Design and Analysis of Algorithms

CSE 5311
Lecture 8 Sorting in Linear Time

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering
Sorting So Far

• Insertion sort:
 – Easy to code
 – Fast on small inputs (less than ~50 elements)
 – Fast on nearly-sorted inputs
 – $O(n^2)$ worst case
 – $O(n^2)$ average (equally-likely inputs) case
 – $O(n^2)$ reverse-sorted case

• Merge sort:
 – Divide-and-conquer:
 ➢ Split array in half
 ➢ Recursively sort subarrays
 ➢ Linear-time merge step
 – $O(n \lg n)$ worst case
Sorting So Far

• **Heap sort:**
 - Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children’s keys
 - \(O(n \lg n) \) worst case
 - Sorts in place
 - Fair amount of shuffling memory around

• **Quick sort:**
 - Divide-and-conquer:
 - Partition array into two subarrays, recursively sort
 - All of first subarray < all of second subarray
 - No merge step needed!
 - \(O(n \lg n) \) average case
 - Fast in practice
 - \(O(n^2) \) worst case
 - Naïve implementation: worst case on sorted input
 - Address this with randomized quicksort
How Fast Can We Sort?

- **Lower bound**
 - Prove a Lower Bound for *any comparison based algorithm* for the Sorting Problem
 - *How?* Decision trees help us.

- **Observation**: sorting algorithms so far are *comparison sorts*
 - The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
 - Theorem: all comparison sorts are $\Omega(n \log n)$
 - A comparison sort must do $O(n)$ comparisons (why?)
 - What about the gap between $O(n)$ and $O(n \log n)$
Decision-tree Example

Sort \(\langle a_1, a_2, \ldots, a_n \rangle \)

Each internal node is labeled \(i:j \) for \(i, j \in \{1, 2, \ldots, n\} \).
- The left subtree shows subsequent comparisons if \(a_i \leq a_j \).
- The right subtree shows subsequent comparisons if \(a_i \geq a_j \).
Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.

Decision-tree Example

Sort $\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle$:
Decision-tree Example

Sort $\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle$:

Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.
Each internal node is labeled $i:j$ for $i, j \in \{1, 2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_i \leq a_j$.
- The right subtree shows subsequent comparisons if $a_i \geq a_j$.
Decision-tree Example

Sort $\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle$:

Each leaf contains a permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$ has been established.
A decision tree can model the execution of any comparison sort:

- One tree for each input size n.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.
How?

Any comparison sort can be turned into a Decision tree

class InsertionSortAlgorithm {
 for (int i = 1; i < a.length; i++) {
 int j = i;
 while ((j > 0) && (a[j-1] > a[i])) {
 a[j] = a[j-1];
 j--;
 }
 a[j] = B;
 }
}
Lower Bound for Decision-tree Sorting

Theorem. Any decision tree that can sort \(n \) elements must have height \(\Omega(n \lg n) \).

Proof. The tree must contain \(\geq n! \) leaves, since there are \(n! \) possible permutations. A height-\(h \) binary tree has \(\leq 2^h \) leaves. Thus, \(n! \leq 2^h \).

\[
\begin{align*}
\therefore \quad h & \geq \lg(n!)
\geq \lg \left(\left(\frac{n}{e}\right)^n\right)
= n \lg n - n \lg e
= \Omega(n \lg n).
\end{align*}
\]

\(\lg \) is mono. increasing
(Stirling’s formula)

\[n \log n - n < \log(n!) < n \log n \]
Decision Tree

• Decision trees provide an abstraction of comparison sorts
 – A decision tree represents the comparisons made by a comparison sort.
 Every thing else ignored
 – What do the leaves represent?
 – How many leaves must there be?
• Decision trees can model comparison sorts. For a given algorithm:
 – One tree for each n
 – Tree paths are all possible execution traces
 – What’s the longest path in a decision tree for insertion sort? For merge sort?

