Design and Analysis of Algorithms

CSE 5311
Lecture 4 Master Theorem

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering
Reviewing: Solving Recurrences

• Recurrence
 – The analysis of integer multiplication from last lecture required us to solve a recurrence
 – Recurrences are a major tool for analysis of algorithms
 – Divide and Conquer algorithms which are analyzable by recurrences.

• Three steps at each level of the recursion:
 – **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
 – **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
 – **Combine** the solutions to the subproblems into the solution for the original problem.
Recall: Integer Multiplication

- Let \(X = [A | B] \) and \(Y = [C | D] \) where \(A, B, C \) and \(D \) are \(n/2 \) bit integers
- Simple Method: \(XY = (2^{n/2}A + B)(2^{n/2}C + D) \)
- Running Time Recurrence
 \[T(n) < 4T(n/2) + \Theta(n) \]

How do we solve it?
Reviewing: Substitution Method

The most general method:

1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.

Example: \(T(n) = 4T(n/2) + \Theta(n) \)

- [Assume that \(T(1) = \Theta(1) \).]
- Guess \(O(n^3) \). (Prove \(O \) and \(\Omega \) separately.)
- Assume that \(T(k) \leq ck^3 \) for \(k < n \).
- Prove \(T(n) \leq cn^3 \) by induction.
The Master Method

The master method applies to recurrences of the form

\[T(n) = a \ T(n/b) + f(n) , \]

where \(a \geq 1\), \(b > 1\), and \(f\) is asymptotically positive.

1. \(f(n) = O(n^{\log ba - \varepsilon})\) for some constant \(\varepsilon > 0\). Then, \(T(n) = \Theta(n^{\log ba})\)

2. \(f(n) = \Theta(n^{\log ba})\) for \(k \geq 0\). Then, \(T(n) = \Theta(n^{\log ba \ \log n})\).

3. \(f(n) = \Omega(n^{\log ba + \varepsilon})\) for some constant \(\varepsilon > 0\) and \(f(n)\) satisfies the \textit{regularity condition} that \(a f(n/b) \leq c f(n)\) for some constant \(c < 1\). Then, \(T(n) = \Theta(f(n))\).
Application of Master Theorem

- \(T(n) = 9T(n/3)+n; \)
 - \(a=9, b=3, f(n) = n \)
 - \(n^{\log_b a} = n^{\log_3 9} = \Theta(n^2) \)
 - \(f(n) = O(n^{\log_3 9-\varepsilon}) \) for \(\varepsilon = 1 \)
 - By case 1, \(T(n) = \Theta(n^2) \).

- \(T(n) = T(2n/3)+1 \)
 - \(a=1, b=3/2, f(n) = 1 \)
 - \(n^{\log_b a} = n^{\log_{3/2} 1} = \Theta(n^0) = \Theta(1) \)
 - By case 2, \(T(n) = \Theta(\lg n) \).
Application of Master Theorem

- \(T(n) = 3T(n/4)+n\lg n; \)
 - \(a=3, b=4, f(n) = n\lg n \)
 - \(n^{\log_b a} = n^{\log_4 3} = \Theta(n^{0.793}) \)
 - \(f(n) = \Omega(n^{\log_4 3 + \varepsilon}) \) for \(\varepsilon \approx 0.2 \)
 - Moreover, for large \(n \), the “regularity” holds for \(c=3/4 \).
 - \(af(n/b) = 3(n/4)\lg (n/4) \leq (3/4)n\lg n = cf(n) \)
 - By case 3, \(T(n) = \Theta(f(n)) = \Theta(n\lg n). \)
Exception to Master Theorem

• $T(n) = 2T(n/2) + n\lg n$;

 – $a=2, b=2, f(n) = n\lg n$

 – $n^{\log_b a} = n^{\log_2 2} = \Theta(n)$

 – $f(n)$ is asymptotically larger than $n^{\log_b a}$, but not polynomially larger because

 – $f(n)/n^{\log_b a} = \lg n$, which is asymptotically less than n^ε for any $\varepsilon > 0$.

