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Abstract—In wireless sensor networks, en route aggregation decision regarding where and when aggregation shall be performed

along the routes has been explicitly or implicitly studied extensively. However, existing solutions have omitted one key dimension in the

optimization space, namely, the aggregation cost. In this paper, focusing on optimizing over both transmission and aggregation costs,

we develop an online algorithm capable of dynamically adjusting the route structure when sensor nodes join or leave the network.

Furthermore, by only performing such reconstructions locally and maximally preserving existing routing structure, we show that the

online algorithm can be readily implemented in real networks in a distributed manner, requiring only localized information. Analytically

and experimentally, we show that the online algorithm promises extremely small performance deviation from the offline version, which

has already been shown to outperform other routing schemes with static aggregation decision.

Index Terms—Data aggregation, sensor networks, routing, en route aggregation decision.
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1 INTRODUCTION

MOTIVATED by the scarce resource limitations in sensor
networks [1], [2], extensive research work has been

devoted to providing energy-efficient routing algorithms
for correlated data gathering [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15]. By exploring data correlation and
employing in-network processing, redundancy among
sensed data can be curtailed, and hence, the network load
can be reduced [4].

One fundamental question in routing schemes with
aggregation is to determine when and where aggregation
shall occur along the route in order to explore the data
redundancy, which we term en route aggregation decision. A
natural example for en route aggregation decision is the
extensive set of work concerning clustering. There, it has
been implicitly assumed that source data is aggregated at the
cluster head fromwhere it will be relayed directly to the sink
[3], [16]. On the contrary, aggregation-driven routing
algorithms [7], [8], [9], [10], [11], [12], [17] have adopted
two schemes regarding en route aggregation: full aggrega-
tion strategy in which source data will be continuously
aggregated on its path to the sink [7], [8], [9], [10], [17], and
one-time aggregation where each node selects its best
neighboring node for data aggregation and the aggregated
data will be sent to the sink without further processing [11],
[12]. Naturally, from the aggregation point of view, cluster-
ing techniques can be classified into the second category.

While extensive, existing strategies for information
routing in sensor networks miss one key dimension in the

optimization space for en route aggregation decision,
namely the data aggregation cost [10]. Indeed, the cost for
data aggregation may be negligible for certain applications.
For example, sensor networks monitoring field temperature
may use simple average, max, or min functions which
essentially are of insignificant cost. However, other net-
works may require complex operations for data fusion.1

Energy consumption of beamforming algorithm for acoustic
signal fusion has been shown to be on the same order of that
for data transmission [18]. Encryption and decryption at
intermediate nodes will significantly increase aggregation
cost in the hop-by-hop secure network since the computa-
tional cost is on the scale of nanojoule per bit [19]. Moreover,
with increasingly expanding applications, multimedia data
including image and video are also being served by wireless
sensor networks. In these applications, techniques such as
distributed wavelet processing and compressive sensing are
intensively studied for in-network compression and proces-
sing [20], [21], [22]. As an example, we have studied image
fusion when using wavelet-based schemes in [23]. Our
results show that the fusion processes incur tens of
nanojoule per bit energy consumption, which is on the same
order as the communication cost reported in the literature
[3], [18]. Similar results have also been reported in [24],
where an improved JPEG compressing scheme is studied.

Fusion cost not only affects routing decisions when
involving data aggregation but also significantly affects en
route aggregation decision regarding when aggregation
shall be performed and when it shall be disabled. This can
be explained by the example below.

1.1 Motivation

Fig. 1 depicts a sensor network where sensor nodes are
deployed on grid and sensed information of the source
nodes is to be routed to sink t. Arrow lines form the
aggregation tree in which nodes u and v initially aggregate
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1. In this paper, we consider “aggregation” and “fusion” interchange-
able, denoting the data reduction process on intermediate sensor nodes.
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data of areas A and B, respectively. As the sink is far away,
u and v further aggregate their data at v and then send one
fused data to the sink. Assume each hop has identical unit
transmission cost c0, the fusion cost is linear to the total
amount of incoming data, and the unit fusion cost is q0. Let
wðuÞ and wðvÞ, respectively, denote the amount of data at u
and v before the aggregation between them. The amount of
resultant aggregated data at v can be expressed as
ðwðuÞ þ wðvÞÞð1� �uvÞ, where �uv represents the data
reduction ratio owing to aggregation. In this scenario, if v
performs data fusion, the total energy consumption of the
route from v to t, assuming there are L hops in between, is
Lc0ðwðuÞ þ wðvÞÞð1� �uvÞ þ q0ðwðuÞ þ wðvÞÞ. On the con-
trary, if v does not perform data fusion, the total energy
consumption of the same route is simply the total relaying
cost, Lc0ðwðuÞ þ wðvÞÞ. To minimize the total energy con-
sumption of the network, v should not perform data fusion as
long as �uv <

q0
Lc0

.
From this example, we can see that neither the full

aggregation nor the one-time aggregation can be the best
solution, thedecision at an individual nodehas to bebasedon
data reduction ratio due to aggregation, its related cost, and
its effect on the communication costs at the succeeding nodes.

1.2 Our Contribution

In our existing work [23], we proposed Adaptive Fusion
Steiner Tree (AFST), a routing scheme that can dynamically
assign fusion decisions to routing nodes during the route
construction process by evaluating whether fusion is
beneficial to the network based on fusion/transmission
costs and network/data structures. But this offline solution
cannot be readily implemented in a real network without
incurring significant overhead, as it requires global infor-
mation of the network and centralized derivation.

Our key task in this paper is then to design an online algorithm
that can be implemented by individual sensor nodes in a distributed
fashion relying on local information only. New sensor nodes can
be deployed for enhanced coverage, and existing sensor
nodes can become nonfunctional over time. Furthermore,
nodes can be periodically scheduled into sleep mode in turn
for prolonged network lifetime. Our proposed algorithm,
termed online AFST, can effectively perform nodes adding
and deleting only by modifying local routing structure
without triggering extensive rerouting in the network. Such
property can significantly reduce the overhead due to

repetitive communication and calculation. Furthermore,
due to this nature, the algorithm can be readily implemented
in real environments based only on localized information.
Through extensive simulations, we show that online AFST
closely follows its offline version—within 15 percent
performance deviation under a wide range of parameters.