• What is the asymptotic height of any decision tree for sorting n elements?
• Answer: $\Omega(n \lg n)$ (now let’s prove it…)
Lower Bound For Comparison Sorting

- **Theorem:** Any decision tree that sorts \(n \) elements has height \(\Omega(n \log n) \)
- What’s the minimum # of leaves?
- What’s the maximum # of leaves of a binary tree of height \(h \)?
- Clearly the minimum # of leaves is less than or equal to the maximum # of leaves

So we have \(n! \leq 2^h \); Taking logarithms: \(\log (n!) \leq h \)

- Stirling’s approximation tells us: \(n! > \left(\frac{n}{e}\right)^n \)

Thus \(h \geq \log \left(\frac{n}{e}\right)^n = n \log n - n \log e = \Omega(n \log n) \)

The minimum height of a decision tree is \(\Omega(n \log n) \)
Lower Bound For Comparison Sorting

• Thus the time to comparison sort \(n \) elements is \(\Omega(n \lg n) \)

• **Corollary**: Heapsort and Mergesort are asymptotically optimal comparison sorts

• But the name of this lecture is “Sorting in linear time”!

 – *How can we do better than \(\Omega(n \lg n) \)?*
Sorting In Linear Time

• Counting sort
 – No comparisons between elements!
 – But... depends on assumption about the numbers being sorted
 ➢ We assume numbers are in the range $1\ldots k$
 – The algorithm:
 ➢ Input: $A[1..n]$, where $A[j] \in \{1, 2, 3, \ldots, k\}$
 ➢ Output: $B[1..n]$, sorted (notice: not sorting in place)
 ➢ Also: Array $C[1..k]$ for auxiliary storage
Counting Sort

1 CountingSort(A, B, k)
2 for i=1 to k
3 C[i] = 0;
4 for j=1 to n
5 C[A[j]] += 1;
6 for i=2 to k
7 C[i] = C[i] + C[i-1];
8 for j=n downto 1
9 B[C[A[j]]] = A[j];
10 C[A[j]] -= 1;

Work through example: A={4 1 3 4 3}, k = 4
Counting Sort

1. `CountingSort(A, B, k)`
 2. for `i=1` to `k` Takes time $O(k)$
 3. `C[i] = 0;`
 4. for `j=1` to `n` Takes time $O(n)$
 5. `C[A[j]] += 1;`
 6. for `i=2` to `k`
 7. `C[i] = C[i] + C[i-1];`
 8. for `j=n` downto `1`
 10. `C[A[j]] -= 1;`

What will be the running time?
Counting-sort Example

A: 4 1 3 4 3

B:

C: 1 2 3 4

Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms
Loop 1

\[
\text{for } i \leftarrow 1 \text{ to } k \\
\text{do } C[i] \leftarrow 0
\]
Loop 2

\[
\begin{array}{cccccc}
A: & 4 & 1 & 3 & 4 & 3 \\
B: & & & & & \\
C: & 1 & 2 & 3 & 4 & 1 \\
\end{array}
\]

\[
\text{for } j \leftarrow 1 \text{ to } n \\
\text{do } C[A[j]] \leftarrow C[A[j]] + 1 \\
\text{ } i \} | \\
\]

\[\triangleright C[i] = |\{\text{key} = \]

Dept. CSE, UT Arlington

CSE5311 Design and Analysis of Algorithms

21
Loop 2

\[
\begin{align*}
A: & \\
& \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3 \\
\end{array} \\
B: & \\
C: & \\
& \begin{array}{cccccc}
1 & 2 & 3 & 4 \\
1 & 0 & 0 & 1 \\
\end{array}
\end{align*}
\]

\[
\text{for } j \leftarrow 1 \text{ to } n \\
do \quad C[A[j]] \leftarrow C[A[j]] + 1 \\
\text{\triangleright } C[i] = |\{\text{key } = i\}|
\]
Loop 2

\[
\begin{array}{c}
A: \\
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3
\end{array} \\
B: \\

