
Asynchronous Sampling Benefits Wireless Sensor
Networks

Jing Wang, Yonghe Liu, and Sajal K. Das
Center for Research in Wireless Mobility and Networking(CReWMaN)

Department of Computer Science and Engineering
University of Texas at Arlington

Arlington, Texas 76019
Email: {jwang,yonghe,das}@cse.uta.edu

Abstract— Intensive research has focused on redundance
reduction in wireless sensor networks among sensory data
due to the spatial and temporal correlation embedded therein.
In this paper, we propose a novel approach termed asyn-
chronous sampling that complements existing study. The key
idea of asynchronous sampling is to spread the sampling
times of the sensor nodes over the time line instead of
performing them in a synchronous manner. Compared with
existing strategies, asynchronous sampling introduces another
dimension for optimization, without additional computation or
communication overhead on sensor nodes. Theoretically, we
show that asynchronous sampling benefits sensor networks
through increased entropy of the sensory data or reduced
reconstruction distortion. Furthermore, we formulate the
optimal asynchronous sampling problem for determining the
time shifts among the nodes. A heuristic solution, termed
O-ASYN, is presented that uses local optimum search to
approximate the global optimal solution. Simulation results
based on simulated data and real experimental data both
demonstrate the entropy increases.

I. INTRODUCTION

Facing the severe resource limitations in wireless sensor
networks in particular that of energy, an extensive body of
research has centered on extending the network life time
of wireless sensor networks from difference perspectives.
Among them a set of papers have investigated rate alloca-
tion in such networks. Given the resource constraint, the
focus there is to extend the network lifetime and network
capacity subject to the computation cost to process the sen-
sor data and the communication cost for data transmission,
which is often determined by the sampling rates (data flow
rates) of the sensor nodes [1–3].

A key finding there is that lowering the sampling (data
flow) rates of sensor nodes can significantly prolong the
lifetime of the network and improve transport reliability
of multi-hop communication. For instance, it’s reported
in [4] that lifetime of the sensor network can increase
extraordinarily from one month to more than 18 months by
lowering the sampling rate from producing a sample every
30 seconds to every 10 minutes. Experiments with TinyOS
platform conducted in [5] show that packet delivery ratio
increases from around 55% to 81% when source packet

generation rate drops from 7.69/s to 4/s.
However, when sampling rate is reduced in favor of

longer lifetime or reliable packet delivery, quality of the
information collected from sensor nodes will deteriorate
accordingly. This may imply insufficient information about
the physical field of interest and in turn low estimation
accuracy or even failure of event detection.

In this paper, we propose an asynchronous sampling
strategy to simultaneously achieve low sampling rate (hence
the resulting benefits) and high information quality . By al-
lowing sensor nodes to sample correlated physical variables
asynchronously, entropy of the sensor data increases, which
in turn counterbalances the loss of lowering sampling rate.
Our simulation results show that the lower the sampling
rate, the more benefits can be introduced by asynchronous
sampling in terms of alleviating information deterioration.

The rest of this paper is organized as follows. Related
work is presented in Section II firstly. Correlation models
and examples are introduced in Section III. The optimiza-
tion problem is put forward in Section IV using corre-
lation models. Then the asynchronous sampling strategy
is introduced in Section V, which is accompanied by the
simulation on the strategies shown in Section VI. At last,
Section VII concludes the paper and discusses future work.

II. RELATED WORK

Due to the nature of the physical phenomena observed by
wireless sensor networks, sensory data are often correlated
[6, 7]. As achieving energy-efficiency is one of the primary
goals, data compression or aggregation techniques are often
adopted to reduce redundancy of sensor data and hence
computing or communication cost [8–10]. Sensor node
selection [11, 12] and work scheduling of sensor nodes
[13] lead to fewer number of nodes involved at a certain
time point for data gathering and hence can conserve
energy as well. Often in these techniques, spatial correlation
plays an important role in reshaping the aggregation and
compression algorithms with the knowledge of correlation
among the neighboring sensor nodes.
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Optimal spatial sampling aims at selecting sensor nodes
that contribute most to retrieved information about the
physical phenomena while satisfying energy consumption
constraints [14]. For example, adaptive spatial sampling
discussed in [15] is able to reduce communication cost
while maintaining high accuracy due to its three-phase
process to trigger sensor nodes based on the current fusion
result.

In this paper, we show in addition to above approaches,
asynchronous sampling introduces another dimension for
energy conservation with little computation and commu-
nication overhead. Our key idea is to assign different
sampling shifts to individual sensor node and hence create
an asynchronous sampling strategy in the network. This is
in stark contrast with existing approaches where samplings
are performed mostly in an synchronized fashion.