The remainder of this paper is organized as follows: In
Section 2, we describe the system model and formulate the
routing problem. Section 3 describes the offline version of
the randomized approximation algorithm AFST. Sections 4
and 5 present in detail the design and analysis of the
proposed online AFST algorithm. Section 6 improves the
online algorithm to a distributed algorithm. In Section 7, we
experimentally study the performance of the online algo-
rithm. Related work is discussed in Section 8, and Section 9
concludes this paper.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 Network Model

We model a sensor network as a graph G ¼ ðV ;EÞ, where V
denotes the node set and E the edge set representing the
communication links between node-pairs. We assume a set
S � V of k nodes are data sources of interests and the sensed
data needs to be gathered at a special sink node t 2 V .

For a node v 2 S, we define node weight wðvÞ, denoting
the amount of information outgoing from v. Evidently,
various data fusion algorithms will result in different
weights, and therefore, a node’s weight is dynamic in the
process of data fusion. In order to avoid confusion, we use
ewð�Þ to denote the temporary weight of a node before data
fusion and use wð�Þ to denote the weight of a node after
data fusion.

An edge e 2 E is denoted by e ¼ ðu; vÞ, where u is the
start node and v is the end node. Then, the data amount
transmitting on edge e, denoted by wðeÞ, is equivalent to the
weight of its start node, i.e., wðeÞ ¼ wðuÞ. Two metrics, tðeÞ
and fðeÞ, are associated with each edge, describing the
transmission cost and fusion cost on the edge, respectively.

2.2 Transmission and Fusion Costs

Transmission cost tðeÞ denotes the cost for transmitting wðeÞ
amount of data from u to v. Let cðeÞ denote the cost (e.g.,
power) when transmitting unit data on edge e, the transmis-
sion cost tðeÞ of edge e is then given by tðeÞ ¼ wðeÞcðeÞ.

Fusion cost fðeÞ denotes energy consumption for fusion
process at the end node v. fðeÞ depends on the amount of
data to be fused as well as the algorithms utilized. In this
paper, we use qðeÞ to abstract the unit fusion cost. Then, the
cost for fusing the data of nodes u and v at node v is given
by fðeÞ ¼ qðeÞðwðuÞ þ ewðvÞÞ.
2.3 Correlation and Data Aggregation

Key to a sensor data routing protocol is the data
aggregation ratio. Regardless of the application scenarios,
we use an abstract parameter �, the correlation coefficient,
to denote the data redundancy between nodes. If node v is
responsible for fusing node u’s data (denoted by wðuÞ) with
its own, we have wðvÞ ¼ ewðvÞ þ wðuÞð1� �uvÞ, where ewðvÞ
and wðvÞ denote the data amount of node v before and
after fusion.
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Due to aggregation cost, node v may choose to simply
relay the incoming data of node u instead of performing
data aggregation in order to realize maximum energy
saving. In this case, the new weight of node v is simply
wðvÞ ¼ wðuÞ þ ewðvÞ and there is no fusion cost on edge
ðu; vÞ obviously.
2.4 Problem Formulation

Given the source node set S and sink t, our objective is to
design a routing algorithm that minimizes the energy
consumption when delivering data from all source nodes in
S to sink t. Not only do we need to design routing paths back
hauling sensed information driven by information aggrega-
tion, but also we have to optimize over the decisions as to
whether aggregation shall occur or not on a particular node.

Mathematically, a feasible routing scheme is a connected
subgraph G0 ¼ ðV 0; E0Þ, where G0 � G contains all sources
ðS � V 0Þ and the sink ðt 2 V 0Þ. Depending on whether
fusion is performed or not, the edge set E0 can be divided
into two subsets E0

f and E0
n, where E0

f includes all fusion
edges and E0

n represents the unfusion edge set. Our goal is
to find a feasible subgraph G� such that

G� ¼ argminG0
X
e2E0

f

fðeÞ þ tðeÞð Þ þ
X
e2E0

n

tðeÞ: ð1Þ

In [23], we have described an offline solution, termed
AFST, for the above problem. However, this solution
requires deriving of the routing structure to be performed
at the sink based on the global information of the network.
Our approach toward a distributed solution can be outlined
as follows: Based on the offline algorithm, we first propose
an online algorithm that can 1) efficiently incorporate a
newly coming node into the network by connecting it to the
existing routing tree and 2) efficiently disconnect a node
from the network without affecting other part of the routing
tree. Our design utilizes only local information in the
existing routing structure to perform the above tasks while
maintaining the energy efficiency achieved by the offline
algorithm. Given this property, the online algorithm can
then be readily implemented in a distributed fashion as
local information about the routing structure can be fully
obtained by communicating with neighbor nodes.

Before detailing the online algorithm design, we will
first give a brief overview of the offline version and
quantify its performance.

3 BRIEF OVERVIEW OF OFFLINE AFST

Offline AFST is a hierarchical matching algorithm and runs
in “stages.” In each stage, we first pair up source nodes (or
source with the sink) based on the defined metrics and then
randomly select a fusion node from the node-pair. The
fusion node evaluates the benefit of fusion for the matching.
If fusion is deemed worthy, the weight of the nonfusion
node will be transferred to the fusion node, paying
appropriate transmission and fusion costs on that edge.
Subsequently, the nonfusion nodewill be eliminated and the
fusion node with aggregated weight will become an element
of the new source set. If fusion is deemed unworthy, both
nodes will be linked to the sink via their respective shortest

paths, paying appropriate transmission cost, and both nodes
will be eliminated. This process will then be repeated on the

new source set composed of chosen fusion nodes until only
the sink remains. The algorithm is detailed below.

OFFLINE AFST ALGORITHM:

1) Initialize the stage loop index i ¼ 0. Define source set

S0 ¼ S [ ftg, and E� ¼ ;. Let wv0 for any v 2 S equals to
its original weight, and let wt0 ¼ 0.