C: \\
\begin{array}{cccccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 1
\end{array}
\end{array}
\]

\[
\text{for } j \leftarrow 1 \text{ to } n \\
\quad \text{do } C[A[j]] \leftarrow C[A[j]] + 1 \\
\quad \quad i \}} = |\{\text{key} = \]

Dept. CSE, UT Arlington

CSE5311 Design and Analysis of Algorithms
Loop 2

\[\begin{array}{llllll}
A: & 4 & 1 & 3 & 4 & 3 \\
B: & & & & & \\
C: & 1 & 0 & 1 & 2 & \\
\end{array}\]

\[\text{for } j \leftarrow 1 \text{ to } n\]
\[\text{do } C[A[j]] \leftarrow C[A[j]] + 1\]
\[\triangleright C[i] = |\{\text{key } = i\}|\]
Loop 2

\[
\begin{align*}
&\text{for } j \leftarrow 1 \text{ to } n \\
&\quad \text{do } C[A[j]] \leftarrow C[A[j]] + 1 \\
&\quad i \leftarrow C[i] = |\{\text{key } = i\}| \\
\end{align*}
\]
Loop 3

for $i \leftarrow 2$ to k

\[C[i] \leftarrow C[i] + C[i-1] \quad \triangleright \quad C[i] = |\{\text{key} \leq i\}| \]
Loop 3

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

for $i \leftarrow 2$ to k

do $C[i] \leftarrow C[i] + C[i-1]$ \triangleright $C[i] = |\{\text{key} \leq i\}|$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C'</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Loop 3

\[
\begin{align*}
A: & \begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 3 & 4 & 3 \\
\end{array} & C: & \begin{array}{ccccc}
1 & 2 & 3 & 4 \\
1 & 0 & 2 & 2 \\
\end{array} \\
B: & \begin{array}{cccc}
\hline \\
\hline \\
\hline \\
\hline \\
\end{array} & C': & \begin{array}{ccccc}
1 & 1 & 3 & 5 \\
1 & 1 & 3 & 5 \\
\end{array} \\
\end{align*}
\]

for \(i \leftarrow 2\) **to** \(k\) \\
do \(C[i] \leftarrow C[i] + C[i-1]\) \(\triangleright C[i] = |\{\text{key} \leq i\}|\)
for $j \leftarrow n$ downto 1

\[B[C[A[j]]] \leftarrow A[j] \]
\[C[A[j]] \leftarrow C[A[j]] - 1 \]
Loop 4

\[
\begin{align*}
A & : 4 \ 1 \ 3 \ 4 \ 3 \\
B & : \quad \quad \quad 3 \ 4 \\
C & : 1 \ 1 \ 2 \ 5 \\
C' & : 1 \ 1 \ 2 \ 4
\end{align*}
\]

\textbf{for } j \leftarrow n \textbf{ downto } 1 \\
\textbf{do } B[C[A[j]]] \leftarrow A[j] \\
\textbf{do } C[A[j]] \leftarrow C[A[j]] - 1
Loop 4

for $j \leftarrow n$ downto 1

\[B[C[A[j]]] \leftarrow A[j] \]
\[C[A[j]] \leftarrow C[A[j]] - 1 \]
Loop 4

\[
\begin{array}{ccccc}
A: & 4 & 1 & 3 & 4 & 3 \\
B: & 1 & 3 & 3 & 4 \\
C: & 1 & 1 & 1 & 4 \\
C': & 0 & 1 & 1 & 4 \\
\end{array}
\]

for \(j \gets n \) downto 1

- \(B[C[A[j]]] \gets A[j] \)
- \(C[A[j]] \gets C[A[j]] - 1 \)
Loop 4

for $j \leftarrow n$ downto 1
 do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$
Analysis

\[\Theta(k) \quad \text{for } i \leftarrow 1 \text{ to } k \]
\[\text{do } C[i] \leftarrow 0\]