 – Therefore, this is a gap between 2 and 3.
Where Are the Gaps

Note: 1. for case 3, the regularity also must hold.
 2. if $f(n)$ is $\lg n$ smaller, then fall in gap in 1 and 2
 3. if $f(n)$ is $\lg n$ larger, then fall in gap in 3 and 2
 4. if $f(n)=\Theta(n^{\log b^a} \lg^k n)$, then $T(n)=\Theta(n^{\log b^a} \lg^{k+1} n)$ (as exercise)
Master Theorem

The master method applies to recurrences of the form

\[T(n) = a \ T(n/b) + f(n), \]

where constants \(a \geq 1, \ b > 1, \) and \(f \) is asymptotically positive function

1. \(f(n) = O(n^{\log_b a - \varepsilon}) \) for some constant \(\varepsilon > 0, \) then \(T(n) = \Theta(n^{\log_b a}) \)
2. \(f(n) = O(n^{\log_b a}) \) for some constant \(\varepsilon > 0, \) then \(T(n) = \Theta(n^{\log_b a} \log n) \)
3. \(f(n) = O(n^{\log_b a + \varepsilon}) \) for some constant \(\varepsilon > 0, \) and if \(af(n/b) \leq cf(n) \)
 for some constant \(c < 1, \) then \(T(n) = \Theta(f(n)) . \)

How to theoretically prove it?
Proof for Exact Powers

- Suppose \(n = b^k \) for \(k \geq 1 \).
- Lemma 4.2
 - for \(T(n) = \Theta(1) \) if \(n = 1 \)
 - \(aT(n/b) + f(n) \) if \(n = b^k \) for \(k \geq 1 \)
 - where \(a \geq 1, b > 1, f(n) \) be a nonnegative function defined on exact powers of \(b \), then

\[
T(n) = \Theta(n \log_{b} n) + \sum_{j=0}^{\log_{b} n-1} a^{j} f(n/b^{j})
\]

- Proof:
 - By iterating the recurrence
 - By recursion tree (See figure 4.3)
Recursion Tree for $T(n) = aT(n/b) + f(n)$

Figure 4.3 The recursion tree generated by $T(n) = aT(n/b) + f(n)$. The tree is a complete a-ary tree with $n^{\log_b a}$ leaves and height $\log_b n$. The cost of each level is shown at the right, and their sum is given in equation (4.6).
Proof for Exact Powers (cont.)

• Lemma 4.3:
 – Let constants \(a \geq 1, \ b > 1, f(n) \) be a nonnegative function defined on exact power of \(b \), then

 \[
 g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)
 \]

 can be bounded asymptotically for exact power of \(b \) as follows:

1. If \(f(n) = O(n^{\log_b a - \varepsilon}) \) for some \(\varepsilon > 0 \), then \(g(n) = O(n^{\log_b a}) \).
2. If \(f(n) = \Theta(n^{\log_b a}) \), then \(g(n) = \Theta(n^{\log_b a \lg n}) \).
3. If \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \) for some \(\varepsilon > 0 \) and if \(af(n/b) \leq cf(n) \) for some \(c < 1 \) and all sufficiently large \(n \geq b \), then \(g(n) = \Theta(f(n)) \).
Proof of Lemma 4.3

- For case 1: $f(n)=O(n^{\log_b a-\varepsilon})$ implies $f(n/b^j)=O((n/b^j)^{\log_b a-\varepsilon})$, so

 \[
 g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) = O\left(\sum_{j=0}^{\log_b n-1} a^j (n/b^j)^{\log_b a-\varepsilon} \right)
 \]

 \[
 = O(n^{\log_b a-\varepsilon} \sum_{j=0}^{\log_b n-1} a^j / (b^{\log_b a-\varepsilon} b^j)) = O(n^{\log_b a-\varepsilon} \sum_{j=0}^{\log_b n-1} a^j / (a^j (b^\varepsilon b^j)))
 \]

 \[
 = O(n^{\log_b a-\varepsilon} \sum_{j=0}^{\log_b n-1} (b^\varepsilon)^j) = O(n^{\log_b a-\varepsilon} (((b^\varepsilon)^{\log_b n}-1)/(b^\varepsilon-1)))
 \]

 \[
 = O(n^{\log_b a-\varepsilon} (((b^{\log_b n})^\varepsilon -1)/(b^\varepsilon-1)))
 \]

 \[
 = O(n^{\log_b a} n^{-\varepsilon} (n^\varepsilon -1)/(b^\varepsilon-1))
 \]

 \[
 = O(n^{\log_b a})
 \]
Proof of Lemma 4.3 (cont.)

