Machine Learning

Regression
Regression

- Regression refers to supervised learning problems where the target output is one or more continuous values.
 - Continuous output values imply that outputs can be interpolated and that they can be (at least partially) ordered.
 - Training data: \(D = \{ (x^{(i)}, y^{(i)}) : i \in \{1..n\} \} \)
 - The task is to learn a function (hypothesis), \(h \), such that \(h(x^{(i)}) \) is a “good” predictor for \(y^{(i)} \).
Regression

Regression is often better formulated as a discriminative learning task

- Continuous output would require learning a conditional probability density function with continuous conditions for the generative scenario
- For discriminative learning, we explicitly form a representation for the function h estimating the MLE/MAP value for the input x
 - Lower dimensional function
 - Does not need to represent the full distribution, only the estimate
Linear Regression

- The simplest representation for regression is a linear function with a set of parameters.
 - In a linear representation, the function is linear in terms of the function parameters θ but not necessarily in the features of the input x.

 $$ h_\theta(x) = \sum_j \theta_j \phi_j(x) $$

 - A special case of this is the traditional linear representation in the original data features.

 $$ h_\theta(x) = \theta_0 + \sum_{j=1}^{m} \theta_j x_j $$

 - This represents a line in the original feature space.
Linear Regression

- Often we will write this in vector/matrix notation
 \[h_\theta(x) = \sum_j \theta_j \phi_j(x) = \bar{\theta}^T \Phi(x) \]

- Since we do not have a probabilistic representation we do need a different performance function
 - Squared error
 \[E(\theta) = \sum_{i=1}^{n} E(\theta, (x^{(i)}, y^{(i)})) = \sum_{i=1}^{n} \frac{1}{2} \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \]
 \[= \frac{1}{2} \sum_{i=1}^{n} \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \]
Error Minimization

- There are different ways we can minimize an error (or other performance) function
 - Analytic optimization
 - Find parameters where the derivative is 0
 \[\frac{\partial E(\theta)}{\partial \theta} = 0 \]
 - Ensure it is a minimum and not a maximum
 - Batch gradient descent
 \[\theta := \theta - \alpha \frac{\partial E(\theta)}{\partial \theta} \]
 - Stochastic/incremental gradient descent
 \[\theta := \theta - \alpha \frac{\partial E(\theta, (x^{(i)}, y^{(i)}))}{\partial \theta} \]
Linear Regression

- Using the Least Square error function we can derive a stochastic gradient descent method

\[\theta := \theta - \alpha \frac{\partial}{\partial \theta} E\left(\theta, \left(x^{(i)}, y^{(i)}\right)\right) = \theta - \alpha \frac{1}{2} \frac{\partial}{\partial \theta} \left(h_\theta(x^{(i)}) - y^{(i)}\right)^2 \]

\[= \theta - \alpha \frac{1}{2} \left(h_\theta(x^{(i)}) - y^{(i)}\right) \frac{\partial}{\partial \theta} h_\theta(x^{(i)}) = \theta - \alpha \left(h_\theta(x^{(i)}) - y^{(i)}\right) \frac{\partial}{\partial \theta} \theta^T \phi(x^{(i)}) \]

\[= \theta - \alpha \left(h_\theta(x^{(i)}) - y^{(i)}\right) \phi(x^{(i)}) \]

- This is also called the Widrow-Hoff learning rule

- Converting this to batch gradient descent

\[\theta := \theta - \alpha \frac{\partial}{\partial \theta} E(\theta) = \theta - \alpha \sum_{i=1}^{n} \left(h_\theta(x^{(i)}) - y^{(i)}\right) \phi(x^{(i)}) \]
Linear Regression Example

- Example from Andrew Ng.
- Using simple representation linear in the features

<table>
<thead>
<tr>
<th>Living area (feet²)</th>
<th>Price (1000$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2104</td>
<td>400</td>
</tr>
<tr>
<td>1600</td>
<td>330</td>
</tr>
<tr>
<td>2400</td>
<td>369</td>
</tr>
<tr>
<td>1416</td>
<td>232</td>
</tr>
<tr>
<td>3000</td>
<td>540</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Linear Regression Example