2) In each stage, there are three steps: matching, decision,

and fusion.

a) In the matching step, for every pair of nodes ðu; vÞ 2 Si,

find the minimum cost path ðu; vÞ in G according to

the new metric

MðeÞ ¼ qðeÞðwui þ wviÞ þ �ðwui ; wviÞcðeÞ;

where �ðwui ; wviÞ is the expected amount of data

transmitted between node u and v. Intuitively, MðeÞ
denotes the expected transmission and fusion costs on

edge e in this stage. Given the minimum cost paths,

minimum-cost perfect matching is then performed

between nodes in Si according to the metric MðeÞ.
b) In the decision step, for each matched pair ðu; vÞ, the
fusion decision is made by calculating the fusion

benefit according to

�vi ¼ wui�uivi sðvi; tÞ � quiviðwui þ wviÞ; ð2Þ

where the first part of (2) denotes the energy saving

on the shortest path from vi to the sink t, and the

second part of (2) is the corresponding fusion cost. We
call ðu; vÞ a nonfusion pair if there is no fusion benefit

regardless which node is selected as the fusion point,

i.e., �ui < 0 and �vi < 0. Otherwise, we call it fusion

pair.

c) In the fusion step, for each fusion pair ðu; vÞ, add those

edges that are on the minimum-cost perfect matching

path to set E�
f . Randomly choose one node to be the

fusion node. Remove the nonfusion node from Si and
the weight of nonfusion node will be transferred to its

corresponding fusion node. For each nonfusion pair

ðu; vÞ, add those edges that are on the shortest paths of

ðu; tÞ and ðv; tÞ to set E�
n. Remove both u and v from Si.

3) All remaining fusion nodes induce Siþ1.

4) If Siþ1 has no more nodes left besides the sink, the

algorithm stops. Otherwise, increment i and return to

step 2.

It can be shown that the resultant routing tree of AFST
can be divided into two parts. The lower part consists of

subtrees inside which aggregation is always performed, and

the upper part is always employing shortest paths from all
roots of the full fusion subtrees to sink t.

3.1 Performance of AFST

The main idea of AFST is to perform data aggregation when

there exists sufficient data redundancy and the fusion
benefit can justify corresponding cost. Therefore, when the

correlation coefficient � is small or the unit fusion cost q is
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large, AFST leans toward simple SPT without data fusion;
on the contrary, if the correlation coefficient � is large and
the unit fusion cost q is small, the result of AFST leans
toward a full data aggregation tree.

Fig. 2 compares the performance of three algorithms,
namely SPT, MFST, and AFST, with varying unit fusion cost.
MFST is a full aggregation tree proposed in [10], which
jointly optimizes over both the fusion and transmission costs
and achieves 5

4 logðkþ 1Þ approximation ratio to the optimal
solution. In the simulation, we have 100 nodes uniformly
deployed in a 50 � 50 m square, each with maximal
communication range of 20 m. The data correlation
coefficient among nodes is set to be inversely proportional
to their distance.

As we can see in Fig. 2a, the total cost of MFST increases
unboundedly along with the increase of unit fusion cost
since it cannot stop doing fusion even at high fusion cost. At
the same time, the cost of SPT is constant since no data fusion
occurs and, hence, no influence of unit fusion cost. However,
this also accounts for its high energy cost when the unit
fusion cost is low. On the contrary, AFST follows MFST first
when unit fusion cost is low by jointly considering the effects
of both data redundancy and fusion cost. As fusion cost
increases, it leans toward SPT, the optimal solution when
fusion cost is high. The figure can be best explainedwhenwe
jointly examine it with Fig. 2b, which depicts the number of
full fusion subtrees in AFST. When the unit fusion cost is
very small, there are only two full fusion subtrees. This
denotes that data fusion is performed almost at all nodes,
benefiting from the low fusion cost. When the unit fusion
cost increases, AFST reduces the number of full fusion
subtrees due to reduced fusion benefit in order to balance
the fusion cost and transmission cost. When the unit fusion

cost is too large, AFST can achieve the same constant cost as
SPT by completely stopping data fusion.

Fig. 3a shows the performance of the three algorithms
with different data correlation under moderate unit fusion
cost. Still there are 100 nodes with maximal communication
range of 20 m. The unit fusion cost is set to 50 nJ/bit.

When the data correlation in the network is very weak
ð� ! 0Þ, AFST follows SPT, the optimal solution, by
avoiding any data aggregation. When the data correlation
in the network increases, AFST dynamically adjusts its
decisions accordingly by performing data fusion partially in
order to benefit from data aggregation and resultant data
reduction. When the data in the network is highly
correlated ð� ! 1Þ, AFST makes perfect matching and
performs data fusion in each stage like MFST to pursue
the most energy saving. This dynamic adjustment process
can be explicitly illustrated in Fig. 3b which depicts the
number of full fusion subtrees changing from 100 (no
aggregation in network) to 1 (full aggregation) as a result of
increase value of �. Due to this dynamic adjustment, the
cost of AFST is extremely smooth in the whole range of the
correlation coefficient and steadily outperforms others.

As fusion cost and data correlation may vary widely
from network to network, from application to application.
AFST is the only algorithm that can adapt best to a wide
range of scenarios and, hence, be applicable to a variety
of applications.

4 DESIGN OF ONLINE AFST ALGORITHM

In this section, we present an online version of AFST
algorithm that can dynamically adjust the routing structure
when new nodes arrive and existing nodes leave the
network. When a source node joins the network, it must
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Fig. 3. Impact of average correlation coefficient to energy consumption.
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find the best point in the existing tree to establish a
connection. This can be either a fusion point to combine its
data or a relay path to the sink due to the lack of fusion
benefit. When a source node leaves the network, its direct
children will have to reconnect to the existing tree
accordingly. Nonetheless, our goal in designing these
algorithms for joining and leaving is to confine the structure
change to be local so that the impact to the remaining
routing tree will be minimal, and at the same time, optimize
the energy consumption of the new routing tree.

Before getting into details about our reasoning and
philosophy in the design, we first present below the
algorithms for source arrival and departure separately.

4.1 Algorithm for New Source Arrival

In offline AFST, in a certain stage, a sensor node will
eventually become a nonfusion node and its data will be
aggregated at the corresponding fusion node.We denote this
stage as a node’s “level.” Evidently, for each source node, it
can fuse data from nodes with lower levels, and its data will
be fused at a node with higher level. Our key idea in
accepting new arriving node is to randomly assign a level to
it and connect it to the existing tree. In doing so, we also
simultaneously best preserve the existing level structure and
minimize the additional cost introduced by the newcomer.

Formally, given the existing data routing tree T for
source set S and the network graph G ¼ ðV ;EÞ, our
objective is to construct a new routing structure T 0 for a
new source set S0 ¼ S

Sfug, where u is the new arriving
source node. Our designed algorithm is detailed below.

