Homework Assignment #2 (Due: Wed, Sept 13, 2000)

CSE 5347: Telecommunication Networks Design

Instructor: Prof. Sajal K. Das
Dept of Computer Science and Engineering
University of Texas at Arlington
Office: NH 249-B, Phone: (817) 272-7405, E-mail: das@cse.uta.edu
Class Hours: MW 3:30 - 4:50 pm (Woolf Hall 402)
Office Hours: MW 1:30 - 2:30 pm

http://www-cse.uta.edu/~das/5347.html

1. In a d-dimensional hypercube, let $H(X,Y)$ be the Hamming distance between a pair of nodes X and Y. Show that
 (i) there are exactly d distinct (i.e., no overlapping of nodes or links) paths between X and Y.
 (ii) $H(X,Y)$ paths have lengths exactly $H(X,Y)$ and the remaining $d-H(X,Y)$ paths have lengths exactly $H(X,Y)+2$.

2. What is the average distance between any two nodes in a d-dimensional hypercube? Derive your result.

3. The perfect shuffle-exchange interconnection, $PS(n)$, on $n = 2^k$ nodes is defined as follows.
 There is a directed link from node i to node j if $j = 2i$ for $0 \leq i < \frac{n}{2} - 1$, and $j = 2i \mod (n-1)$ for $\frac{n}{2} \leq i \leq n-1$.
 Additionally, there exist bidirectional links between every even-numbered node and its successor.
 (i) Draw shuffle-exchange networks of 8, 16, 32 and 64 nodes and identify some patterns (e.g., directed cycles) that you observe.
 (ii) What is the node-degree and diameter of $PS(n)$?

4. A star, S_m, is an interconnection network of $n = m!$ nodes such that for a given integer m, each node corresponds to a distinct permutation of m symbols, say $\{1, 2, \ldots, m\}$. There is a bidirectional link between two nodes u and v if and only if the label of u can be obtained from that of v by exchanging the first symbol with the ith symbol, where $2 \leq i \leq m$.
 (i) Draw S_3 and S_4 and identify some topological structures in general.
 (ii) What is the degree and diameter of S_m.