Using batch gradient descent

The ellipses shown above are the contours of a quadratic function. Also shown is the trajectory taken by gradient descent, which was initialized at (48,30). The x's in the figure (joined by straight lines) mark the successive values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset, to learn to predict housing price as a function of living area, we obtain $\theta_0 = 71.27$, $\theta_1 = 0.1345$. If we plot $h_\theta(x)$ as a function of x (area), along with the training data, we obtain the following figure:

If the number of bedrooms were included as one of the input features as well, we get $\theta_0 = 89.60$, $\theta_1 = 0.1392$, $\theta_2 = -8.738$. The above results were obtained with batch gradient descent. The is an alternative to batch gradient descent that also works very well. Consider the following algorithm:
Linear Regression Example

Resulting in a linear predictor

The ellipses shown above are the contours of a quadratic function. Also shown is the trajectory taken by gradient descent, which was initialized at (48,30). The x's in the figure (joined by straight lines) mark the successive values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset, to learn to predict housing price as a function of living area, we obtain θ₀ = 7.127, θ₁ = 0.1345. If we plot hθ(x) as a function of x (area), along with the training data, we obtain the following figure:

If the number of bedrooms were included as one of the input features as well, we get θ₀ = 8.960, θ₁ = 0.1392, θ₂ = -8.738.

The above results were obtained with batch gradient descent. There is an alternative to batch gradient descent that also works very well. Consider the following algorithm:
Least Square Error and Maximum Likelihood

- Why is least square a good performance function for Linear regression?
- Under certain assumption least square for linear regression leads to the maximum likelihood parameters for a linear function
 - Assume that the real function is linear with noise
 \[y^{(i)} = \theta^T \phi(x^{(i)}) + \epsilon^{(i)} \]
 - Assume that the noise is normally distributed
 \[\epsilon^{(i)} \sim N(0, \sigma^2) \]
Least Square Error and Maximum Likelihood

Under these assumptions we can express the likelihood of the parameters

$$L(\theta) = p_\theta(\bar{y} \mid X) = \prod_{i=1}^{n} p_\theta(y^{(i)} \mid x^{(i)})$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \theta^T \phi(x^{(i)}))^2}{2\sigma^2}}$$

Converting this to log likelihood

$$\log L(\theta) = \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \theta^T \phi(x^{(i)}))^2}{2\sigma^2}} \right)$$

$$= n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \sum_{i=1}^{n} \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right)^2$$

Maximum likelihood is the same as least squares
To simplify notation we convert data and target values into matrices:

\[
\Phi(X) = \begin{pmatrix}
\phi_1(x^{(1)}) & \phi_2(x^{(1)}) & \phi_3(x^{(1)}) & \cdots & \phi_m(x^{(1)}) \\
\phi_1(x^{(2)}) & \phi_2(x^{(2)}) & \phi_3(x^{(2)}) & \cdots & \phi_m(x^{(2)}) \\
\phi_1(x^{(3)}) & \phi_2(x^{(3)}) & \phi_3(x^{(3)}) & \cdots & \phi_m(x^{(3)}) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi_1(x^{(n)}) & \phi_2(x^{(n)}) & \phi_3(x^{(n)}) & \cdots & \phi_m(x^{(n)})
\end{pmatrix}
\]

\[
Y = \begin{pmatrix}
y^{(1)T} \\
y^{(2)T} \\
y^{(3)T} \\
\vdots \\
y^{(n)T}
\end{pmatrix}
\]

Using this the vector of predicted values \(h(X) \) can be computed as

\[
\tilde{h}(X) = \Phi(X)\tilde{\theta}
\]
Analytic Optimization

- The squared error function can then be rewritten as
 \[E(\theta) = \frac{1}{2}(\vec{h}(X) - Y)^T(\vec{h}(X) - Y) \]
- To optimize we have to calculate the derivative
- Derivative of a matrix is the matrix of its partial derivatives with respect to all the parameters
 - This is also called its Jacobian
 \[
 \nabla_\theta E(\theta) = \begin{bmatrix}
 \frac{\partial E}{\partial \theta_{1,1}} & \cdots & \frac{\partial E}{\partial \theta_{1,k}} \\
 \vdots & \ddots & \vdots \\
 \frac{\partial E}{\partial \theta_{m,1}} & \cdots & \frac{\partial E}{\partial \theta_{m,k}}
 \end{bmatrix}
 \]
Analytic Optimization

