
ReMo : An Energy Efficient Reprogramming Protocol for Mobile Sensor Networks

Pradip De, Yonghe Liu and Sajal K. Das
Center for Research in Wireless Mobility and Networking(CReWMaN)

Department of Computer Science and Engineering
University of Texas at Arlington, TX 76019-0015

{pradipde, yonghe, das}@cse.uta.edu

Abstract
Existing code update protocols for reprogramming

nodes in a sensor network are either unsuitable or in-
efficient when used in a mobile environment. The pro-
hibitive factor of uncertainty about a node’s location
due to their continuous movement coupled with the
obvious constraint of a node’s limited resources, pose
daunting challenges to the design of an effective code
dissemination protocol for mobile sensor networks.
In this paper, we propose ReMo, an energy efficient,
multihop reprogramming protocol for mobile sensor
networks. Without making any assumptions on the
location of nodes, ReMo uses the LQI and RSSI
measurements of received packets to estimate link
qualities and relative distances with neighbors in
order to select the best node for code exchange.
The protocol is based on a probabilistic broadcast
paradigm with the mobile nodes smoothly modifying
their advertisement transmission rates based on the
dynamic changes in network density, thereby sav-
ing valuable energy. Contrary to previous protocols,
ReMo downloads pages regardless of their order,
thus, exploiting the mobility of the nodes and facilitat-
ing a fast transfer of the code. Our simulation results
show significant improvement in reprogramming time
and number of message transmissions over other
existing protocols under different settings of network
mobility.
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I. Introduction

Special features of wireless sensor networks [1], as

opposed to traditional networks, like place of deploy-

ment, scale, node density, resource constraints, etc.,

pose new problems to the issue of re-programmability

of the nodes. The fact that individual sensor nodes,

once deployed, are practically inaccessible, necessi-

tates the need for a protocol that can reprogram the

whole network over the air. Not only should these

protocols be able to fulfill this functionality, but they

also need to be reliable and robust against different

adverse network conditions, efficient in terms of

speed, scalable in terms of both network size and

code size propagated, etc. In light of these motivating

factors, several network programming protocols [2–5]

have evolved in recent years for updating code across

the whole network. The dissemination mechanism

primarily revolves around periodic advertisements

of code metadata in the neighborhood and, when

a conflict is discovered, the code pages are propa-

gated in an ordered manner across the network in

a pipelined spatially multiplexed fashion. The rea-

son behind maintaining page order in the pipelined

transfer is the notion that, in a static network, the

code is propagating from a source in the form of a

wave. Therefore, in the absence of any kind of unicast

routing, there is very low probability of pages arriving

at a node out of order. Thus, these protocols reduce

the overhead of nodes contending for different pages

by enforcing an ordered transfer.

Several sensor networks applications, however, re-

quire nodes to be mobile. Despite the new chal-
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lenges posed by the mobility factor, it also provides

a number of advantages. It increases the extent of

coverage of the whole area. It also increases the

reliability of coverage of a given point and more

importantly, a lesser number of sensors can achieve

the desired sensing performance. At the same time,

from a reprogramming perspective, the random and

continuous mobility of the nodes could render the

feature of acquiring pages in-order, as the existing

protocols for static sensor networks are designed,

inefficient. Furthermore, node mobility infuses con-

siderable uncertainty on the location of a node at any

given time. Thus, a code update protocol running

at a node should not only consider the issue of

optimally utilizing the node’s resources, but also

engage in tackling the uncertainty brought about by

the nodes’ mobility. In other words, nodes have to

optimally choose when and which neighbor to request

a page transfer from, such that redundant and useless

transmissions are reduced as much as possible and

the time required for the code update is minimized.