ONLINE ALGORITHM FOR SOURCE ARRIVAL:

1) Set T 0 ¼ T .

2) Assign a level i, 1 � i � logðkþ 1Þ, to the arrival node u

with probability

1=2i: ð3Þ

3) From every source node in T with level higher than i

and being “unmatched” at level i, select the best fusion

point v for node u so that the total additional cost on the

entire network is minimized. The total additional cost

on path from u to t via v, denoted by 4CðPutÞjv, is
given by

4CðPutÞjv ¼ quv wðuÞ þ ewðvÞð Þ þ cuvwðuÞ
þ wðuÞð1� �uvÞgðvÞ: ð4Þ

Here, the first two parts of (4) are the fusion cost and

transmission cost on establishing the edge ðu; vÞ. gðvÞ
denotes the total cost of delivering unit data from v to

sink t in the existing aggregation tree, and hence, the

last part of (4) is the additional cost on path ðv; tÞ if u
employs v as its connection point to the existing tree.

4) If 4CðPutÞjv is less than the transmission cost on the
shortest path from u to sink t,

. Chosen v as the best fusion point for u, and add

the edge ðu; vÞ to T 0 as a new fusion edge.

. Set gðuÞ¼gðvÞþcuvþquv, and increase the weight

of all nodes on path ðv; tÞ by wðuÞð1� �uvÞ, i.e., for

each node s on path ðv; tÞ, set
wðsÞ ¼ ewðsÞ þ wðuÞð1� �uvÞ.

. Set both u and v as “matched” on level i, and set u

as “unmatched” on each level j < i.

. Return T 0.
5) Else, add the edges on the shortest path from u to

t ðSPutÞ to T 0 as unfusion edges. Set gðuÞ ¼ P
e2SPut

ce.

Set u as “unmatched” on each level j � i. Return T 0.

4.2 Algorithm for Existing Source Departure

For a node leaving the existing route tree, our key idea in
reconstructing the routing structure is to connect all nodes
fused at the departing node to new points in the existing
tree with minimal additional cost while minimizing the
influence to other exiting nodes. Therefore, only the direct
children of the leaving source will change their paths, and
all other routes will remain untouched.

Formally, given the existing data routing tree T for
source set S and the network graph G ¼ ðV ;EÞ, our
objective is to construct a new routing structure T 0 for a
new source set S0 ¼ S � fug, where u is the departing
source node. Our designed algorithm is detailed below.

ONLINE ALGORITHM FOR SOURCE DEPARTURE:
1) Remove the edge from u to its parent in T to

construct T 0.
2) If v is the fusion point for departing node u, Set v as

“unmatched” at u’s level. Reduce the weight of all

nodes on existing path ðv; tÞ by wðuÞð1� �uvÞ.
3) If u itself is the fusion point of other sources, for each

child r, perform source arrival algorithm with existing

level assignment to add r and its children to T 0. Reduce
gð�Þ of all source nodes in the subtree of node r as same

amount as node r.

4) Return T 0.

5 ALGORITHM ANALYSIS

In this section, we first detail the theoretical reasons of the
above design and in particular those of (3) and (4), and
then we analyze the complexity and performance of the
online algorithm.

5.1 Random Level Assignment

In the offline AFST, if every node matches its pairing
node for fusion in every stage, there will be logðkþ 1Þ
levels and kþ1

2i nodes in level i, 1 � i � logðkþ 1Þ. In the
online algorithm, in order to maintain this level structure
for balancing fusion cost among source nodes, we
randomly assign a level i to each new arrival source
with probability 1

2i . A new source with level i can only
match with an existing source node whose level is higher
than i and has no fusion partner (unmatched) at level i.
This way, the same level structure is preserved as in the
offline algorithm.

5.2 Calculation of Minimum Additional Cost Access

As AFST contains a lower part with full aggregation and an
upper part with no aggregation, when a new node u arrives,
it shall either join the full aggregation lower part or directly
send its data to the sink via shortest path and, hence,
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become a member of the upper part, all dependent on
whether fusion is beneficial. To make this decision, we
include all nodes with levels higher than u’s level i and
unmatched at level i as the potential fusion candidate set F .
Obviously, sink t also belongs to F . For each potential
fusion node v 2 F , if v is a source node, we calculate the
total network additional cost when node u selects v as its
access point to the network, which is composed of the data
aggregation cost at v, the transmission cost from u to v, and
transmission/fusion costs for the increased data along the
path from v to the sink t. On the contrary, if v happens to be
the sink, the total network additional cost will only include
the transmission cost from u to t. To minimize the total
energy consumption, we will select the candidate that will
incur the lowest additional cost. Therefore, the key
challenge is how to determine the additional cost for each
candidate node.

Assume that the path from candidate v to sink t includes
m intermediate nodes: vðv0Þ, v1; v2; . . . ; vm, t, as shown in
Fig. 4. If u connects to v for data fusion and use the same
path for deliver additional data, we can infer that the cost
for transmitting u’s data to node v and performing
corresponding fusion, denoted by CðPuvÞ, is

CðPuvÞ ¼ quv wðuÞ þ ~wðvÞð Þ þ cuvwðuÞ; ð5Þ
and the cost on transmitting and fusing u’s additional data
(weight) on the path from v to sink t, denoted by 4CðPvtÞ
can be written as

4CðPvtÞ ¼ gv0v14wðuÞjv0 þ gv1v24wðuÞjv1
þ � � � þ gvmt4wðuÞjvm ;

ð6Þ

where 4wðuÞjvi denotes the additional weight on node vi
due to the addition of node u to the path, and gviviþ1

includes
the unit transmission cost cðeÞ and potential unit fusion cost
qðeÞ on edge e ¼ ðvi; viþ1Þ.

For simplification, we use 4wðuÞjv0 ¼ wðuÞð1� �uvÞ to
approximate 4wðuÞjvi for all i and consequently (6) can be
simplified to

4CðPvtÞ ¼ wðuÞð1� �uvÞgðvÞ; ð7Þ
where gðvÞ ¼ P

e2Pvt
ge denotes the unit cost for path ðv; tÞ in

the existing tree, and wðuÞð1� �uvÞ approximates the addi-
tional weight on path ðv; tÞ. Combining (5) and (7), we obtain
(4) used in the online algorithm described in Section 4.