- For linear regression the derivative can be derived

\[
\nabla_\theta E(\theta) = \nabla_\theta \frac{1}{2} (\vec{h}(X) - Y)^T (\vec{h}(X) - Y) = \nabla_\theta \frac{1}{2} (\Phi(X)\vec{\theta} - Y)^T (\Phi(X)\vec{\theta} - Y)
\]

\[
= \Phi(X)^T \Phi(X)\vec{\theta} - \Phi(X)^T Y
\]

- This leads to an analytic solution

\[
\Phi(X)^T \Phi(X)\vec{\theta} - \Phi(X)^T Y = 0
\]

\[
\to \Phi(X)^T \Phi(X)\vec{\theta} = \Phi(X)^T Y
\]

These are the Normal Equations of the Least Squares problem

\[
\to \vec{\theta} = \left(\Phi(X)^T \Phi(X) \right)^{-1} \Phi(X)^T Y = \Phi(X)^+ Y
\]

- A+ is called the Moore-Penrose Pseudoinverse
Analytic Optimization

- Using Pseudoinverse poses challenges
 - Computation the Pseudoinverse for matrices with a large number of rows can be numerically unstable
 - Pseudoinverses can be ill-conditioned, leading to numerically unstable/incorrect results
 - Results should always be verified

- There are more stable ways to solve this optimization problem
 - E.g. use of extended system and QR factorization
 - Incremental optimization
Linear Regression

- Choosing feature functions $\phi(x)$ allows linear regression to represent non-linear functions
 - Still linear in the learned parameters
 - Can not learn the type of non-linearity (only choose it)
 - Adding many feature functions leads to overfitting

- Locally Linear Regression learns different parameters for different regions of $\phi(x)$
Locally Weighted Linear Regression

- Different ways to increase the types of classes that linear regression can form exist
 - Locally weighted linear regression combines ideas of linear regression with ideas from non-parametric representations
 - Error is weighted squared error where the weight determines influence of a point and is based on similarity
 \[E(\theta, x) = \sum_{i=1}^{n} w^{(i)}(x) E\left(\theta, \left(x^{(i)}, y^{(i)} \right) \right) = \frac{1}{2} \sum_{i=1}^{n} w^{(i)}(x) \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \]
 - Weights are not parameters to be learned but fixed functions of the point for which the error is calculated
Locally Weighted Linear Regression

- Common weights are local to the point, e.g.:

\[
 w^{(i)}(x) = e^{-\frac{(x^{(i)}-x)^2}{2\gamma^2}}
\]

- Since weights are positive they can be pulled into the design matrix \(\Phi(X) \) and the target output \(Y \)

- Can be solved the same way as linear regression once the data point \(x \) is known
Locally Weighted Linear Regression

- For each point weights can be computed, reducing it to a weighted least squares problem with fixed weights
 - Corresponds to optimizing a different Error function for each query
- Locally linear regression forms on regression line for each data point, leading to a smooth regression curve using linear regression
 - Can have problems when there is limit data for which the weight function is sufficiently large
Overfitting

- Locally linear regression addresses overfitting by allowing a function to be approximated with fewer features.
- Another method to address overfitting is regularization.
 - Introduce penalty term for the factor introducing overfitting: complexity of the representation.
 - Penalize large coefficients as a measure of complexity.
 - L1 regularization: Add penalty of $\sum_i \|\theta\|_1$
 - L2 regularization: Add penalty of $\sum_i \|\theta\|_2$
Linear Regression

- Linear regression is a powerful technique to build Maximum Likelihood predictors for regression problems
 - Has only to be linear in the learning parameters and can thus represent limited non-linear function in terms of the input
 - Choice of feature functions is important for its expressiveness
 - Analytic solution can be computed but is sometimes numerically unstable
 - Incremental techniques can be used for on-line learning or if analytic solution is not stable