Machine Learning

Regression
Regression

Regression refers to supervised learning problems where the target output is one or more continuous values.

- Continuous output values imply that outputs can be interpolated and that they can be (at least partially) ordered.
- Training data: $D = \{(x^{(i)}, y^{(i)}): i \in \{1..n\}\}$

- The task is to learn a function (hypothesis), h, such that $h(x^{(i)})$ is a “good” predictor for $y^{(i)}$.
Regression

Regression is often better formulated as a discriminative learning task

- Continuous output would require learning a conditional probability density function with continuous conditions for the generative scenario.
- For discriminative learning, we explicitly form a representation for the function h estimating the MLE/MAP value for the input x:
 - Lower dimensional function
 - Does not need to represent the full distribution, only the estimate.
Linear Regression

- The simplest representation for regression is a linear function with a set of parameters
- In a linear representation, the function is linear in terms of the function parameters θ but not necessarily in the features of the input x

$$h_\theta(x) = \sum_j \theta_j \phi_j(x)$$

- A special case of this is the traditional linear representation in the original data features

$$h_\theta(x) = \theta_0 + \sum_{j=1}^m \theta_j x_j$$

- This represents a line in the original feature space
Linear Regression

- Often we will write this in vector/matrix notation

\[h_\theta(x) = \sum_j \theta_j \phi_j(x) = \tilde{\theta}^T \Phi(x) \]

- Since we do not have a probabilistic representation we do need a different performance function

- Squared error

\[
E(\theta) = \sum_{i=1}^n E\left(\theta, (x^{(i)}, y^{(i)})\right) = \sum_{i=1}^n \frac{1}{2} \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \\
= \frac{1}{2} \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2
\]
Error Minimization

- There are different ways we can minimize an error (or other performance) function
 - **Analytic optimization**
 - Find parameters where the derivative is 0
 \[\frac{\partial E(\theta)}{\partial \theta} = 0 \]
 - Ensure it is a minimum and not a maximum
 - **Batch gradient descent**
 \[\theta := \theta - \alpha \frac{\partial E(\theta)}{\partial \theta} \]
 - **Stochastic/incremental gradient descent**
 \[\theta := \theta - \alpha \frac{\partial E(\theta, (x^{(i)}, y^{(i)}))}{\partial \theta} \]
Linear Regression

- Using the Least Square error function we can derive a stochastic gradient descent method
 \[\theta := \theta - \alpha \frac{\partial}{\partial \theta} E \left(\theta, \left(x^{(i)}, y^{(i)} \right) \right) = \theta - \alpha \frac{1}{2} \frac{\partial}{\partial \theta} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \]
 \[= \theta - \alpha \frac{1}{2} 2 \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta} h_{\theta}(x^{(i)}) = \theta - \alpha \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta} \theta^T \phi(x^{(i)}) \]
 \[= \theta - \alpha \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \phi(x^{(i)}) \]
 - This is also called the Widrow-Hoff learning rule

- Converting this to batch gradient descent
 \[\theta := \theta - \alpha \frac{\partial}{\partial \theta} E(\theta) = \theta - \alpha \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \phi(x^{(i)}) \]
Linear Regression Example

- Example from Andrew Ng.
- Using simple representation linear in the features

<table>
<thead>
<tr>
<th>Living area (feet2)</th>
<th>Price (1000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2104</td>
<td>400</td>
</tr>
<tr>
<td>1600</td>
<td>330</td>
</tr>
<tr>
<td>2400</td>
<td>369</td>
</tr>
<tr>
<td>1416</td>
<td>232</td>
</tr>
<tr>
<td>3000</td>
<td>540</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
Linear Regression Example

- Using batch gradient descent

The ellipses shown above are the contours of a quadratic function. Also shown is the trajectory taken by gradient descent, which was initialized at (48, 30). The x’s in the figure (joined by straight lines) mark the successive values of \(\theta \) that gradient descent went through.

When we run batch gradient descent to fit \(\theta \) on our previous dataset, to learn to predict housing price as a function of living area, we obtain \(\theta_0 = 7.127 \), \(\theta_1 = 0.1345 \). If we plot \(h_\theta(x) \) as a function of \(x \) (area), along with the training data, we obtain the following figure:

If the number of bedrooms were included as one of the input features as well, we get \(\theta_0 = 8.960 \), \(\theta_1 = 0.1392 \), \(\theta_2 = -8.738 \). The above results were obtained with batch gradient descent. There is an alternative to batch gradient descent that also works very well. Consider the following algorithm:
Linear Regression Example

- Resulting in a linear predictor

The ellipses shown above are the contours of a quadratic function. Also shown is the trajectory taken by gradient descent, which was initialized at (48, 30). The x's in the figure (joined by straight lines) mark the successive values of \(\theta \) that gradient descent went through.

