Design and Analysis of Algorithms

CSE 5311
Lecture 15 Dynamic Programming

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering
The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - **Subproblem optimality**: the global optimum value can be defined in terms of optimal subproblems
 - **Subproblem overlap**: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
Recalling: Steps in Dynamic Programming

2. Define value of optimal solution recursively.
3. Compute optimal solution values either top-down with caching or bottom-up in a table.
4. Construct an optimal solution from computed values.
Optimal Binary Search Trees

Problem

- Given sequence $K = k_1 < k_2 < \cdots < k_n$ of n sorted keys, with a search probability p_i for each key k_i.
- Want to build a binary search tree (BST) with minimum expected search cost.
- Actual cost = # of items examined.
- For key k_i, cost = \(\text{depth}_T(k_i) + 1 \), where \(\text{depth}_T(k_i) = \text{depth of } k_i \) in BST T.
Expected Search Cost

\[E[\text{search cost in } T] \]

\[= \sum_{i=1}^{n} (\text{depth}_T(k_i) + 1) \cdot p_i \]

\[= \sum_{i=1}^{n} \text{depth}_T(k_i) \cdot p_i + \sum_{i=1}^{n} p_i \]

\[= 1 + \sum_{i=1}^{n} \text{depth}_T(k_i) \cdot p_i \quad \text{(15.16)} \]

Sum of probabilities is 1.
Example

• Consider 5 keys with these search probabilities:
 \(p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3. \)

\[
\begin{array}{c|c|c}
 i & \text{depth}(k_i) & \text{depth}(k_i) \cdot p_i \\
 \hline
 1 & 1 & 0.25 \\
 2 & 0 & 0 \\
 3 & 2 & 0.1 \\
 4 & 1 & 0.2 \\
 5 & 2 & 0.6 \\
 \hline
 & & 1.15 \\
\end{array}
\]

Therefore, E[search cost] = 2.15.
Example

- \(p_1 = 0.25, \ p_2 = 0.2, \ p_3 = 0.05, \ p_4 = 0.2, \ p_5 = 0.3. \)

\[
\begin{array}{cccc}
 i & \text{depth}_{T}(k_i) & \text{depth}_{T}(k_i) \cdot p_i \\
1 & 1 & 0.25 \\
2 & 0 & 0 \\
3 & 3 & 0.15 \\
4 & 2 & 0.4 \\
5 & 1 & 0.3 \\
\end{array}
\]

Therefore, \(E[\text{search cost}] = 2.10. \)

This tree turns out to be optimal for this set of keys.
Example

- **Observations:**
 - Optimal BST *may not* have smallest height.
 - Optimal BST *may not* have highest-probability key at root.

- **Build by exhaustive checking?**
 - Construct each n-node BST.
 - For each,
 - assign keys and compute expected search cost.
 - But there are $\Omega(4^n/n^{3/2})$ different BSTs with n nodes.
Optimal Substructure

- Any subtree of a BST contains keys in a contiguous range \(k_i, ..., k_j \) for some \(1 \leq i \leq j \leq n \).

- If \(T \) is an optimal BST and \(T \) contains subtree \(T' \) with keys \(k_i, ..., k_j \), then \(T' \) must be an optimal BST for keys \(k_i, ..., k_j \).
Optimal Substructure

- One of the keys in k_i, \ldots, k_j, say k_r, where $i \leq r \leq j$, must be the root of an optimal subtree for these keys.
- Left subtree of k_r contains k_i, \ldots, k_{r-1}.
- Right subtree of k_r contains k_{r+1}, \ldots, k_j.

- To find an optimal BST:
 - Examine all candidate roots k_r, for $i \leq r \leq j$
 - Determine all optimal BSTs containing k_i, \ldots, k_{r-1} and containing k_{r+1}, \ldots, k_j
Recursive Solution

- Find optimal BST for k_i, \ldots, k_j, where $i \geq 1, j \leq n, j \geq i-1$. When $j = i-1$, the tree is empty.
- Define $e[i, j] = \text{expected search cost of optimal BST for } k_i, \ldots, k_j.$