Indeed, the above approximation will introduce devia-
tion from the original value. However, this deviation is
rather small and acceptable. Notice that additional weights
introduced by node u on path ðv; tÞ, f4wðuÞjvig, mono-
tonously decrease due to consecutive data aggregation
operations along the path. Moreover, if v is the best fusion
point for node u among all candidates, v must possess
higher fusion benefit with node u than other candidates.
Therefore, the decreasing rate of f4wðuÞjvig shall also be

reducing which renders the deviation to be small. Further-
more, our experiments also show that even by employing
this approximation, the online algorithm still closely follow
the offline version.

5.3 Algorithm Complexity

To understand the complexity of the online algorithm, we
first investigate the complexity of offline AFST algorithm
described in Section 3. In each stage, it first takesOðjEjÞ time
to compute the metric MðeÞ on every edge. Using Dijkstra’s
Algorithm, we can compute the shortest path from one node
to others in OððjV j þ jEjÞ log jV jÞ. Therefore, we can com-
pute the shortest path under metric MðeÞ for all node-pairs
in stage i in OðjSijðjV j þ jEjÞ log jV jÞ, where Si ¼ kþ1

2i is the
number of nodes in stage i. At the same time, the perfect
matching operation can be performed in OðjSij2 log jSijÞ
time [25]. It then follows that stage i takes at most
OðjSijðjV j þ jEjÞ log jV j þ jSij2 log jSijÞ time. Since the size
of Si is reduced at least half in each stage, by summarizing
all stages, we conclude the total running time to be
OðjSjðjV j þ jEjÞ log jV j þ jSj2 log jSjÞ. For the special case
when all nodes are source nodes, i.e., when jSj ¼ jV j ¼ n,
the total running time is Oðn2 lognþ jEjn lognÞ.

Now, we turn to the complexity of online AFST
algorithm. Using Dijkstra’s Algorithm, we can compute
the shortest path from the new node to all other nodes in
OððjSij þ jEijÞ log jSijÞ, where Si and Ei are the number of
existing nodes and edges, respectively. The selection
process takes OðSiÞ time. The data updating step can be
performed in OðlogSiÞ time as the length of any path is no
more than logSi. It follows that each newcomer takes at
most OððjSij þ jEijÞ log jSij þ logSi þ SiÞ time. As a result,
the online algorithm can be finished in polynomial time to
derive the new data gathering tree.

The total running time for adding all n nodes isPn
jSij¼1ððjSijþjEjÞ log jSijþ logSi þ SiÞ ¼ OðnðjEj þ nÞ lognÞ,

which is actually the same for constructing the data
gathering tree via the offline algorithm. However, the
online algorithm provides the additional flexibility of
incorporating node into the network as they arrive.

5.4 Competitive Ratio

Due to the complex nature of the problem and algorithm,
the competitive ratio is hard to obtain theoretically. Instead,
we will show that the resultant routing tree has bounded
cost in the worst case.

In AFST, the shortest path is the selection if there is no
fusion benefit. In offline AFST, this decision is made by
taking all source nodes into account. However, in online
AFST, this decision is made depending only on the current
tree structure and the incoming node. In addition, the
original tree structure is preserved in the online algorithm to
avoid additional maintain overhead specially for distributed
computation. As a result, adversarial arriving order will lead
the online AFST to select the shortest paths even though
there exists fusion benefit if all source nodes are known in
advance. It is then one worst case when the offline result is
one full fusion tree but the online result is purely SPT.

This worst case performance of the online algorithm can
be illustrated by the example depicted in Fig. 5. In Fig. 5a,
there are four sensor nodes, p, s, u, v, located linearly and
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equidistantly with the sink at the end of the line. Assume
that a node can only communicate with its neighbors and
the unit transmission cost is c0 for such communications.
We also assume that the unit fusion cost is a constant q0
for simplification.

If the correlation coefficient � between neighbors is large
enough, the offline AFST will generate a full aggregation
tree as shown in Fig. 5b. According to the offline AFST
algorithm, the condition of matching node v with node u is
that performing data aggregation at u will lead to less
energy consumption than transmitting the raw data from
both nodes separately, i.e.,

c0wðvÞ þ q0 wðuÞ þ wðvÞð Þ þ 3c0wðvÞð1� �uvÞ < 4c0wðvÞ: ð8Þ
Assume that the original data amount of u and v is the same,

i.e., wðuÞ ¼ wðvÞ. This condition can be rewritten as

�uv >
2q0
3c0

. For illustration, we set �uv ¼ 3
4 and q0 ¼ c0 in

order to satisfy inequity (8).
In the online algorithm, four sensors can join the network

in the adversarial order of v, u, s, p. In this case, when the
farthest node is activated first, all the other nodes only act as
relays. Specifically, when node v is activated, it reports its
data to the sink through the shortest path, the cost is
4c0wðvÞ. When node u is activated, since the fusion
condition for fusing u’s data at v in online AFST, denoted by

c0wðuÞ þ q0 wðuÞ þ wðvÞð Þ þ 4c0wðuÞð1� �uvÞ < 3c0wðuÞ;
ð9Þ

cannot be satisfied for �uv ¼ 3
4 and q0 ¼ c0, node u will

employ direct relaying to report its data to the sink. The left
side of inequity (9) summarizes the cost if fusion is
performed while the right side denotes the cost if direct
relay is adopted.

For the same reason, s and pwill also employ direct relay
without fusion to report their data to the sink when they are
activated. As a result, the online algorithm will construct an
all-relay structure as shown in Fig. 5c as the data gathering
route. This is indeed a Shortest Path Tree.

This simple example shows that the worst case scenario
can only happen when each source node arrives before all
its potential matching pair nodes, which is rather rare in
real deployment. Moreover, even in this case, Fig. 3 in
Section 3 shows the performance penalty is not large. There,
the result of offline AFST is a full aggregation tree when
� ! 1. Therefore, the ratio between SPT and AFST at � ¼ 1
demonstrates the upper bound of the online competitive
ratio in the extreme case.