III. TEMPORAL-SPATIAL CORRELATION MODELS

The key benefit of asynchronous sampling is redundancy
reduction of sensory data, which can in turn be exploited to
maximize entropy of the information or minimize energy
consumption (through reduction of sampling rate). Before
detailing our asynchronous sampling strategies, we will first
discuss the correlation model we use in this paper.

A. Temporal-Spatial Correlation

We consider a dense senor network monitoring a physical
process such as wind speed or temperature field. The
sensory data gathered by a sensor node is composed of the
measurement value and a noise. Assume that the location
of the sensor node i is denoted by (xi, yi, zi), a sensory
sample Si at time t can be expressed as

Si(t) = M(xi, yi, zi, t) + N(xi, yi, zi, t), (1)

where M represents the measurement (true) value deter-
mined by (xi, yi, zi) and t, and N is the noise introduced
by the environment or the sampling process.

Assume that the sensory data given in (1) are Joint
Gaussion Random Variables (JGRVs) with zero mean and
σ2

M variances, and noise Ni is i.i.d Gaussian random
variable with zero mean and σ2

N variances. Then the spatial
correlation between sensor node i and j can be expressed
as

ρs(i, j) =
E[SiSj ]

σ2
M + σ2

N

. (2)

As a commonly employed model [16], the spatial correla-
tion is assumed to be inversely proportional to the distance
between the nodes:

ρspatial
i,j = e−αdi,j = e−(α(

√
(xi−xj)2+(yi−yj)2+(zi−zj)2)

(3)
where α > 0 denotes a constant for spatial correlation
intensity and di,j is the distance between node i and j.

Temporal correlation often denotes the correlation be-
tween data sampled at different time points. Similarly, for
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Fig. 1: Coefficients and distances
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Fig. 2: Coefficients and time lags

a wide-sense stationary process [17] as Gaussian random
process, the temporal correlation can be expressed as

ρtemporal
i,j = e−βτi,j (4)

where τi,j is the distance between the sampling time of
nodes i and j, i.e., τi,j = |tj − ti|, and β is the constant
measuring the temporal correlation intensity. Combining
both spatial and temporal correlations, we can define

ρi,j = e−(αdi,j+βτi,j) (5)

as the correlation of sensory data between nodes i and j.

B. Example

Here, we present an example to verify the above expo-
nential correlation model. We use a set of experimental data
from Intel Berkeley Lab [18] for this purpose. This set of
data represents temperatures measured at different locations
in a lab space. Given the temperature measurements and
locations of sensor nodes, we calculate the covariances
between any pair of sensor nodes. Fig. 1 shows the relation-
ship between covariance coefficient and distance between
two sensor nodes. From the figure, it is obvious that the
experiment data don’t fit the spatial correlation model in (3)
although the covariance coefficients indeed tend to decrease
when distance between the sensor nodes increases. For
the sake of graph explicitness, we calculate the covariance
coefficients using decibel to transform exponential relation-
ship into linear relationship.

On the contrary, as shown in Fig. 2 the covariance
coefficient of temperature measurements between a node
and those taken after certain time period at another sen-
sor node does exponentially decrease when this time lag
increases. Here, each dashed line corresponds to a pair of
sensor nodes. For each pair of sensor nodes, its covariance
coefficient in decibel is inversely proportional to the time
lag between the temperature measurements of the two
nodes.

IV. BENEFITS OF ASYNCHRONOUS SAMPLING

Given the temporal-spatial correlation model discussed
above, next we will show that asynchronous sampling
strategy, if employed, can indeed increase the entropy of the
data and reduce regression distortion as a result of increased
entropy.
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A. Asynchronous Sampling Increases Entropy

For tractability, we assume that sensory data are jointly
Gaussian random variables. Entropy of the sensory data
composed of S1, · · · , Sn samples following this model can
then be derived as

H =
1
2

log(2πe)ndetKn − log ∆. (6)

Here, entry ki,j in the covariance matrix Kn corresponding
to sensor data samples Si and Sj can be expressed as

ki,j =
{

σ2
i i = j, and i, j = 1, · · · , n

σiσj i �= j, and i, j = 1, · · · , n

where σi and σj are the standard deviation of the samples
Si and Sj , respectively. log ∆ is a constant due to quantiza-
tion. For the sake of simplicity, we normalize the covariance
matrix Kn in order to get a correlation coefficient matrix
An. Then the determinant of Kn can be derived as

detKn =
n∏

i=1

σ2
i detAn (7)

With this, we have the following theorem.
Theorem 1.1: Entropy of sensor data S1, · · · , Sn in-

creases through asynchronous sampling.
Proof: Suppose that An is constructed from syn-

chronous sampling. Now if we shift the sampling sequence
of the jth sensor node tj to tj +τ . Correlation between the
jth node and the other sensor nodes ρi,j changes to ρ̂i,j ,
where