One could trivialize the requirement of this proto-

col for mobile sensor networks arguing that the nodes

could be temporarily immobile and use the repro-

gramming protocol for static networks. They could

also move towards the base station and reprogram

themselves. However, these two scenarios might not

be feasible in most applications. First of all, a mobile

sensor is generally constructed by mounting an off-

the-shelf wireless sensor on a mobile entity where

the sensor has no robotic control over the mobility

of the device. An example could be the monitoring

of animals where sensors are embedded on them to

monitor their moving patterns or biomedical sensors

mounted on people for health monitoring. Thus, it

is necessary to reprogram the sensors while they are

moving around according to the independent mobility

pattern of the moving objects on which they are

mounted. Moreover, even if the sensor had robotic

control over the mobile device and could steer it

towards the base station to get itself updated, it could

be wasting valuable energy. Instead, a protocol that

considers the independent and unconstrained mobility

of the sensor devices would be more effective.

In this paper, we propose ReMo, a reprogramming

protocol specifically designed for mobile sensor net-

works. Without assuming nodes know their respective

locations, ReMo tries to infer relative distance with

neighboring nodes and the link qualities with them

from parameters measured from received packets.

Particularly, contrary to previous reprogramming pro-

tocols, in ReMo, we relax the constraint of in-order

propagation of pages and try to take advantage of

the mobility by allowing nodes to download pages

out-of-order. We address two main issues for code

exchange between neighbors. First, nodes try to as-

certain which neighbor has the best link quality as

well as a higher chance of staying within commu-

nication range for a longer duration. Secondly, a

node also tries to ascertain which neighbor has the

highest potential for providing pages for download.

The primary local goal of ReMo running at a node

is to optimally choose a neighbor based on the above

two requirements while simultaneously trying to min-

imize its energy usage by intelligently optimizing

the number of control messages transmitted in a

neighborhood. Since each node takes local decisions

based only on neighborhood information, ReMo can

scale to large network sizes. Moreover, the opti-

mal choice of a neighbor to exchange pages with,

makes it extract the most out of the uncertain mobile

environment and thus, efficient in terms of speed

of propagation. Furthermore, the epidemic style of

page propagation automatically achieves the desired

reliability to correctly disseminate the code to the

entire network.

The rest of the paper is organized as follows.

Section II presents related work. In section III, we

discuss about parameters crucial for estimating the

link qualities and relative distances between nodes.

In section IV, we analyze the effect of mobility on

Deluge. In section V, we present the ReMo protocol

in detail. In section VI, we discuss the simulation and

corresponding results and conclude in section VII.

II. Related Work
Code update protocols in sensor networks have

been given special focus in recent years. All these

protocols have concentrated on reprogramming a set

of static nodes scattered in a terrain. Trickle [2] is a

code maintenace algorithm which works on a polite

gossip based periodic advertisement of metadata.

Deluge [4] is based on Trickle and is meant for

transferring bulk code by dividing it into fixed size

pages and pipelining the pages across the network.
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However, Deluge suffers from the hidden terminal

problem in dense networks. MNP [5] improves on

Deluge’s hidden terminal problem by implementing

a sender selection algorithm in a neighborhood by

which one single node would transmit data. It trans-

fers the whole image in a phase-by-phase manner

across single hops. Although it saves on energy, the

code propagation process takes longer. An extension

of MNP was proposed in Gappa [7] where parts of a

code can be communicated to a subset of sensors on

multiple channels. Although most of these protocols

provide a reliable transfer of data across the network

and can handle occasional node failures, they are

unsuitable or inefficient when used in a mobile sensor

network scenario where nodes are dynamic all the

time. Probabilistic broadcast models have been pro-

posed in [6]. Probabilistic broadcasting in a mobile

environment have been dealt with in [8]. In [9], the

authors proposed a dynamic scheme to change the

rebroadcasting probability based on node distribution

and movement.

III. Link Quality and Relative Distance Esti-
mate

Since the mobile nodes are not assumed to know

their own location, it is important to determine not

only the relative distance between two neighbors but

also the link quality between them in terms of the

packet reception rate. These two parameters would

help a node to select the best neighbor for code down-

load. We have performed some outdoor experiments

to characterize the link between two sensor nodes

with 802.15.4 radios at varying distances. Our goal

was to find out how the RSSI and LQI values of a

radio packet varied with distance and correlated with

the packet reception rate over the corresponding link.

