the neighbor table. From its susceptible neighbors, a node is
selected randomly for infection, according to the infection probability β and an Infected
packet is transmitted to it. A packet transmission event takes into consideration the physical
characteristics of the network like transmission time and packet collision rate. Upon being
infected, a node generates a new infection event.

5.1.2 With Recovery. In the case where infected nodes are recovered, we define a new
Recovery Event for our simulation model. Our aim is to keep the average recovery time
constant and study the time dynamics of the nodes in different groups based on different
topology structure and infection probabilities. We assume the recovery time for an infected
node to be negative exponentially distributed with a mean of τ0 units. The CDF of the
recovery time is represented by

Pr[t < T ] = 1− e−τ0T . (41)

When an Infection Event is popped from the queue, we obtain the difference of the current
simulation time and the time when the event was inserted into the queue. Using this time
difference in Equation (41), the probability of inserting a Recovery Event or an Infection
Event is calculated. However, when a Recovery Event is triggered, no event is further
inserted. The corresponding node is marked as recovered and remains immune to further
infections.

5.2 Simulation Results and Discussion
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Fig. 7. Dynamics of the infective population ( Uniform Random Deployment Without
Node Recovery) (a) Moderate Infectivity, (b) High Infectivity
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Fig. 8. Dynamics of the infective population ( Group Based Deployment Without Node
Recovery) (a) Moderate Infectivity, (b) High Infectivity

5.2.1 Simulation Results for No Recovery Case. The simulation results for the case
without recovery are shown in Figs. 7 and 8. Fig. 7 represents the case for uniform ran-
dom deployment while Fig. 8 shows the case for the group based deployment. The figures
illustrate the compromise dynamics under moderate and high infectivity β. We vary the
key sharing probability q between neighbors in each plot in order to simulate the variance
of the degree distribution of the key sharing topology under the two deployment scenarios.
As expected, the uniform random deployment curves are smoother than the group based
deployment. In the latter, the slope is sharply affected by the density of nodes in the region
of the propagation spread. This varies regularly and we observe that this variation of node
density actually slows down the propagation dynamics. For instance, comparing Fig. 8(b)
with Fig. 7(b), we observe that for q = 0.5, the network is compromised around time
t = 1400 for the group deployment case, whereas for uniform deployment, the network is
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Fig. 9. Dynamics of the infective population for Uniform Random Deployment ( With
Node Recovery and q = 0.5) (a) Low Infectivity, (b) High Infectivity
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Fig. 10. Dynamics of the infective population for Uniform Random Deployment ( With
Node Recovery and q = 0.8) (a) Low Infectivity, (b) High Infectivity

compromised around time t = 900 for the same value of q. A similar observation is made
when comparing Figs. 7(a) and 8(a) for a lower infectivity value of β = 0.5. The reason
for the difference in time taken for the infection to spread to the entire network is attributed
to the difference of the expected node degree in the different deployment cases. A group
based deployment with each group deployed in a two dimensional gaussian manner results
in a lowering of the expected node degree of the network at the physical level.

5.2.2 Simulation Results for Recovery Case. Figs. 9, 10, 11, and 12 show the
simulation dynamics in the presence of a recovery strategy. Figs. 9 and 10 depict the
epidemic propagation under a uniform random deployment of sensors, while Figs. 11 and
12 are depictions of a group based deployment with the sensors in each group distributed
in a two-dimensional gaussian manner. For both types of deployment, we investigate two
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Fig. 11. Dynamics of the infective population for Group based deployment ( With Node
Recovery and q = 0.5) (a) Low Infectivity, (b) High Infectivity
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Fig. 12. Dynamics of the infective population for Group based deployment ( With Node
Recovery and q = 0.8) (a) Low Infectivity, (b) High Infectivity

scenarios, viz., one in which the infectivity of the compromise process is low and the
second where it is quite high. For each of the cases of infectivity, we also observe the
dynamics under different key sharing probabilities q. For a comparatively sparser key
sharing network (q = 0.5), as depicted in Figs. 9(a) and (b), we observe that a higher
infectivity duration is required to achieve similar levels of epidemic propagation in the
network as in Fig. 10. Comparing Figs. 9 (a) and 10 (a), we observe that increasing
the node connectivity by increasing q from 0.5 to 0.8, raises the infected population peak
count from 40% to 80% for τ = 240.

Trivially, we also observe that the peak count is achieved at a much faster rate with an
increased key sharing probability from q = 0.5 to q = 0.8.