ρ̂i,j = ρi,je
−βτi,j i, j = 1, ..., n

Then, Ân in correspondence to asynchronous sampling
is given by Ân = An ◦Bn, where Bn is the sampling shift
matrix whose entry is given by

bi,j =
{

1 i = j, and i, j = 1, · · · , n
e−βτi,j i �= j, and i, j = 1, · · · , n

(8)

And An ◦ Bn is Hadamard product, which is the element-
wise product of two matrixes. As A and B are correlation
matrixes, they are positive definite or positive semidefi-
nite. It is know that Hadamard product of two positive
definite matrixes are also positive definite due to the
closure property of positive definite matrix under Hadamard
product. According to Oppenheim’s Inequality [19], we
have det(An ◦ Bn) ≥ detAn

∏n
i=1 bi,i = detAn (equality

holds if and only if An is a diagonal matrix), which shows
detAn < detÂn. Therefore, detKn < detK̂n, which infers
that H < Ĥ = 1

2 log(2πe)ndetK̂n − log ∆.

B. Asynchronous Sampling Reduces Distortion

While entropy provides an abstract quantification of the
information amount embedded in the data, it is hard to
picture its true impact in real applications. Here, we take
one step further to show that asynchronous sampling can

help an application improving regression of the physical
process from the asynchronous data.

A key goal of deploying sensor networks is to reconstruct
the physical field under measurement based on the gathered
data. Instead of reconstruction, regression of the physical
field is implemented when reconstruction is unreachable
due to insufficient data. In this section, we show how asyn-
chronous sampling can improve regression performance
through an example of linear regression.

We consider a regression model for a physical process
as shown below.

S̃(x, y, z, t) =
∑

i

wiHi(x, y, z, t)

where wi is the ith weight, Hi is the ith basis function of
regression. The optimal regression is achieved when w =
(HT H)−1HT S. Thus, the regress distortion is

Dr = E[(Ŝ − H(HT H)−1HT S)2]

where Ŝ represents the physical value measured by the
sensor nodes.

Let Q = H(HT H)−1HT , we have

S̃j =
n∑

i=1

qi,jSi

Consequently,

Dr = σ2
S +

1
n

n∑
i=1

n∑
j=1

q2
i,jS

2
i (9)

+
1
n

n∑
k=1

n∑
i=1

n∑
j=i+1

qi,kqj,kρi,jS
2
k

− 2
n

n∑
k=1

n∑
i=1

qi,kρS,iŜ
2
k

If the sensory data are collected asynchronously, only
ρi,j will decrease due to non-zero τi,j introduced in the
correlation model. As a result, we can conclude that asyn-
chronous sampling can reduce regression distortion.

V. ASYNCHRONOUS SAMPLING STRATEGIES

As we have shown above, asynchronous sampling strat-
egy increases entropy of the sensor data by introducing
shifts in the sampling time points among different sensor
nodes. In this section, we first formulate the optimization
problem for determining the time shifts among the sensor
nodes. As this optimization problem is NP-hard, we pro-
pose a heuristic algorithm termed as O-ASYN, which uses
local optimum to approximate global optimum.

Without losing generality, we assume that the sampling
time points of the sensor nodes is increasing along with
their index, i.e., t1 ≤ t2 ≤ · · · ≤ tn. We also assume that
the times shifts among the nodes are

τi =
{

ti+1 − ti i = 1, · · · , n − 1
T + t1 − ti i = n
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where T is the sampling interval of the sensor nodes.
To best benefit from the asynchronous sampling strategy,

our goal is to determine the best set of {τi} so that the
entropy of the sensory data can be maximized. Formally,
the goal is

max logdetAn (10)

subject to
n−1∑
k=1

τk = T and τk ≥ 0

The above optimization problem can be shown to be NP-
hard as it’s similar to the Assignment Problem with Extra
Constraints (APEC), which is NP-hard [20].

As a result, we propose a recursive algorithm named
O-ASYN to approximate the global optimum using local
optimum. O-ASYN is described in Algorithm 1. In this
algorithm, given the index of sensor nodes, we start from
the local optimum of the optimization problem with 3
sensor nodes. As linearity of local optimum of k sensor
nodes is maintained in searching for local optimum of
k+1 sensor nodes, we are able to use Lagrange Multiplier
recursively to obtain local optimum for n sensor nodes.