For our experiments on link quality measurements,

we used the Sun Small Programmable Object Tech-
nology (SunSPOT) nodes [10]. A SunSPOT has a 180

Mhz 32 bit ARM920T processor with 512K RAM

and 4M Flash. The radio chip is the CC2420 [12].

As part of the ReMo protocol, each node would

continuously snoop on all radio packets transmitted

in the neighborhood in order to construct important

statistics like relative distance and link quality with

its neighbors. However, snooping is not cheap since

nodes have to listen for packets that are not neces-
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Fig. 1. Outdoor Measurements of LQI, RSSI
and Packet Reception Rate with Distance

sarily addressed to itself. Several low-power listening

techniques exist[14] that would allow nodes to snoop

at a much lower cost. However, much of the traffic

in the case of ReMo is broadcast and thus nodes

would not need to do any extra snooping in order to

construct the link characteristics with their neighbors.

As shown in Fig. 1, we measured the average RSSI

and LQI values of 600 packets for a distance of

12 feet to 60 feet at steps of 4 ft in an open area.

The nodes were kept at a height of 3 ft above the

ground. Our observations indicate that RSSI is a good

indicator of relative distance between two nodes but

it is not correlated with the packet reception rate as

accurately as the average LQI values. Thus, ReMo

uses the average LQI values as an indicator of link

quality and the RSSI measurements as indicators of
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relative distance.

IV. Deluge in a Mobile Sensor Network
In order to demonstrate the requirement of a suit-

able reprogramming protocol for mobile sensor net-

works, we evaluated the performance of Deluge [4],

a popular reprogramming protocol, in a network with

mobile nodes. Most other existing protocols [2, 3, 5]

follow a similar paradigm for code propagation. We

have performed simulation experiments under vary-

ing degrees of node mobility. Our primary goal was

to observe the completion time of the code update

for the entire network under varying average speeds

for the mobile nodes. Our results indicate that Deluge

shows a significant increase in network programming

time as the average speeds of the mobile nodes are

increased. One of the primary reasons behind this

fall in performance is that Deluge distributes pages

strictly in order. This strict page-ordered download

makes sense in a static scenario where the new code

propagates from a specific source in a wave across

the network. Thus, there is a very low probability of

pages arriving at a given node out of order. However,

in a mobile scenario, this constraint no longer holds

and a node might have neighbors potentially capable

of providing arbitrary pages for download.

Moreover, since Deluge has a simplistic rate con-

trol mechanism for its metadata advertisements, it is

unsuitable to the dynamic changes in neighborhood

density brought about by the mobility of the nodes.

Moreover, it is very susceptible to the hidden terminal

problem when the neighborhood density increases.

Fig 2 (a) is a snapshot of a network running

Deluge with adjacent nodes connected by an edge.

The first set of nodes shows the normal operation of

Deluge in a static network where the code update

propagates in a particular direction. Each node is

marked with the page number it is advertising. Thus

all the nodes having a page number of 5 or lower

can acquire missing pages from their neighbor nearer

to the source. The next array of nodes shows a

mobile scenario where nodes have moved into a

new adjacency configuration. Thus, the number of

nodes potentially able to download new pages are

less. This example proves that the regular paradigm

of code propagation in an increasing order of pages

in unsuitable when the nodes are mobile. Fig. 2 (b)

shows the effect of mobility on the completion time
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taken by Deluge with increasing image size in a 400
node network in a square of area 4000m2 . Each page

is of size 1 KB.

V. The ReMo Protocol
Mobility among nodes poses new challenges to

the efficient design of a reprogramming protocol

for sensor networks. Sensors, with their stringent

resource constraints have more responsibility in not

only tackling the uncertainty due to mobility, but also

minimizing the resource utilization in overcoming

that overhead and propagate the code throughout the

network as fast as possible. In this section, we first

introduce a few assumptions and design directions of

ReMo before describing the working principle of the

protocol.

