Support Vector Machines

1. Consider the following linearly separable training data set:

\[D = \{ ((1,2), -1), ((2,3), 1), ((2,1), -1), ((3,4), 1), ((1,3), -1), ((4,4), 1) \} \]

a) Formulate the optimization function as well as the constraints for the corresponding linear maximum margin optimization problem without a regularization term. Also show the corresponding Lagrangian as well as the Lagrangian Dual for this problem.

b) Manually perform 4 iterations of the SMO algorithm on this data. You do not have to use any specific heuristic to pick the two \(\alpha \) parameters in each iteration.

c) Use a SVM solver (e.g. MatLab’s `fitcsvm` function) to learn the linear SVM parameters for this problem. Show the resulting decision boundary and identify the support vectors in this problem.

Decision Trees

2. Consider the problem where we want to predict whether a mushroom is edible or poisonous from a set of discrete attributes, namely cap-shape (6 possible values), cap-surface (4 possible values), cap-color (10 possible values),...
bruises (2 possible values), and odor (9 possible values). Data is given in
the files as a comma separated list \{e, x, s, y, t, a\} where the first entry is the
class (e or p), the second is the cap-shape (b, c, x, f, k, or s), the third is the
cap-surface (f, g, y, or s), the fourth entry is the cap-color (n, b, c, g, r, p, u,
e, w, y, t, or f), the fifth entry is whether it bruises (t, or f), and the last entry
is the odor (a, l, c, y, f, m, n, p, or s). There is a training and a test data set
for this problem (datasets are derived from the more expansive UCI machine
learning mushroom data set.

a) Show the construction of a 2 level decision tree using minimum En-
tropy as the construction criterion on the training data set. You should
include the entropy calculations and the construction decisions for each
node you include in the 2-level tree.

b) Implement a decision tree learner for this particular problem and derive
the complete tree for the training data set.

c) Apply the tree from part b) to the test data set and compare the classi-
fication accuracy on this test set with the one on the training set. Does
the result indicate overfitting?

Ensemble Classifiers

3. Using the data and decision tree algorithm from Problem 2, apply bagging
to the problem.

a) Implement a bagging routine for your decision tree learner.

b) Apply bagging 10, 50, and 100 times to the training data. For each
of the three cases, evaluate the resulting ensemble classifier on the test
data set and compare the error rates for a single classifier (part 2c) and
the three ensemble classifiers. Briefly discuss the results you obtained.

Hierarchical Clustering

4. Consider an unlabeled version of our height/weight/age data set used in the
previous assignments (and shown below).
a) Apply hierarchical clustering with single (minimum) linkage to this data and show the resulting cluster hierarchy. Indicate the order of the merge operations and the distance (linkage) value between the merged sets at each merge. You can do this on the cluster hierarchy tree if you want.

b) Repeat the clustering using complete (maximum) linkage. Again, make sure you indicate the linkage value for every cluster merge.