In fact, we remark that the extremely worst case rarely
happens since the tree construction of both algorithms is
influenced by the correlation coefficient and the unit fusion
cost. First, if the correlation coefficient is large or the unit
fusion cost is very small, the offline AFST indeed tends to
generate a full aggregation tree. Similarly, in the online
AFST, a newcomer can aggregate its data with other
existing nodes even if its perfect pair-node is not available,
as the fusion benefit always exists. Therefore, the online
algorithm will not result in a pure SPT. Second, if the
correlation coefficient is small or the unit fusion cost is
large, the online algorithm may tend to lead newly arriving
nodes toward shortest paths. However, during the mean-
time, the offline algorithm will also employ shortest path as
its routing strategy as shown in Fig. 2b, as the small fusion
benefit cannot justify the fusion process itself. Third, if the
correlation coefficient and unit fusion cost are moderate, the
resultant trees from both algorithms will consist of two
parts: the lower part of full fusion and the upper part with
only direct relay. Lastly, in a real application scenario, the
order of arrival and departure is random which lead the
probability of the worst case scenario to be minimal.
Therefore, the overall expected deviation shall be much
smaller than the worst case. Our simulation result, as
described in Section 7, will further solidify our arguments.

6 DISTRIBUTED COMPUTATION

In this section, we describe how the proposed online
algorithm can be implemented in a distributed manner in a
real network. In particular, we detail how an incoming node
can collaborate with its neighbors to perform the joining
procedure to the routing tree and how neighboring nodes
can effectively reconstruct the routing tree when a node
leaves. Notice that in the above design, we have intention-
ally limited route reconstructions to be local only. At the
same time, in the physical network environment, a new
incoming node can only connect to neighbors within its
communication range and likely to perform fusion with its
neighbors of proximity due to higher correlation. These are
the key enablers of distributed implementation of the online
algorithm: when a new node arrives, it only needs to build
up its candidate set from its source neighbors instead of all
higher level nodes in the field.

In the distributed algorithm, each source node needs to
maintain information about the local routing structure,
which includes the information about its parent (fusion
point), children (whose data is fused at this point), and
itself. Parent information includes the parent’s node ID.
Children information consists of a list about all direct
children’s node ID and the additional weight each child
brings in. Self information includes the level i, matched
level list, current weight wð�Þ, unit cost to sink gð�Þ, and the
neighbor list.

6.1 Initialization

When the sensor nodes are initially deployed, the sink
executes the offline AFST to produce the initial data
gathering tree and propagates this information to the
network through the resultant tree. This process needs to
be performed only once during the initialization phase.
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6.2 Node Arrival

When a new source u arrives, it shall first determine the
unit transmission cost cðeÞ to its neighbors by using, for
example, Received Signal Strength Indicator (RSSI) [26]. By
querying neighbor’s local routing data, u can also obtain a
neighbor v’s level, matched level list, unit cost to sink gðvÞ
and current weight wðvÞ, it can also derive the shortest path
to the sink based on its neighbors information. Based on the
location information, u can estimate the correlation coeffi-
cients �uv between itself and a neighbor v. We assume that
the unit fusion cost qðeÞ is identical and the procedure for
executing the online AFST locally is detailed below.

Node u randomly generates a level i for itself and
determines fusion point candidates from its neighbors.
Based on this candidate set, node u will execute the online
algorithm to determine if fusion shall be performed with
one candidate or direct relaying shall be adopted. If fusion
is beneficial and node v is selected as the fusion point, u
sends source join message to v with u’s level and additional
weight. v updates correspondingly its matched level list,
current weight, and children list after receiving this message,
and then forwards this message along its path to the sink.
Each source node on the path will updates its current weight
and the message sender’s additional weight in its children list
by adding u’s additional weight.

In case u is a nonsource, when it arrives, it will simply
find its shortest path to the sink and calculates its unit cost to
sink. Consequently, other nodes can use u to adjust their
fusion routes for more energy saving.

6.3 Node Departure

When a fusion point v finds that its child node u has left the
network, it first updates its children list and matched level list.
Subsequently, it shall reduce its current weight by deducting
u’s additional weight. At the same time, v shall send child
departure message with u’s additional weight along the path
from v to sink t. Each node on this path shall update its
current weight and the message sender’s additional weight in
its children list by deducting u’s additional weight.

When a node s finds that its fusion point (parent) has left
the network, it executes the source arrival procedure as
detailed above to locate a new fusion point v. It then shall
update its parent information and send source join message
to its new parent, v, to update the data of all nodes on the
path from v to t. Subsequently, node s sends a change parent
message to all of its children with a unit cost amendment
parameter that equals to gnewðsÞ � goldðsÞ. Each child shall
update its unit cost to sink by adding the unit cost
amendment and forwards this message to all of its children
till to the leaf of the routing branch.

When a nonsource node leaves, there is no effect to the
network if it has no source child. If this is not the case, all
the children of data source can observe this departure event
and choose their new parents following the approaches
described above.

Fig. 6 illustrates the process of source arrival and
departure. Fig. 6a depicts the existing routing structure.
Fig. 6b illustrates that incoming node u, after running the
above described source arrival procedure, selects v as its
fusion point and establish connection to it. Fig. 6c illustrates
that another node s joins the data gathering tree. And
Fig. 6d depicts the case that source u departs and node s

reconnects to the tree via node v. Table 1 illustrates the
changes of the two main local tree data variables, namely
the current weight and child’s additional weight.

6.4 Route Adjustment

When a node newly joins the network, it may serve as
fusing node or relay node for existing sensor nodes. In
order to explore the potential benefit introduced by this
node, local routing adjustment can be performed. The basic
idea here is to let the neighboring nodes to choose freely
whether to use this new arrival as their new access point to
the network, depending on if this adjustment is beneficial to
the networks. This is detailed below.

When a node u first arrives at the network, it will join the
network according to the procedure of node arrival as
described above. It will then broadcast a join finished
message to the neighbors with its unit cost to sink. All
neighbors, except u’s parent, consider u as a new candidate
of access point and verify whether node u can introduce
more energy saving based on the online algorithm
described in Section 4.1. If a neighbor determines that
selecting node u as its new parent is more beneficial, i.e.,
using u as the fusion point introduces less additional cost to
the network than using its old parent, this neighbor will
select node u as its new parent. Owing to this reason,
assume that neighbor node v changes its parent from node p
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TABLE 1
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to node u, node v shall send a child departure message to its
old parent, p, with v’s current weight, then node p and all
nodes on the path from p to sink t can update their routing
parameters accordingly. Meanwhile, node v should send a
source join message to its new parent, u, according to the
source arrival procedure to update the routing parameters
of all nodes on the path from u to sink t. At the same time,
node v should also send a change parent message to all its
direct children to update the routing parameters of all
nodes in the subtree rooted at v according to the source
departure procedure.