A. Node Mobility Model

The most commonly used mobility model in

ad hoc networks is the random waypoint (RWP)

model[15]. In this model, a node in a movement

period i, randomly chooses a waypoint Pi, moves to-

wards it at a velocity Vi chosen uniformly randomly,

and pauses at the waypoint Pi for a random period

Ti. This process is repeated for each subsequent

movement period.
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In our mobile sensor network, we assume that

nodes move according to the RWP model. Moreover,

nodes are not required to be aware of their locations.

We do not make any assumptions on network con-

nectivity being maintained at all times but assume

that the nodes move around within the confines of

the region.

B. Data Representation

Similar to the data representation of Deluge [4],

ReMo divides the code image into fixed sized packets

of size Spkt. The protocol uses a basic unit of transfer

called a page which is of size N.Spkt where N is a

fixed number of packets. Breaking the code image

into pages enables pipelining the transfer of the file

over multiple hops across the network. A version
number is used to distinguish between different code

updates and must be monotonically increasing to

maintain an order for all updates. A node needs to

compare version numbers to decide on whether it

requires an update.

C. Page Download Potential (PDP)

We define the page download potential (PDP) ωij
of node i w.r.t node j as a measure of the potential

that j has in providing pages to i. Let the code

image Cimg consist of κ pages, such that Cimg =
{P1, P2, . . . , Pκ} where Pl is the lth page. Let Si
and Sj denote the set of pages of node i and node

j, respectively. Then the page download potential ωij
of i w.r.t j is denoted by

ωij =
|Sj − Si|
|Cimg| (1)

where Sj −Si is the set difference between the page

sets of node j with node i. Thus, for each node i with

σ neighbors, the page download potential vector Ω is

denoted by

Ωi =
{
ωi1, ω

i
2, . . . , ω

i
σ

}
(2)

D. Neighbor Link Profile (NLP)

Each node i snoops in its neighborhood for pack-

ets transmitted by other nodes in order to build a

Neighbor Link Profile (NLP) vector Φi. φij , which

is an element of Φi, represents an entry of the NLP

of node i w.r.t. node j. It is a 2-tuple < lqij , dm
i
j >

where lqij is a normalized representation ∈ [0, 1] of

the link quality with node j, and dmi
j is a direction

of motion indicator. lqij is calculated based on the

average of the LQI values of packets received from

node j. The average LQI values, as depicted in Fig 1,

have been used for estimating the link quality with a

given neighbor as they have a better correlation with

the packet reception rate of a link. The link quality

estimate is updated based on a window mean expo-

nentially weighted moving average (WMEWMA) of

the LQI values in each slot of a neighbor node, the

window being the duration τ of each slot. Thus, the

link quality update of node j is given by

lqij(t+ 1) = γlqij(t) + (1− γ)
lqavgj (t)
lqmax

(3)

where lqavgj (t) is the average of the LQI values of

the packets received from node j in the current slot.

The weight factor γ decides the contribution of the

previous estimate of the link quality.

On the other hand, dmi
j is calculated based on

RSSI values of multiple packets from the same node.

The RSSI values of the 802.15.4 packets from the

CC2420 [12] radio chip have been confirmed to have

shown an agile linear correlation with the distance as

depicted in Fig 1. Accordingly, consecutive values

have been used to approximately indicate whether a

neighboring node is approaching or departing. Thus,

dmi
j takes values −1(departing), 0(uncertain), and

+1(approaching). However, the measured RSSI val-

ues need to be sufficiently spaced in time in order

to reflect a change in position of the mobile node.

Accordingly, RSSI values are taken from packets that

are at least spaced by a time duration of Δϕ . where Δ
is a constant distance (say 8m) and ϕ is the average

speed of a node.

If no packet is heard from an existing neighbor

in the NLP in the last time slot, it is marked as

stale. Moreover, a stale neighbor is again made fresh
when a packet is received from it. After a maximum

number of W slots with a neighbor remaining stale,

it is evicted from both the NLP and the PDP lists.

E. Probability of Metadata Broadcast

One of the central features on which ReMo is

based is an adaptive metadata advertisement scheme.