1. index the sensor nodes
S: set of sensor nodes; V: set of sensor nodes with index;
u: index of sensor nodes; V=∅
for i=1 to |S|

ui = argmaxu⊂SEntropy(V
⋃

u)
V=V

⋃
ui

S = S − ui

end
2. find sampling shifts of the indexed nodes

τ1 : T
2

+ 1
2β

(ln ρ1,2− ln ρ2,3); τ2 : T
2

+ 1
2β

(ln ρ2,3− ln ρ1,2)
are the local optimum of sampling shifts of u1, u2 and u3

for k=1 to n-3
for j=1 to k+1

τj = τj(T − τk+2)/(
∑k+1

i=1 τi)
end
τk+2 = argmaxEntropy(τ1, · · · , τk+1, τk+2)

subject to
∑k+1

i=1 τi + τk+2 = T and τi ≥ 0
end

Algorithm 1: O-ASYN algorithm

Besides O-ASYN, simple alternative asynchronous sam-
pling strategies can be applied as well. For example, time
shifts among sensor nodes can be randomly generated or
equal among all. We denote them R-ASYN and and E-
ASYN respectively. We will study the performance of the
three algorithms in the next section.

VI. SIMULATIONS

In this section, we study the performance of O-ASYN
using both simulated sensory data and real data obtained
from experimental deployment of real sensor networks.
With simulated sensor data, performance of O-ASYN in
terms of increased determinant of covariance matrix is com-
pared with those of two alternative asynchronous sampling
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strategies, namely R-ASYN and E-ASYN ( with random
time shifts and equal time shifts among sensor nodes
respectively). In addition, we verify the benefit of asyn-
chronous sampling strategy by conducting asynchronous
sampling strategies on real data set.

Simulated sensory data of 10 nodes are prepared follow-
ing the correlation models given in Section III. We assume
the sensor nodes are located in 3-dimension space. The spa-
tial correlation of a pair of sensor nodes is determined by
the distance between them. Locations of the sensor nodes
are randomly distributed in a 10m × 10m × 10m space.
The corresponding correlation matrix A10 is obtained by
denoting α = 0.5 and β = 0.2.

With simulated sensory data, we compute determinants
of the covariance matrixes corresponding to synchronous
samples and asynchronous samples respectively. Recall that
determinant of covariance matrix is linearly proportional to
entropy of the sensory data, results shown in Fig.3 shows
increased entropy of asynchronous samples.

Besides simulated sensory data, real data set from In-
tel Berkeley Lab are adopted to verify the benefits of
asynchronous sampling. The data set contains temperature
measurements in a lab space for about one month. Among
the 54 sensor nodes in the area, 50 nodes transmit valid
sample series to the sink. Before computing correlation
of the asynchronous samples, corrupted data are excluded
during preprocess of the data set.

Similarly, performance comparisons among synchronous
sampling and asynchronous sampling strategies are con-
ducted when the maximum time shift varies from 30s to
150s. Simulation results on entropy gain are shown in
Fig.4. Here, entropy gain is the ratio between entropy of
asynchronous samples and that of synchronous samples in
decibel. Not surprisingly, entropy gains of O-ASYN, R-
ASYN and E-ASYN follow the similar trend as shown in
Fig. 3. Notice that the larger the time shifts, the greater
improvement is achieved by asynchronous sampling.

Furthermore, we compute the regression distortion of
the temperature values given the sensor data sampled at
reduced sampling rate. The regression results corresponding
to synchronous samples and asynchronous samples are
shown in Fig.5 and Fig.6 respectively, while the sensor
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Fig. 5: Data sampled at reduced rate
synchronously

Fig. 6: Data sampled at reduced rate
asynchronously

Fig. 7: Data sampled at original rate
synchronously

10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

Node ID

D
is

to
rt

io
n

 

 

Synchronous
Asynchronous

Fig. 8: Comparison of Regression
Performance

data sampled at original sampling rate is show in Fig.7.
Regression distortion of synchronous sampling and asyn-
chronous sampling are compared in Fig.8. Evidently, the
overall regression distortion of asynchronous sampling is
much lower than that of synchronous sampling.

VII. CONCLUSION

In this paper, we propose asynchronous sampling where
the sampling time of sensor nodes are shifted. Theoreti-
cally and experimentally, we show that entropy of sensory
data increases as a result of correlation reduction due to
asynchronous sampling. Furthermore, we model optimal
asynchronous sampling as an optimization problem with an
objective of entropy maximization with constraints on sam-
pling time shifts. The heuristic solution we propose, termed
O-ASYN, approximates the global optimum through recur-
sively search of local optimum of the objective function.
Compared with existing strategies focused on correlation
reduction among sensory data, asynchronous sampling
strategy introduces another dimension for optimization,
without additional computation or communication over-
head. Currently we are exploring the tradeoff between
energy efficiency and reliability in the network based on
the conclusions from this paper.
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