Design and Analysis of Algorithms

CSE 5311
Lecture 3 Divide-and-Conquer

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering
Reviewing: Θ-notation

Definition:

\[\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \]

Basic Manipulations:

- Drop low-order terms; ignore leading constants.
- Example: \(3n^3 + 90n^2 - 5n + 6046 = Q(n^3) \)
Reviewing: Insertion Sort Analysis

Worst case: Input reverse sorted.

\[T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2) \]

[arithmetic series]

Average case: All permutations equally likely.

\[T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2) \]

Is insertion sort a fast sorting algorithm?

- Moderately so, for small \(n \).
- Not at all, for large \(n \).
Reviewing: Recurrence for Merge Sort

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1; \\
2T(n/2) + \Theta(n) & \text{if } n > 1.
\end{cases} \]

- We shall usually omit stating the base case when \(T(n) = \Theta(1) \) for sufficiently small \(n \), but only when it has no effect on the asymptotic solution to the recurrence.
- Next Lecture will provide several ways to find a good upper bound on \(T(n) \).
Reviewing: Recursion Tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.

\[
\begin{align*}
\text{\#leaves} &= n \\
\theta(1) &\quad \text{\#leaves} \quad \text{Total} = \Theta(n \log n)
\end{align*}
\]
Solving Recurrences

• **Recurrence**
 – The analysis of integer multiplication from last lecture required us to solve a recurrence
 – Recurrences are a major tool for analysis of algorithms
 – Divide and Conquer algorithms which are analyzable by recurrences.

• **Three steps at each level of the recursion:**
 – **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
 – **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
 – **Combine** the solutions to the subproblems into the solution for the original problem.
Recall: Integer Multiplication

- Let \(X = \begin{array}{c} A \\ B \end{array} \) and \(Y = \begin{array}{c} C \\ D \end{array} \) where \(A, B, C \) and \(D \) are \(n/2 \) bit integers

- Simple Method: \(XY = (2^{n/2}A + B)(2^{n/2}C + D) \)

- Running Time Recurrence
 \[T(n) < 4T(n/2) + \Theta(n) \]

How do we solve it?
Substitution Method

The most general method:

1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.

Example: \(T(n) = 4T(n/2) + \Theta(n) \)

- [Assume that \(T(1) = \Theta(1) \).]
- Guess \(O(n^3) \). (Prove \(O \) and \(\Omega \) separately.)
- Assume that \(T(k) \leq ck^3 \) for \(k < n \).
- Prove \(T(n) \leq cn^3 \) by induction.
Example of substitution

\[T(n) = 4T(n/2) + \Theta(n) \]
\[\leq 4c(n/2)^3 + \Theta(n) \]
\[= (c/2)n^3 + \Theta(n) \]
\[= cn^3 - ((c/2)n^3 - \Theta(n)) \]
\[\leq cn^3 \]

We can imagine \(\Theta(n) = 100n \). Then, whenever \((c/2)n^3 - 100n \geq 0\), for example, if \(c \geq 200\) and \(n \geq 1\).
Example

• We must also handle the initial conditions, that is, ground the induction with base cases.

 • **Base**: $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
 • For $1 \leq n < n_0$, we have “$\Theta(1)$” $\leq cn^3$, if we pick c big enough.

 \[\text{This bound is not tight!} \]
A Tighter Upper Bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

\[
T(n) = 4T(n/2) + 100n \\
\leq cn^2 + 100n \\
\leq cn^2
\]

for no choice of $c > 0$. Lose!
A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.
- *Subtract* a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.

\[
T(n) = 4T(n/2) + 100n \\
\leq 4(c_1(n/2)^2 - c_2(n/2)) + 100n \\
= c_1 n^2 - 2c_2 n + 100n \\
= c_1 n^2 - c_2 n - (c_2 n - 100n) \\
\leq c_1 n^2 - c_2 n \quad \text{if } c_2 > 100.
\]

Pick c_1 big enough to handle the initial conditions.
Recursion-tree Method

• A recursion tree models the costs (time) of a recursive execution of an algorithm.
• The recursion tree method is good for generating guesses for the substitution method.
• The recursion-tree method can be unreliable, just like any method that uses ellipses (…).
• However, the recursion-tree method promotes intuition
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of Recursion Tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):

\[T(n) \]
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

\[
\begin{align*}
&n^2 \\
&\quad \downarrow \\
&\quad (n/4)^2 \quad (n/2)^2 \\
&\quad \downarrow \quad \downarrow \\
&T(n/16) \quad T(n/8) \quad T(n/8) \quad T(n/4)
\end{align*}
\]
Example of Recursion Tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):

\[
\begin{array}{c}
\Theta(1) \\
\vdots \\
\vdots \\
(n/4)^2 \\
(n/16)^2 \\
(n/8)^2 \\
(n/8)^2 \\
(n/2)^2 \\
n^2
\end{array}
\]
Example of Recursion Tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):

\[
\begin{align*}
T(n) &= n^2 \quad (n/4)^2 \quad (n/2)^2 \\
 &= (n/16)^2 \quad (n/8)^2 \quad (n/8)^2 \quad (n/4)^2 \\
 &= \Theta(1)
\end{align*}
\]