• For case 2: \(f(n) = \Theta(n^{\log_b a}) \) implies \(f(n/b^i) = \Theta((n/b^i)^{\log_b a}) \), so

\[
\log_b n \leq \sum_{j=0}^{\log_b n-1} log_b b_n - 1
\]

• \(g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) = \Theta(\sum_{j=0}^{\log_b n-1} a^j (n/b^j)^{\log_b a}) \)

• \[
= \Theta(n^{\log_b a} \sum_{j=0}^{\log_b n-1} a^j (b^{\log_b a})^j) = \Theta(n^{\log_b a} \sum_{j=0}^{\log_b n-1} 1)
\]

• \[
= \Theta(n^{\log_b a} \log_b n) = \Theta(n^{\log_b a} \lg n)
\]
Proof of Lemma 4.3 (cont.)

• For case 3:
 – Since \(g(n) \) contains \(f(n) \), \(g(n) = \Omega(f(n)) \)
 – Since \(a f(n/b) \leq c f(n) \), so \(f(n/b) \leq (c/a) f(n) \),
 – Iterating \(j \) times, \(f(n/b^j) \leq (c/a)^j f(n) \), thus \(a^i f(n/b^i) \leq c^i f(n) \)

\[
\sum_{j=0}^{\log_b n-1} a^i f(n/b^i) \leq \sum_{j=0}^{\log_b n-1} c^i f(n) \leq f(n) \sum_{j=0}^{\infty} c^i = f(n) \left(1/(1-c)\right)
\]

\(= O(f(n)) \)

– Thus, \(g(n) = \Theta(f(n)) \)
Proof for Exact Powers (cont.)

• Lemma 4.4:

- for $T(n) =$ \begin{align*}
\Theta(1) & \text{ if } n=1 \\
aT(n/b)+f(n) & \text{ if } n=b^k \text{ for } k \geq 1
\end{align*}

- where $a \geq 1$, $b>1$, $f(n)$ be a nonnegative function,

1. If $f(n)=O(n^{\log_b a-\varepsilon})$ for some $\varepsilon>0$, then $T(n)=\Theta(n^{\log_b a})$.

2. If $f(n)=\Theta(n^{\log_b a})$, then $T(n)=\Theta(n^{\log_b a \lg n})$.

3. If $f(n)=\Omega(n^{\log_b a+\varepsilon})$ for some $\varepsilon>0$, and if $af(n/b) \leq cf(n)$ for some $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.
Proof of Lemma 4.4 (cont.)

• Combine Lemma 4.2 and 4.3,

 – For case 1:
 \[T(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a}) = \Theta(n^{\log_b a}). \]

 – For case 2:
 \[T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \lg n) = \Theta(n^{\log_b a} \lg n). \]

 – For case 3:
 \[T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n)) \text{ because } f(n) = \Omega(n^{\log_b a + \varepsilon}). \]
Floors and Ceilings (\(n \neq b^k\) for \(k \geq 1\))

- \(T(n) = a \ T(\lfloor n / b \rfloor) + f(n)\) and \(T(n) = a \ T(\lceil n / b \rceil) + f(n)\)
- Want to prove both equal to \(T(n) = a \ T(n / b) + f(n)\)
- Two results:
 - Master theorem applied to all integers \(n\).
 - Floors and ceilings do not change the result.
 ➢ (Note: we proved this by domain transformation too).
- Since \(\lfloor n / b \rfloor \leq n / b\), and \(\lceil n / b \rceil \geq n / b\), upper bound for floors and lower bound for ceiling is held.
- So prove upper bound for ceilings (similar for lower bound for floors).
Upper bound of proof for $T(n) = aT(\lceil n/b \rceil) + f(n)$

- consider sequence $n, \lceil n/b \rceil, \lceil \lceil n/b \rceil / b \rceil, \lceil \lceil \lceil n/b \rceil / b \rceil / b \rceil, \ldots$
- Let us define n_j as follows:
 - $n_j = n$ if $j = 0$
 - $n_j = \lceil n_{j-1} / b \rceil$ if $j > 0$
- The sequence will be $n_0, n_1, \ldots, n_{\lceil \log_b n \rceil}$