As this routing adjustment may introduce potentially
heavy routing maintenance overhead, we confine it only to
be in the direct neighborhood of the new node. As a result,
the adjustment will not be spread to the whole network and
the routing structure change will be confined as well.

6.5 Simultaneous Arrivals and Departures

In wireless sensor networks, multiple failures can occur
simultaneously and multiple nodes can also arrive simulta-
neously when performing network repairing or redeploy-
ment. Using only the basic procedures of source arrival and
departure will keep the existing tree structure roughly
unchanged. As a result, the routing tree constructed by the
online algorithm may be significantly different from the one
derived from offline AFST after multiple node arrivals and
departures. Fortunately, this difference can be dramatically
reduced by performing the procedure of the aforemen-
tioned routing adjustment. Doing this, the possibility of
mutual selection of each other as best access points can be
avoided. This can be illustrated using the example below.

Assume that two physically proximate nodes, u and v,
arrive simultaneously. They will first perform the basic node
arrival procedure to find their best access points to the
existing networks, respectively. Note that it is possible that
both u and v adopt simply shortest paths to the sink t
without any aggregation if fusion benefit is nonexistent
using the existing tree. Subsequently, both nodes will
broadcast the join finishedmessage. Assume that node u first
successfully sends out its join finishedmessage. When node v
receives this message, it will stop broadcasting its own join
finished message and performs the procedure of routing
adjustment. Hence, node v has the chance to select u as its
fusion point for cost reduction. As only one node can
successfully broadcast the message at one time, this scheme
can automatically sequence neighboring nodes arrivals and
avoid the possibility of mutual selection of each other as
network access points. In the case of multiple failures,
remaining sensor nodes can execute the procedure of node
departure to determine their new parents in the existing tree.
As a result, the fusion tree can be repaired immediately.

We remark that the distributed algorithm closely
approximates the performance of the online algorithm as
the only difference between them is the potential candidate
set, which is rather small based on our previous discussion
and confined routing adjustment in the neighborhood only.

7 EXPERIMENTAL STUDY

In this section, we present an extensive set of simulations to
evaluate the performance of the proposed online algorithm
comparing with the offline AFST algorithm. We study the

impact of network connectivity, correlation coefficient, unit
fusion cost, and the number of arrivals on both algorithms.
Our key finding of the experiments is that the online
algorithm can adapt itself to a wide range of scenarios while
maintaining small performance difference from the offline
version. Indeed, the difference between online and offline
algorithms is consistently within 15 percent. In some
extreme cases, the difference is less than 2 percent.
Furthermore, we find that the difference exhibits logarith-
mic property to the arrival number, indicating that the
competitive ratio of the online algorithm is logarithmic to
the number of arrived sources.

7.1 Simulation Environment

In our setup, up to 100 sensor nodes are uniformly
distributed in a region of a 50 � 50 m square. All sensors
act as both sources and routers. In the experiments of offline
algorithm, all source nodes are deployed at the beginning
and we perform the offline algorithm once to obtain the
data gathering tree. On the contrary, for the online
algorithm, a fraction of nodes are deployed first and the
offline AFST algorithm is performed to obtain the initial tree
structure. The remaining nodes are then deployed one by
one in random order which will trigger the online algorithm
to expand the data gathering tree. Experiments of different
numbers of sensors and different sizes of field are also
performed. The results are similar and omitted here.

We assume the maximal communication radius of a
sensor is rc, and the unit transmission cost on each edge,
cðeÞ ¼ �d� þ " when d < rc, where d denotes the distance of
edge e. By varying rc, we can control the network
connectivity and, hence, the network density. We set �¼2
and � ¼ 100 pJ=bit=m2 to calculate the energy consumption
on the transmit amplifier, and set " ¼ 100 pJ/bit to denote
the energy consumption per bit on the transmitter circuit
and receiver circuit according to [18]. A set of other values
are also studied, which lead to similar results and are
omitted here. We note here that the transmission cost can
implicitly model noise and transmission errors as well:
higher noise will lead to more retransmissions and, hence,
higher unit transmission cost.

The correlation model employed here is an approxi-
mated spatial model where the correlation coefficient
decreases with the distance between two nodes provided
that they are within the correlation range, rs. If two nodes
are more than rs distance apart, simply the correlation
coefficient � ¼ 0. Otherwise, it is given by � ¼ 1� d=rs,
where d denotes the distance between the nodes. By varying
the correlation range rs, we can control the average
correlation coefficient of the network, and further control
the average data reduction after data fusion. For the fusion
cost, we assume that q is constant and use ! to denote the
average fusion cost per bit at each node.

In the following sections, we will study the performance
of the online algorithm under various system setups,
including network connectivity, correlation coefficient,
fusion cost, and number of new sources.

7.2 Impact of Network Connectivity

Since rc denotes the communication range of a node, by
varying rc, we can control the connectivity of the network
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and, hence, equivalently the density of the network. The

larger rc is, the more strongly the network is connected.

Here, we set !, the average unit fusion cost, to be 50 nJ/bit,

which is a typical value as demonstrated by our experi-

mental study for fusion cost described in [23]. And we set rs,

the correlation range, to be 50 m to simulate a network with

moderate data reduction.
Fig. 7 summarizes the performance of both online and

offline algorithms. Notice that the energy consumption of

both algorithms decreases along with increased network

connectivity. Notably, the difference between them de-

creases from 15 percent to 3 percent, which shows that the

online algorithm actually benefits more from increased

network connectivity and network density. The reason is

that a new arrival can have more access candidates if the

communication range is larger, and hence, the new arrival

has larger chance of locating more suitable access point.

Specifically, when rc < 25m, the difference between the two

algorithms decreases very fast, from 15 percent to 4 percent,

which means that the increase of network connectivity and

network density can give the online algorithm more chance

to locate the best access point. The result shows that in a

dense sensor network, the online algorithm is an excellent

solution approximating the offline version.