This is a probabilistic technique for broadcasting

metadata in the neighborhood considering local node
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density and the presence of new metadata. Time is

divided into slots of fixed duration τ , and nodes

essentially broadcast their metadata at every slot t
based on their current advertisement probability βt.

In this section, we formulate βt, which is the

probability of metadata broadcast by a node at each

time slot t. Each node dynamically updates βt at

each time slot based on gathered observation at the

previous time slot. Not only is the computation of

this transmission probability based on the presence of

new code information in the neighborhood, but also

on the relative density of the current neighborhood.

Thus, each node tries to proactively ascertain if there

is any neighbor with new code and also control the

level of gossip in order to avoid collisions and packet

loss.

Let Nd
t and N s

t , respectively, denote the number of

different and similar metadata advertisements heard

by a node during slot t. Morever, let At denote

the sum of all advertisement messages heard by the

node in slot t. Thus, At = Nd
t + N s

t . Algorithm

1 depicts the update of the broadcast probability β
at each time slot. The notion is to allow a node to

increase its broadcast probability whenever it senses

that there is new code in the neighborhood. This

increase is inversely proportional to the number of

nodes advertising new code. In other words, nodes

increase their probability by a smaller amount when

the number of neighbors advertising new code is

high and vice versa. Moreover, in order to avoid

packet collisions, nodes decrease their probability of

transmission if Nd
t and βt cross a threshold value of

NTh and βhigh, respectively.

More importantly, nodes keep track of the number

of neighbors that are advertising the same metadata,

N s
t . They, accordingly, decrease their transmission

probability in order to minimize redundantly broad-

cast metadata in the neighborhood. δ denotes a small

step used to increase or decrease the probabilities.

Thus, for each slot t, nodes gather these informa-

tion about their neighbors and update their advertise-

ment probability for the next slot t+ 1.

For the initial transmission probability β0, each

node is assigned a value of β0 = 1
ρ where ρ = πR2N

D
denotes the average number of neighbors that a node

has within its transmission radius R. D denotes the

area in which the nodes are deployed and N is the

total number of nodes..

Algorithm 1 TransmissionProb βt+1 for (t+1)th slot

Input: βt, Nd
t , N

s
t , δ, slotsNoADV ,maxNoADV ,

maxNbrs
Output: βt+1

1: Initialize slotsNoADV = 0;
2: At the Expiry of the (t+ 1)th Timer
3: Set Nd

t+1 = 0;
4: Set , Ns

t+1 = 0;
5: if At > 0 then
6: if (Nd

t > NTh and βt > βhigh) then
7: βt+1 =

Nd
t

At
βt

(
1 − Nd

t
At

δ
)

+
Ns

t
At

βt (1 − δ);
8: else
9: βt+1 =

Nd
t

At
βt

(
1 + δ

Nd
t

)
+

Ns
t

At
βt (1 − δ);

10: end if
11: else
12: slotsNoADV = slotsNoADV + 1;
13: if (slotsNoADV < maxNoADV ) then
14: βt+1 = βt (1 + δ);
15: else
16: Sleep for a short duration;
17: Set wakeup broadcast probability β0 = D

πR2N
;

18: end if
19: end if
20: if (βt+1 > 1) then
21: βt+1 = 1;
22: end if
23: if (βt+1 < 0) then
24: βt+1 = 0;
25: end if

We note that a node reacts by decreasing or in-

creasing β as described above, based on correspond-

ing advertisement counts received in the last time slot.

When a node does not receive any advertisements

in a slot, it assumes that it is either alone or in

a very sparse location. In this case, it increases its

probability of advertisement transmission in order to

reach out to any other node in the vicinity. However,

after trying for a threshold maxNoADV number of

slots with no received advertisements, the node sleeps

for a short duration and then wakes up to broadcast

at the initial probability of β0.

As shown in Algorithm 1, we note that, in the

situation where a node receives advertisement packets

in the last slot, its probability update is composed of

a weighted sum of two components. The first com-

ponent is based on the contribution of advertisements

that contain new information, Nd
t , whereas the second

one is for advertisements with same metadata, N s
t .