\[\Theta(n) \quad \text{for } j \leftarrow 1 \text{ to } n \]
\[\text{do } C[A[j]] \leftarrow C[A[j]] + 1\]

\[\Theta(k) \quad \text{for } i \leftarrow 2 \text{ to } k \]
\[\text{do } C[i] \leftarrow C[i] + C[i-1]\]

\[\Theta(n) \quad \text{for } j \leftarrow n \text{ downto } 1\]
\[\text{do } B[C[A[j]]] \leftarrow A[j]\]
\[C[A[j]] \leftarrow C[A[j]] - 1\]

\[\Theta(n + k)\]
Counting Sort

- **Total time:** $O(n + k)$
 - Usually, $k = O(n)$
 - Thus counting sort runs in $O(n)$ time

- **But sorting is $\Omega(n \lg n)$!**
 - No contradiction--this is not a comparison sort (in fact, there are no comparisons at all!)
 - Notice that this algorithm is **stable**

- Cool! Why don’t we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large ($2^{32} = 4,294,967,296$)
Stable Sorting

Counting sort is a \textit{stable} sort: it preserves the input order among equal elements.

\begin{itemize}
\item[A:] \begin{tabular}{cccccc}
4 & 1 & 3 & 4 & 3 \\
\end{tabular}
\item[B:] \begin{tabular}{cccccc}
1 & 3 & 3 & 4 & 4 \\
\end{tabular}
\end{itemize}

\textbf{Exercise:} What other sorts have this property?
Radix Sort

- Intuitively, you might sort on the **most significant digit**, then the second msd, etc.

- **Problem:** lots of intermediate piles of cards (read: scratch arrays) to keep track of

- **Key idea:** sort the *least* significant digit first

 RadixSort(A, d)

 for i=1 to d

 StableSort(A) on digit i

 - Example: Fig 9.3
Radix Sort

• *Can we prove it will work?*

• **Sketch of an inductive argument** (induction on the number of passes):
 - Assume lower-order digits \{j: j<i\} are sorted
 - Show that sorting next digit i leaves array correctly sorted
 - If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order
Radix Sort

• **What sort will we use to sort on digits?**
• **Counting sort is obvious choice:**
 – Sort n numbers on digits that range from $1..k$
 – Time: $O(n + k)$
• **Each pass over n numbers with d digits takes time $O(n+k)$, so total time $O(dn+dk)$**
 – When d is constant and $k=O(n)$, takes $O(n)$ time
• **How many bits in a computer word?**
Radix Sort

- **Problem:** sort 1 million 64-bit numbers
 - Treat as four-digit radix 2^{16} numbers
 - Can sort in just four passes with radix sort!

- **Compares well with typical $O(n \lg n)$ comparison sort**
 - Requires approximate $\log n = 20$ operations per number being sorted

- **So why would we ever use anything but radix sort?**

- **In general, radix sort based on counting sort is**
 - Fast, Asymptotically fast (i.e., $O(n)$)
 - Simple to code
 - A good choice

- **To think about:** *Can radix sort be used on floating-point numbers?*
Operation of Radix Sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5
7 2 0
3 5 5
3 2 9
4 3 6
4 3 6
8 3 9
3 5 5
6 5 7
4 5 7
7 2 0
8 3 9
6 5 7
8 3 9
Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t - 1$ digits.

- Sort on digit t
Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t - 1$ digits.

- Sort on digit t
 - Two numbers that differ in digit t are correctly sorted.
Correctness of Radix Sort

Induction on digit position

- Assume that the numbers are sorted by their low-order \(t-1 \) digits.

- Sort on digit \(t \)
 - Two numbers that differ in digit \(t \) are correctly sorted.
 - Two numbers equal in digit \(t \) are put in the same order as the input \(\implies \) correct order.
Analysis of Radix Sort

• Assume counting sort is the auxiliary stable sort.
• Sort \(n \) computer words of \(b \) bits each.
• Each word can be viewed as having \(b/r \) base-\(2^r\) digits.