The plots in Figs. 11 and 12 depict the same dynamics of epidemic propagation, but
here the nodes are deployed in groups which are gaussian distributed about the deployment
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point. In Fig 11, each group is composed of 10 nodes, whereas in Fig 12, there are 50
nodes in each group. As in the case for no-recovery, we observe that the temporal behavior
of the infective population reflects the variability of the node density at different regions
of the network. As a result, the slope of the infective curve changes depending on how
close to the mean position the propagation front of the compromise process is. In other
words, we observe that when the curve is rising, the slope decreases when the compromise
process wavefront reaches a sparse section of the network, i.e., an area farther away from
any deployment points. On the other hand, when the curve is decreasing, it falls steeply
when the wavefront reaches a sparse region because nodes are not infected as fast as they
are recovering resulting in a net decrease in infected population. This is the reason we also
observe an increase in the total infective percentage at certain phases of the process when
the region becomes very dense. In such a situation, the infection process suddenly acceler-
ates resulting in a net increase in the infective population percentage. Figs. 11 (a) and (b)
depict the process in a network of 10000 nodes under two levels of infectivity β when the
key sharing probability is 0.5, while Figs. 12 (a) and (b) depict the same for a higher key
sharing probability of q = 0.8. Apart from the periodic increase and decrease in the prop-
agation process for the gaussian distribution, we also observe an important comparative
result between the two types of deployment.

Comparing Figs. 9 and 10 with Figs. 11 and 12, we notice that similar peak levels of
infectivity are obtained for the group deployment at higher levels of the infectivity duration
τ . In other words, the nodes have to remain infective for a longer duration in the group
based deployment scenario than when uniformly deployed in order to infect the same frac-
tion of the population. This is in tandem with what we observed in our previous analytical
derivations and simulations where epidemic proportions are reached for larger values of
the infectivity duration τ , than in the situation when nodes are uniformly deployed. As
mentioned earlier, the reason for which we observe this difference is that the average node
degree of the network is reduced when the nodes are deployed in groups. The propagation
progresses much more smoothly when the connectivity is uniform in nature than when it
varies every now and then. In our simulations, we observed that the compromise process
is more adversely affected by regions of low connectivity than helped by regions of higher
connectivity. If the process dies out in a region of low density before it could reach a re-
gion of higher density, then the nodes in these sparse areas become regions of failure for
the epidemic process.

From the plots we observe that the average variance of the curves are higher in the
group based deployment scheme than the uniform random delployment one. This is an
expected observation because in the different runs for the gaussian deployment scheme,
the network topology varied more than the uniform case. Although the deployment points
for each group was the same in all the cases, the ultimate resident points varied, resulting
in different connectivities and a resultant higher value for the variance around the mean
values of the infected population.

We also find the average variance increased in the case of a simultaneous recovery than
when there was no recovery. We attribute this change to the fact that the execution of
two processes of infection and recovery simultaneously, as opposed to just one infection
process, results in a slightly increased average variance for the recovery case.
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5.3 Correlation between Analytical and Simulation Results

Although our analysis and simulation provide separate viewpoints of the epidemic process,
they are correlated and a few observations connecting them reinforce the results. As men-
tioned earlier, in our random graph analysis, we obtained a final picture of the resulting
epidemic fallout. However, our simulations captured the temporal dynamics of how the
ultimate results were obtained and how the process evolved.

In this subsection, we observe some of the correlative aspects of our analytical and sim-
ulation results by focusing on the points of the analytical curves that are represented in our
simulation results. For instance, we closely observe the peak values of the curves in the
simulation results for the recovery case of both the uniform and group based deployment
scenarios. These points represent the maximum fraction of the network compromised be-
fore the recovery process caused the network to recover. These points are represented in
the analytical plots because the points of the curves represent the ultimate fraction of the
network compromised given the values of the parameters β and q. We find that the values
are close to each other. For instance, if we compare Fig. 11(b) with Fig. 5(d), we observe
that the peak values of the simulation curves in Fig. 11(b), are very close to the points in
the analytical curve for q = 0.5 in Fig. 5(d), with corresponding τ values. Similarly, for
the analytical curve with q = 0.8 in Fig. 5(d), we observe that the peak infective values
match closely with the simulation curves in Fig 12(b). Close correlation is also observed
for other pairs of simulation and analytical curves.

From our analysis and simulations, we therefore remark that both the analytical and
experimental results have significant implication for security scheme design in terms of
revoking/immunizing compromised nodes in wireless sensor networks. While the simula-
tion results dictate the speed at which the network must react in order to contain/prevent
the effect of network wide epidemic, the analytical plots indicate what values of the key
sharing probability should be, in a securely communicating network using private keys,
in order to contain an infection spread below the epidemic threshold while still maintain
connectivity to promote network-wide communications.