The weights of these two componenets are based
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on the normalized counts of the corresponding types

of advertisement messages. Moreover, we note that

decrease of β is done more aggressively for the com-

ponent related to advertisements with same metadata.

The obvious reason is that these advertisements pose

as redundant transmissions in the neighborhood and

could only cause packet collisions without providing

extra information. β is only increased when the node

hears new metadata and the number of neighbors are

below a required threshold. However, as mentioned

before, β is increased cautiously by setting the in-

crease factor inversely proportional to the count of

new metadata advertisements so that it does not result

in a gossip storm and subsequent packet collisions.

F. Protocol Description

In ReMo, the goal of a node is to periodically

keep its neighbors updated on the version of its code

and its location information. Whenever a new code

is propagating through the network, a mobile node

needs to optimally choose a suitable neighbor to

download pages from, given the fact that the neigh-

borhood is very dynamic as the nodes are constantly

mobile.

Broadly, each node lies in either of three major

states, viz., Advertise(ADV ), Receive(RX), and

Transmit(TX). Fig 3 shows the detailed state tran-

sition diagram of the protocol.

In the ADV state, a node performs important func-

tions like periodic advertisement of code metadata,

neighborhood assessment, and optimal decision mak-

ing for different actions like choosing an appropriate

neighbor to download code from or modifying its

advertisement transmission rate based on dynamic

information about its current neighbors. In this state,

a node broadcasts an advertisement message Mdata

containing some meta information in each slot t of

duration τ with a given probability βt. It selects

a random time ∈ [ τ2 , τ ] for transmitting Mdata to

account for the short listen problem [2]. Mdata is

primarily comprised of two components : 1) Ver-

sion Number, and 2) Downloadable data information

which consists of a bit vector < p0, p1, . . . , pk−1 >
of the k pages of the object image. We also note

that the duration τ of each slot has an important

role to play in the efficient working of the protocol.

The value of τ is generally based on the average

velocity of the nodes in the network. For instance,

in a network where nodes move at very high speeds,

τ is smaller because the neighborhood states change

more frequently. Whereas, in networks with relatively

slower movement speeds, τ is of a longer duration. At

each timer expiry, a node updates its count variables

Nd
t and N s

t and recalculates βt+1 for the next slot as

described in Algorithm 1.
The Request messages are of two types, 1) A Half

Request (HReq) message, and 2) A Full Request
(FReq) message. Since nodes do not know their

location, and estimate their relative distance and link

qualities with their neighbors from received packets,

ReMo uses these two types of Request messages.

When a node is sure that the destination neighbor is

close enough for a reliable page download, it sends

a FReq message, whereas it sends a HReq message

when it is unsure of the reliability. In the latter case,

it is upto the neighbor to respond with the requested

page or ignore the HReq message. Each Request
message contains a bit vector indicating the required

set of pages. Since both the Advertisement and the

Request packets from a neighboring node contain the

page information, the PDP is updated upon hearing

any of these packets from the neighbor.
The choice of a neighbor to transmit a Request

message to, is based on which neighbor has a high

page download potential as well as a sufficiently good

link quality. Thus, a node i computes pij = ωij · lqij
and selects a neighbor nj = {j|j = argmaxj(pij)}
for sending a Request message after transiting to the

RX state. However, after selection of j, node i sends

a FReq message to j if lqij > lqthresh and dmi
j �= −1.

Otherwise, a HReq message is transmitted. The Re-
quest message is also broadcast in the neighborhood

with the address of node j incorporated as one of the

fields of the packet.
If a node in the ADV state finds that it has a

non-empty PDP and NLP list and it needs code to

download, it would transit to the RX state at the next

timer expiry and send out an appropriate Request
message targeted at the chosen neighbor and wait for

the requested data to be downloaded. For each Re-
quest message, a node generates a random sequence

number and includes it as a field in the message.

However, if it also receives a Request message in this

interim before the timer expires, it would first service

the arrived request provided the sequence number in

the incoming request message is higher than its own
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generated sequence number.