7.3 Impact of Correlation Coefficient

By varying the correlation range rs, we can control the
average correlation coefficient of the network, and further
control the average data reduction after data fusion. For
example, a very small rs essentially eliminates the correla-
tion among sensors ð� ! 0Þ, while an extremely large rs
makes the sensed data completely redundant ð� ! 1Þ.
Fig. 8 illustrates the result when we increase the correlation
range rs from 0.5 to 1,000 m which corresponds to varying
� from 0 to 1.

When � ! 0, both algorithms will connect each source to
the sink through shortest path without fusion. While � ! 1,
both algorithms will produce full aggregation trees. But in
the online AFST, due to the randomly incoming order of
new nodes and preservation of existing gathering tree
structure, the path for an arrival u in online AFST may not
be the same as that in the offline algorithm. Therefore, the
expected performance of the online algorithm shall be
worse than the offline version. Fortunately, from Fig. 8b, we
can see that the relative differences are relatively small,
which are within 2 percent in both cases.

In general ð0 < � < 1Þ, the offline AFST can let each node
either get its perfect pair-node, or connect to the sink
through shortest path, only depending on the evaluation of
fusion benefit. On the contrary, in the online algorithm, an
arrival may not find its perfect pair-node since source nodes
join in the network randomly. Indeed, an arrival may
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(a) Total cost. (b) Difference range.

Fig. 8. Impact of correlation range to energy consumption. (a) Total cost.

(b) Difference range.
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choose connecting to the sink through shortest path if all its

possible matching pair have not arrived yet. Therefore, the

difference is larger as compared with both extreme cases:

� ! 0 and � ! 1. However, during the whole range, the

difference is consistently within 7 percent.

7.4 Impact of Unit Fusion Cost

In this simulation, we fix the transmission and correlation

ranges of the sensor nodes to rc ¼ 20 m and rs ¼ 50 m,

respectively, and study the impact of unit fusion cost to the

performance of online AFST. Fig. 9 illustrates the results

when !, the unit fusion cost, increases from 10 to 120 nJ/bit.
Obviously, the difference between the online and offline

algorithms decreases with the increase of unit fusion cost. It

can be reasoned as follows. When ! is small, the source

node tends to perform data fusion but may not find the

perfect pair-node when 0 < � < 1 as discussed in the

previous section. Therefore, online AFST shows a 12 percent

difference from offline version. When the unit fusion cost

increases, the fusion benefit decreases. As a result, more

and more source nodes tend to connect to the sink directly

through shortest path. Similar to the case of � ! 0 in the

previous section, the performance difference decreases to be

within 2 percent, if little data fusion is performed.
Fusion cost may vary widely from network to network,

from application to application. Our experiments show that

online AFST preserved the property of offline AFST,

namely that it can adapt to a wide range of fusion costs

and, hence, be applicable to a variety of applications.

7.5 Impact of Number of New Arrivals

In this set of experiments, we study the difference between
online and offline algorithms when the number of new
arrivals slowly increases. The network is initialized with
40 source nodes, and the other 60 source nodes arrive
randomly one by one later. During this process, we run
offline algorithm under current number source nodes to
obtain its corresponding performance. At the same time, we
run online algorithm based on the existing data gathering
tree and the newcomer to get the online result. Fig. 10a
illustrates the energy consumption of both algorithms when
the number of sources increases from 40 to 100. Fig. 10b
shows their performance difference.

As we can see, the difference increases when more
sources arrive since the online algorithm can only expand
the existing tree but the offline algorithm can completely
rebuild the tree using perfect matching. Although the
difference increases, it is still within the range of 7 percent
when all source nodes arrive. Furthermore, from Fig. 10b,
we find that the difference curve is concavely increasing
and can be approximated using logarithmic function.
Therefore, the online algorithm is also applicable to large-
scale sensor networks.

8 RELATED WORK

En route aggregation can be generally classified into two
categories: routing driven and aggregation driven. Routing-
driven algorithms [3], [4], [5], [7], [8] emphasize source
compression at each individual node and aggregation
occurs opportunistically when routes intersect. On the
contrary, routing paths in aggregation-driven algorithms
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Fig. 9. Impact of unit fusion cost to energy consumption. (a) Total cost.

(b) Difference range.

Fig. 10. Impact of the number of arrived sources. (a) Total cost.

(b) Difference range.
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[9], [10], [11], [12] are heavily dependent on data correlation
in order to fully benefit from information reduction
resulting from data aggregation. In [9], a hierarchical
matching algorithm is proposed resulting in an aggregation
tree with a logarithmic approximation ratio to the optimal
for all concave aggregation functions. In [10], a randomized
algorithm MFST is proposed that jointly optimizes over
both the fusion and transmission costs to minimize overall
energy consumption. MFST is proved to achieve a routing
tree that exhibits 5

4 logðkþ 1Þ approximation ratio to the
optimal solution, where k denotes the number of source
nodes. The authors of [12] proposed an optimal algorithm
MEGA for foreign-coding and an approximating algorithm
LEGA for self-coding. In MEGA, each node sends raw data
to its encoding point using directed minimum spanning
tree (DMST), and encoded data is then transmitted to the
sink through SPT. LEGA uses shallow light tree (SLT) [27]
as the data gathering topology.

Indeed, the idea of embedding fusion decisions in
routing has been implicitly explored in the literature. For
example, LEACH [3] is a cluster-based protocol, in which
sensors directly send data to cluster heads where data
fusion is performed. Aggregated data is then delivered
to the sink through multihop paths. LEGA and MEGA
[12] implicitly assume that fusion stops after first
aggregation as encoded data cannot be recoded again.
However, the decision regarding fusions in these
schemes are rather static and cannot adapt to network/
data structure changes.

While AFST has been presented in our prior work [23]
targeting at en route aggregation decision, it is an offline
algorithm requiring global information and static networks.

9 CONCLUSION AND FUTURE WORK

In this paper, we have proposed online AFST, an online
algorithm for en route aggregation decision for gathering
correlated data in sensor networks. Online AFST not only
optimizes over both the transmission and fusion costs by
adaptively adjusting its fusion decisions but also executes in
an online fashion that allows nodes to dynamically join or
leave the network. Due to its special design, online AFST
can be readily implemented in a distributed fashion that
requires only localized information, which is in deep
contrast to the offline version. Furthermore, our analytical
and experimental results show that this online algorithm
deviates little from its offline ancestor in terms of network
energy consumption.

Currently, we are implementing the proposed algorithm
in real sensor networks and using image fusion as the
targeted application.
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