\(r^2 \)
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

\[n^2 \quad \frac{5}{16} n^2 \]
\[(n/4)^2 \quad (n/2)^2 \]
\[(n/16)^2 \quad (n/8)^2 \quad (n/8)^2 \quad (n/4)^2 \]
\[\cdots \]
\[\Theta(1) \]
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

\[
\begin{align*}
T(n) &= n^2 \quad \text{geometric series} \\
&= n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^2 + \left(\frac{5}{16}\right)^3 + \cdots\right) \\
&= \Theta(n^2)
\end{align*}
\]
Appendix: Geometric Series

\[1 + x + x^2 + \cdots + x^n = \frac{1-x^{n+1}}{1-x} \quad \text{for } x \neq 1 \]

\[1 + x + x^2 + \cdots = \frac{1}{1-x} \quad \text{for } |x| < 1 \]
The Master Method

The master method applies to recurrences of the form

\[T(n) = a \ T(n/b) + f(n), \]

where \(a \geq 1 \), \(b > 1 \), and \(f \) is asymptotically positive.
Idea of Master Theorem

Recursion tree:

\[h = \log_b n \]

\[f(n) \quad \ldots \quad f(n) \]

\[\frac{f(n)}{a} \quad \ldots \quad \frac{f(n)}{a} \]

\[\frac{f(n/b)}{a} \quad \ldots \quad \frac{f(n/b)}{a} \]

\[\ldots \quad \frac{f(n/b^2)}{a} \quad \ldots \quad \frac{f(n/b^2)}{a} \]

\[\frac{f(n/b^3)}{a} \quad \ldots \quad \frac{f(n/b^3)}{a} \]

\[\ldots \quad \frac{f(n/b^h)}{a} \quad \ldots \quad \frac{f(n/b^h)}{a} \]

\[\# \text{leaves} = a^h \]

\[= a^{\log_b n} \]

\[= n^{\log_b a} \]

\[T(1) \]

\[n^{\log_b a} T(1) \]
Case (I)

Compare \(f(n) \) with \(n^{\log_b a} \):

1. \(f(n) = O(n^{\log_b a - \varepsilon}) \) for some constant \(\varepsilon > 0 \).
 - \(f(n) \) grows polynomially slower than \(n^{\log_b a} \) (by an \(n^\varepsilon \) factor).

 \textbf{Solution:} \(T(n) = \Theta(n^{\log_b a}) \).
Idea of Master Theorem

Recursion tree:

\[f(n) \quad \frac{a}{f(n/b)} \quad \frac{a}{f(n/b)} \quad \ldots \quad \frac{a}{f(n/b)} \quad \frac{a^2}{f(n/b^2)} \]

\[h = \log_b n \]

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

\[f(n) = n^{\log_b a - \varepsilon} \quad \text{and} \quad a \cdot f(n/b) = a \cdot (n/b)^{\log_b a - \varepsilon} = b^\varepsilon \cdot n^{\log_b a - \varepsilon} \]

\[\sum_{i=1}^h a^i \left(\frac{f(n/b)}{b} \right)^i = \Theta(n^{\log_b a}) \]

\[n^{\log_b a} \cdot T(1) \]
Case (II)

Compare \(f(n) \) with \(n^{\log_b a} \):

2. \(f(n) = \Theta(n^{\log_b a}) \) for some constant \(k \geq 0 \).
 - \(f(n) \) and \(n^{\log_b a} \) grow at similar rates.

 Solution: \(T(n) = \Theta(n^{\log_b a} \lg n) \).
Idea of Master Theorem

Recursion tree:

\[f(n) \quad \frac{a}{a} \quad \frac{n}{n/b^2} \]

CASE 2: \((k = 0)\) The weight is approximately the same on each of the \(\log_b n\) levels.

\[f(n) = n^{\log_b a} \quad \text{and} \quad af(n/b) = a (n/b)^{\log_b a} = n^{\log_b a} \]

\[\Theta(n^{\log_b a} \log n) \]
Case (III)

Compare $f(n)$ with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a} + \varepsilon)$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially faster than $n^{\log_b a}$ (by an n^ε factor),
 and $f(n)$ satisfies the regularity condition that $af(n/b) \leq cf(n)$ for some constant $c < 1$.

Solution: $T(n) = \Theta(f(n))$.
Idea of master theorem

Recursion tree:

\[
\begin{align*}
T(n) &= T(n/b) + f(n) \\
&= a T(n/b) + f(n/b) + \ldots + f(n/b) \\
&= a^n T(1) + n \log_b a + \varepsilon
\end{align*}
\]

\[f(n) = n^{\log_b a + \varepsilon} \quad \text{and} \quad a f(n/b) = a \left(\frac{n}{b}\right)^{\log_b a + \varepsilon} = b^{-\varepsilon} n^{\log_b a + \varepsilon}\]

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.
Examples

Ex. $T(n) = 4T(n/2) + n$

$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n$.

CASE 1: $f(n) = O(n^2 - \varepsilon)$ for $\varepsilon = 1$.

∴ $T(n) = \Theta(n^2)$.

Ex. $T(n) = 4T(n/2) + n^2$

$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2$.

CASE 2: $f(n) = \Theta(n^2 \lg^k n)$, that is, $k = 0$.

∴ $T(n) = \Theta(n^2 \lg n)$.
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_a b} = n^2; \ f(n) = n^3. \]

CASE 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)

and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = \frac{1}{2} < 1 \)

\[\therefore \ T(n) = \Theta(n^3). \]

Ex. \(T(n) = 4T(n/2) + n^2/\lg n \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_a b} = n^2; \ f(n) = n^2/\lg n. \]

Master method does not apply. In particular, for every constant \(\varepsilon > 0 \), we have \(n^\varepsilon = \omega(\lg n) \).