A node in the RX state would transmit a maximum

of Rmax unserviced requests before transiting back to

the ADV state.

When a node receives a FReq message in the ADV
state, it transits to the TX state and transmits all the

packets of the first page of the requested page vector.

The recipient node sends a DataACK message for

the page sent. On receiving this acknowledgment,

the sender transmits the data packets of the next

page in the requested vector provided the link quality

of the destination node (as per the last measured

estimates) and the RSSI of the received DataACK
packet is above the required threshold. However, if

no acknowledgment arrives or, the sender transits to

the ADV state and starts broadcasting its metadata

with probability β0. A recipient node transits to the

REDEEM state to download missing packets of a

page.

Upon receiving a HReq message, a sender node

migrates to an intermediate CHECK state to decide

whether the recipient node is suitable for a page

transfer by evaluating the link quality and the RSSI
of the received HReq packet. If the link quality is

satisfactory and the node is approaching, then the

page is transmitted.

The protocol messages with their essential fields

are defined as follows:

• Advertise Message: (a) ImageName (b) Version

Number (c) Image Size (d) Image Page Bit

vector.

• HReq Message: (a) Requested Version (b) Im-

ageName (c) Sequence Number (d) Destination

Address (e) RSSI of Recvd Adv (f) Requested

Vector of Pages.

• FReq Message: (a) Requested Version (b) Im-

ageName (c) Sequence Number (d) Destination

Address (e) Requested Vector of Pages.

• Data Message: (a) ImageName (b) Version

Number (c) Page Number (d) Packet Index (e)

Data Size (f) Data.

VI. Performance Evaluation
We have evaluated the performance of ReMo in

comparison with Deluge and MNP using the packet

level network simulator GloMoSim [11]. All the

three protocols have been implemented at the applica-

tion layer of GloMoSim. The CSMA MAC protocol

ADV

TX

CHK

SLEEP

DLOAD

REDEEM

RX

Page ACK Recvd/Send Next Page

HREQ Recvd/Check Nbr Profile

Node Approaching/Send PageFREQ Recvd/Send Page

Sleep Timer
Expired

No ACK; Sent All Pages

Recv Data Pkts

Receive Missing PacketsGive up or Dload Complete

No ADV for Threshold Slots

Start Download Signal Recvd

else send HREQ
If Nbr Link Profile is good, send FREQ

Select Appropriate Node To Send Request

Send Request Message(FReq/HReq)

Sent Max Requests

N−ACK Recvd/Send Missing Pkts of Page

Download Complete/Send Ack
Pkts Missing/Send NAck

Fig. 3. ReMo State Transition Diagram

model was used with a communication range of 30m.

The terrain is assumed to be a rectangular area of

4000 sq. meters. We have used the Random Waypoint

mobility model [15] to evaluate the performance of

the protocols with average speeds ranging from 2 to

20 m/s with a maximum pause time of 100 ms. Nodes

are initially uniformly randomly deployed in the

terrain. Network reprogramming time and the total

number of packets transmitted to achieve that were

the primary metrics of measurement for evaluating

the protocols. Each simulation result was taken over

30 runs with a 95% confidence interval. Table I shows

the values of the different protocol parameters for our

simulation.

TABLE I. Parameter Settings
Model Parameter Value

τ 10
AvgNodeSpeed(m/s)

sec

γ 0.4

W 6

βhigh 0.9

NTh ρ

δ 0.1

Rmax 3

A. Reprogramming Completion Time

In this section, we focus on the completion time

for transferring an image of size 5 pages with each
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Fig. 4. Completion Time of Deluge, MNP and
ReMo in a Mobile Sensor Network

page of size 1 KB comprised of 16 packets of

size 64 bytes each. The initially uniformly randomly

deployed nodes move with average speeds of 2, 5,

10, 15 and 20 meters per sec ± 10%. We also vary

the number of nodes moving in the fixed area of the

terrain. This lets us study the effects of increasing

average node density on the performance of the

protocol. Comparative results are shown in Fig. 4 for

120, 250 and 500 nodes.