Let $j = \lceil \log_b n \rceil$, then

\[
\begin{align*}
 n_0 \leq & n \\
 n_1 \leq & n/b + 1 \\
 n_2 \leq & n/b^2 + n/b + 1 \\
 \cdots \\
 n_j \leq & n/b^j + \sum_{i=0}^{j-1} 1/b^i \\
 < & n/b^j + b/(b-1)
\end{align*}
\]

$\leq n/b^{\log_b n - 1} + b/(b-1)$

$= n/(n/b) + b/(b-1) = b + b/(b-1) = O(1)$
Recursion Tree

Recursion Tree of $T(n) = aT\left(\left\lceil \frac{n}{b} \right\rceil \right) + f(n)$

Figure 4.4 The recursion tree generated by $T(n) = aT(\lceil n/b \rceil) + f(n)$. The recursive argument n_j is given by equation (4.12).
The Proof of Upper Bound for Ceiling

\[T(n) = \Theta(n^{\log_b \pi}) + \sum_{j=0}^{\lceil \log_b n \rceil - 1} a^j f(n_j) \]

Thus similar to Lemma 4.3 and 4.4, the upper bound is proven.

\[g(n) = \sum_{j=0}^{\lceil \log_b n \rceil - 1} a^j f(n_j) \]
The Simple Format of Master Theorem

- $T(n) = aT(n/b) + cn^k$, with a, b, c, k are positive constants, and $a \geq 1$ and $b \geq 2$,

 \[
 O(n^{\log_b a}), \text{ if } a > b^k.
 \]

- $T(n) = O(n^k \log n)$, if $a = b^k$.

- $O(n^k)$, if $a < b^k$.

Exercise (1)

Give asymptotic upper and lower bound for \(T(n) = 2T(n/4) + n^{0.5} \)

Using the master theorem, \(a=2, \ b=4, \)

\[n^{\log_b a} = n^{0.5} \] and \(f(n) = n^{0.5} = \Theta(n^{0.5}) \)

Case 2 applies,

Therefore, \(T(n) = \Theta(n^{0.5} \lg n). \)
Exercise (2)

Give asymptotic upper and lower bound for \(T(n) = 7T(n/2) + n^2 \)

Using the master theorem, \(a = 7, \ b = 2 \),

\[n \log_b^a = n \log_2^7 \]

\[f(n) = n^2 = O(n \log_2^7 - \varepsilon) \] for some constant \(\varepsilon > 0 \) due to \(2 < \log 7 < 3 \),

Case 1 applies,

Therefore, \(T(n) = \Theta(n \log_2^7) \).
Exercise (3)

Give asymptotic upper and lower bound for $T(n) = 7T(n/3) + n^2$

Using the master theorem, $a=7$, $b=3$, $n^{\log_b a} = n^{\log_3 7}$

$f(n) = n^2 = \Omega(n^{\log_3 7} + \varepsilon)$ for some constant $\varepsilon > 0$

Check if $af(n/b) \leq cf(n)$ for constant $c < 1$,

$a(n/b)^2 = (7/9) n^2$

We can set $c = 7/9 < 1$, Case 3 applies,

Therefore, $T(n) = \Theta(n^2)$.
Exercise (4)

Give asymptotic upper and lower bound for $T(n)=16T(n/4) + n^2$

Using the master theorem, $a=16$, $b=4$, $n^{\log_b a} = n^{\log_4 16} = n^2$

$f(n) = n^2 = \Theta(n^2)$

Case 2 applies,

Therefore, $T(n) = \Theta(n^2 \log n)$.
Exercise (5)

Give asymptotic upper and lower bound for \(T(n) = T(n^{0.5}) + 1 \)

The easy way to do this is with a change of variables.

Let \(m = \log n \) and \(S(m) = T(2^m) \)

\[
T(2^m) = T(2^{m/2}) + 1, \quad \text{So } S(m) = S(m/2) + 1,
\]

Using the master theorem, \(a=1, b=2 \). \(n^{\log_b a} = 1 \) and \(f(n) = 1 \).

Case 2 applies and \(S(m) = \Theta(\log m) \).

Therefore, \(T(n) = \Theta(\log \log n) \).