- If $j = i-1$, then $e[i, j] = 0$.
- If $j \geq i$,
 - Select a root k_r, for some $i \leq r \leq j$.
 - Recursively make an optimal BSTs
 \leftarrow for k_i, \ldots, k_{r-1} as the left subtree, and
 \leftarrow for k_{r+1}, \ldots, k_j as the right subtree.
Recursive Solution

• When the OPT subtree becomes a subtree of a node:
 – Depth of every node in OPT subtree goes up by 1.
 – Expected search cost increases by

\[
w(i, j) = \sum_{l=i}^{j} p_l
\]

from (15.16)

• If \(k_r \) is the root of an optimal BST for \(k_i, \ldots, k_j \):
 – \(e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j)) \)
 = \(e[i, r-1] + e[r+1, j] + w(i, j) \).
 (because \(w(i, j) = w(i, r-1) + p_r + w(r+1, j) \))

• But, we don’t know \(k_r \). Hence,

\[
e[i, j] = \begin{cases}
0 & \text{if } j = i - 1 \\
\min_{i \leq r \leq j} \{e[i, r-1] + e[r+1, j] + w(i, j)\} & \text{if } i \leq j
\end{cases}
\]
Computing an Optimal Solution

For each subproblem \((i,j)\), store:

- expected search cost in a table \(e[1..n+1, 0..n]\)
 - Will use only entries \(e[i, j]\), where \(j \geq i-1\).
- \(\text{root}[i, j] = \) root of subtree with keys \(k_i, \ldots, k_j\), for \(1 \leq i \leq j \leq n\).
- \(w[1..n+1, 0..n] =\) sum of probabilities
 - \(w[i, i-1] = 0\) for \(1 \leq i \leq n\).
 - \(w[i, j] = w[i, j-1] + p_j\) for \(1 \leq i \leq j \leq n\).
Pseudo-code

OPTIMAL-BST\((p, q, n)\)

1. for \(i \leftarrow 1\) to \(n + 1\)
2. do \(e[i, i-1] \leftarrow 0\)
3. \(w[i, i-1] \leftarrow 0\)
4. for \(l \leftarrow 1\) to \(n\)
5. do for \(i \leftarrow 1\) to \(n-l+1\)
6. do \(j \leftarrow i + l - 1\)
7. \(e[i, j] \leftarrow \infty\)
8. \(w[i, j] \leftarrow w[i, j-1] + p_j\)
9. for \(r \leftarrow i\) to \(j\)
10. do \(t \leftarrow e[i, r-1] + e[r+1, j] + w[i, j]\)
11. if \(t < e[i, j]\)
12. then \(e[i, j] \leftarrow t\)
13. \(\text{root}[i, j] \leftarrow r\)
14. return \(e\) and \(\text{root}\)

Time: \(O(n^3)\)
Optimal Substructure

• Show that a solution to a problem consists of making a choice, which leaves one or more subproblems to solve.
• Suppose that you are given this last choice that leads to an optimal solution.
• Given this choice, determine which subproblems arise and how to characterize the resulting space of subproblems.
• Show that the solutions to the subproblems used within the optimal solution must themselves be optimal. Usually use cut-and-paste.
• Need to ensure that a wide enough range of choices and subproblems are considered.
Optimal Substructure

• Optimal substructure varies across problem domains:
 – 1. *How many subproblems* are used in an optimal solution.
 – 2. *How many choices* in determining which subproblem(s) to use.

• Informally, running time depends on (# of subproblems overall) \(\times \) (# of choices).

• *How many subproblems and choices do the examples considered contain?*

• Dynamic programming uses optimal substructure **bottom up**.
 – *First* find optimal solutions to subproblems.
 – *Then* choose which to use in optimal solution to the problem.
Optimal Substructure

• Does optimal substructure apply to all optimization problems? **No.**

• Applies to determining the **shortest path** but **NOT** the **longest simple path** of an unweighted directed graph.

• Why?
 – Shortest path has independent subproblems.
 – Solution to one subproblem does not affect solution to another subproblem of the same problem.
 – Subproblems are not independent in longest simple path.
 ➢ Solution to one subproblem affects the solutions to other subproblems
Overlapping Subproblems

• The space of subproblems must be “small”.
• The total number of distinct subproblems is a polynomial in the input size.
 – A recursive algorithm is exponential because it solves the same problems repeatedly.
 – If divide-and-conquer is applicable, then each problem solved will be brand new.