Fig. 4 (a) depicts the effects of a low average

node density on the reprogramming completion time.

Without mobility, and at this low node density, we

observe that both ReMo and Deluge take almost

the same time for propagating 5 pages through the

network. However, as the mobility of the nodes

increases, ReMo outperforms Deluge. One of the pri-

mary reasons is Deluge’s constraint of downloading

pages in order. Moreover, ReMo adapts better to the

dynamic changes in local node density in curbing

redundant transmissions of advertisement messages

thus promoting faster transfer of data.

MNP gets the most adversely affected by node

mobility as the sender selection algorithm fails to

optimally select a node in a neighborhood. As per the

MNP protocol, nodes wait to gather multiple request

packets while having the sender selection algorithm

choose a particular sender and other competing ad-

vertising nodes go to sleep. However, this delay in

serving the requests proves useless because when a

sender is finally chosen and scheduled to transmit, it

is in a different neighborhood. Thus, certain nodes

go to sleep when they do not have to, and some

nodes end up transmitting in a neighborhood where

they are not required. Subsequently, nodes end up

sending more messages for a longer duration until

the whole network is finally updated. However, we

also notice that the slope of the MNP curve decreases

at higher mobility. The possible reason is that the

effect of mobility on the sender selection mechanism

becomes less dependent on the speed of the nodes

after a certain value.

Fig. 4 (b) shows the effects of an increased level

of average node density. We observe that even at

zero mobility, ReMo performs slightly better than

Deluge. The reason is that the hidden terminal prob-

lem becomes conspicuous and ReMo’s probabilistic

advertisement mechanism copes with it better than

Deluge. However, we observe that a slight increase

in node mobility to 5 m/s helps Deluge cope with

the effects of the hidden terminal problem brought

about by the increased average node density. Thus, its

completion time does not increase significantly and

the two curves stay close to each other. However, a

further increase of node mobility to 10 m/s and higher

causes Deluge to degrade in performance and the

difference in completion time with ReMo becomes

significant. In Fig. 4 (c) and (d), the average node

density is increased further and we observe that

ReMo continues to show significant improvements

over Deluge and MNP. The flexible order for page

download and the smoothened probabilistic adver-

tisement mechanism based on neighborhood density

helps ReMo overcome the effects of mobility and

node density fluctuations better than Deluge and

MNP.

B. Number of Message Transmissions

We look into the number of messages transmitted

by each protocol in fixed sized time windows of 20
seconds for the entire duration of the code update.

Fig 5 depicts the message transmission distribution

for each protocol. There are 120 nodes in a 4000m2

area and the nodes move with an average speed of

10 m/s ± 10%. In Fig 5 (a), the overall transmitted
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messages for Deluge are shown. Comparing with Fig

5 (b), we see that although the average number of

messages sent in each 20 second slot was less in

MNP, the entire duration was much longer. However,

in Fig 5 (c), the number of messages transmitted by

ReMo shows that both the average rate of message

transmission and the entire duration of update is less

than both MNP and Deluge.

The lower average message transmission rate also

indicates that ReMo is more energy efficient than

Deluge or MNP in a mobile environment.

VII. Conclusions

In this paper, we presented ReMo, a reprogram-

ming protocol specifically suited for mobile sensor

networks. We showed how the existing reprogram-

ming paradigm for static networks fails to adapt to

a mobile scenario. The protocol takes advantage of

the mobility of the nodes by having them download

pages out-of-order, thus expediting the download pro-

cess. The protocol also smoothly adapts its periodic

metadata advertisements to cope with the constantly

varying node density of the mobile environment and

suppress redundant transmissions as much as possi-

ble, thereby saving valuable energy. Our comparative

results indicate significant improvements in comple-

tion time of reprogramming the whole network and

the number of messages transmitted over existing

reprogramming protocols like Deluge and MNP.

As part of our future work, we are implementing

the ReMo protocol on a testbed of SunSPOTs.
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