6. RELATED WORK

The mathematical modeling of epidemics is well documented [Anderson and May 1992;
May and Lloyd 2001; Hethcote 2000; Bailey 1975]. In fact, visualizing the population as a
complex network of interacting individuals has resulted in the analysis of epidemics from
a network or graph theoretic point of view[Moore and Newman 2000; Pastor-Satorras and
Vespignani 2001b; 2001a]. Specifically, the scale free topology has been of keen interest
[Pastor-Satorras and Vespignani 2001b; Barthlemy et al. 2004; Newman 2002] and this
model has been the basis for the analysis and extensive study of virus and worm spreading
in the Internet [Staniford et al. 2002; Kephart et al. 1993; Kephart and White 1993].

Node compromise in sensor networks and the need for their security has also received
immense attention [Alarifi and Du 2006]. A large portion of current research on security in
sensor networks has been focused on protocols and schemes for securing the communica-
tion between nodes [Liu and Ning 2003; Eschenauer and Gligor 2002; Malan et al. 2004].
In [Eschenauer and Gligor 2002], the authors propose a random key distribution scheme
for secure communication among sensor nodes. In [Liu and Ning 2003], the authors im-
prove on the work in [Eschenauer and Gligor 2002] by taking advantage of node location
information to improve key connectivity. Critical thresholds on connectivity of the random
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graph induced by the random key predistribution scheme are investigated by the authors in
[Yagan and Makowski 2008]. In [Du et al. 2004], the authors discuss a key management
scheme based on node deployment knowledge. They consider a group based deployment
where the resident points of nodes in each group follow a two-dimensional gaussian dis-
tribution around the deployment point of the group. In [Pietro et al. 2006], the authors
provide critical values of the size of the keyring and the key pool such that the network is
not only connected but also resilient against the capture of a fixed fraction of the nodes and
their keys. However, we consider a dynamic process whereby the adversary acquires more
keys by propagating the node compromise process from a small set of nodes. Revocation
of keys of compromised nodes has been studied in [Chan et al. 2005].

In [Alarifi and Du 2006], the authors assert the importance of physical compromise of
sensor nodes and propose an obfuscation and diversification mechanism to protect the se-
cret keys of the nodes. Unfortunately, little work has been done on the defense strategies
when the compromise of a single node could be used to compromise other nodes over
the air. Our work takes the first step towards modeling this potentially disastrous prop-
agation[De et al. 2006]. Connectivity issues in random ad hoc networks are extremely
important as a pre-requisite before any epidemic-like propagation process is analyzed. In
[Bettstetter 2002; Penrose 1999], the authors derive threshold values of the transmission
range of the nodes that ultimately make the network k-connected with a given probability.
The thresholds for the monotone properties of random geometric graphs have also been
dealt with in [Goel et al. 2004]. We adopted some of the results presented in [Newman
2002] where the author proposes a percolation theory based evaluation of the spread of
an epidemic on graphs with given degree distributions. However, their work is a generic
analysis of epidemics in random graphs. In our work, we have considered the specific char-
acteristics of sensor networks including distance, deployment and key constrained commu-
nication patterns. Furthermore, little has been shown there on the temporal dynamics of
the epidemic spread and only final outcomes of an infection spread in a network is studied.

7. CONCLUSION

In this paper, we investigate the potential threat for compromise propagation in wireless
sensor networks. Based on the principles of epidemic theory, we model the process of com-
promise spreading from a single compromised node to the whole network. In particular,
we focus on the effects of the key factors of the network determining a potential epidemic
outbreak where the whole network will be affected. Due to the unique distance and key
sharing constrained communication pattern, we resort to a random graph model which is
precisely generated according to the parameters of the real sensor network and perform the
study on the graph. We also ensure that the key sharing network generated is connected
before performing our epidemic propagation analyses. We also introduce the effect of node
recovery after compromise and adapt our model to accommodate this effect. Moreover, we
perform a comparative study of the effect of two deployment strategies on the outcome of
the epidemic propagation. Our results indicate that a uniform random deployment is more
vulnerable to epidemic propagation than a group based deployment model and reveal key
parameters of the network in defending and containing potential epidemics. In particular,
with node recovery, the result provides benchmark time period for the network to recover
a node in order to defend against the epidemic spreading and also critical values of the key
sharing probability which characterize the transition from a non-epidemic to an epidemic
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state of the network compromise. Our extensive simulation results validate our analytical
results and more importantly, provide insights into the dynamics of the system in terms of
temporal evolution of the infection process.
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