Example: 32-bit word

\[\begin{array}{cccc}
8 & 8 & 8 & 8 \\
\end{array} \]

\(r = 8 \quad b/r = 4 \) passes of counting sort on base-\(2^8\) digits; or \(r = 16 \quad b/r = 2 \) passes of counting sort on base-\(2^{16}\) digits.

How many passes should we make?
Recall: Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to $k - 1$.

If each b-bit word is broken into r-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are b/r passes, we have

$$\Theta\left(\frac{b}{r}n + 2^r\right)$$

Choose r to minimize $T(n, b)$:

- Increasing r means fewer passes, but as $r >> \lg n$, the time grows exponentially.
Choosing r

Minimize $T(n, b)$ by differentiating and setting to 0.

Or, just observe that we don’t want $2^r > n$, and there’s no harm asymptotically in choosing r as large as possible subject to this constraint.

Choosing $r = \lg n$ implies $T(n, b) = \Theta(b \frac{n}{\lg n})$.

• For numbers in the range from 0 to $n^d - 1$, we have $b = d \lg n \Rightarrow$ radix sort runs in $\Theta(dn)$ time.
Bucket Sort

• **Assumption: uniform distribution**
 – Input numbers are *uniformly distributed* in [0,1).
 – Suppose input size is \(n \).

• **Idea:**
 – Divide [0,1) into \(n \) equal-sized subintervals (buckets).
 – Distribute \(n \) numbers into buckets
 – Expect that each bucket contains few numbers.
 – Sort numbers in each bucket (insertion sort as default).
 – Then go through buckets in order, listing elements,
BUCKET-SORT(A)

1. \(n \leftarrow \text{length}[A] \)
2. \(\text{for } i \leftarrow 1 \text{ to } n \)
3. \(\text{do insert } A[i] \text{ into bucket } B[nA[i]] \)
4. \(\text{for } i \leftarrow 0 \text{ to } n-1 \)
5. \(\text{do sort bucket } B[i] \text{ using insertion sort} \)
6. \(\text{Concatenate bucket } B[0], B[1], \ldots, B[n-1] \)
Example of BUCKET-SORT

![Diagram of BUCKET-SORT](image)

Figure 8.4 The operation of BUCKET-SORT. (a) The input array $A[1..10]$. (b) The array $B[0..9]$ of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open interval $[i/10, (i + 1)/10)$. The sorted output consists of a concatenation in order of the lists $B[0], B[1], \ldots, B[9]$.
Analysis of BUCKET-SORT(A)

1. \(n \leftarrow \text{length}[A] \) \(\Omega(1) \)
2. \(\text{for } i \leftarrow 1 \text{ to } n \) \(O(n) \)
3. \(\text{do insert } A[i] \text{ into bucket } B[\lfloor nA[i] \rfloor] \) \(\Omega(1) \) (i.e. total \(O(n) \))
4. \(\text{for } i \leftarrow 0 \text{ to } n-1 \) \(O(n) \)
5. \(\text{do sort bucket } B[i] \text{ with insertion sort } O(n_i^2) \) \(\sum_{i=0}^{n-1} O(n_i^2) \)
6. \(\text{Concatenate bucket } B[0],B[1],\ldots,B[n-1] \) \(O(n) \)

Where \(n_i \) is the size of bucket \(B[i] \).

Thus \(T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \)
\[= \Theta(n) + n \cdot O(2^{-1/n}) = \Theta(n) \]
Analysis of BUCKET-SORT(A)

Time:
\[T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \]
\((n_i: \text{number of elements in } i^{th} \text{ bucket}) \)

\[
E[T(n)] = E \left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2) \right]
\]

\[= \Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)] \quad \text{(linearity of expectation)} \]

\[= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2]) \quad \text{([E[aX]] = aE[X])} \]

\[E[n_i^2] = 2 - (1/n) \Rightarrow E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(2 - 1/n) \]

\[= \Theta(n) \]