When we run batch gradient descent to fit \(\theta \) on our previous dataset, to learn to predict housing price as a function of living area, we obtain \(\theta_0 = 71.27 \), \(\theta_1 = 0.1345 \). If we plot \(h_\theta(x) \) as a function of \(x \) (area), along with the training data, we obtain the following figure:

If the number of bedrooms were included as one of the input features as well, we get \(\theta_0 = 89.60 \), \(\theta_1 = 0.1392 \), \(\theta_2 = -8.738 \).

The above results were obtained with batch gradient descent. There is an alternative to batch gradient descent that also works very well. Consider the following algorithm:
Least Square Error and Maximum Likelihood

- Why is least square a good performance function for Linear regression?
- Under certain assumption least square for linear regression leads to the maximum likelihood parameters for a linear function
 - Assume that the real function is linear with noise
 \[y^{(i)} = \theta^T \phi(x^{(i)}) + \varepsilon^{(i)} \]
 - Assume that the noise is normally distributed
 \[\varepsilon^{(i)} \sim N(0, \sigma^2) \]
Least Square Error and Maximum Likelihood

- Under these assumptions we can express the likelihood of the parameters

\[L(\theta) = p_\theta(\mathbf{y} \mid X) = \prod_{i=1}^{n} p_\theta(y^{(i)} \mid x^{(i)}) \]

\[= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)}-\theta^T \phi(x^{(i)}))^2}{2\sigma^2}} \]

- Converting this to log likelihood

\[\log L(\theta) = \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)}-\theta^T \phi(x^{(i)}))^2}{2\sigma^2}} \right) \]

\[= n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - \theta^T \phi(x^{(i)}) \right)^2 \]

- Maximum likelihood is the same as least squares
Analytic Optimization

- To simplify notation we convert data and target values into matrices

\[
\Phi(X) = \begin{pmatrix}
\phi_1(x^{(1)}) & \phi_2(x^{(1)}) & \phi_3(x^{(1)}) & \cdots & \phi_m(x^{(1)}) \\
\phi_1(x^{(2)}) & \phi_2(x^{(2)}) & \phi_3(x^{(2)}) & \cdots & \phi_m(x^{(2)}) \\
\phi_1(x^{(3)}) & \phi_2(x^{(3)}) & \phi_3(x^{(3)}) & \cdots & \phi_m(x^{(3)}) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi_1(x^{(n)}) & \phi_2(x^{(n)}) & \phi_3(x^{(n)}) & \cdots & \phi_m(x^{(n)})
\end{pmatrix}
\]

\[
Y = \begin{pmatrix}
y^{(1)^T} \\
y^{(2)^T} \\
y^{(3)^T} \\
\vdots \\
y^{(n)^T}
\end{pmatrix}
\]

- Using this the vector of predicted values \(h(X) \) can be computed as

\[
\tilde{h}(X) = \Phi(X)\tilde{\theta}
\]
Analytic Optimization

- The squared error function can then be rewritten as
 \[E(\theta) = \frac{1}{2} (\hat{h}(X) - Y)^T (\hat{h}(X) - Y) \]

- To optimize we have to calculate the derivative

 - Derivative of a matrix is the matrix of its partial derivatives with respect to all the parameters
 - This is also called its Jacobian

 \[\nabla_\theta E(\theta) = \begin{pmatrix} \frac{\partial E}{\partial \theta_{1,1}} & \cdots & \frac{\partial E}{\partial \theta_{1,k}} \\ \vdots & \ddots & \vdots \\ \frac{\partial E}{\partial \theta_{m,1}} & \cdots & \frac{\partial E}{\partial \theta_{m,k}} \end{pmatrix} \]
Analytic Optimization

- For linear regression the derivative can be derived

\[
\nabla_{\theta} E(\theta) = \nabla_{\theta} \frac{1}{2} (\hat{h}(X) - Y)^T (\hat{h}(X) - Y) = \nabla_{\theta} \frac{1}{2} (\Phi(X)\tilde{\theta} - Y)^T (\Phi(X)\tilde{\theta} - Y)
\]

\[
= \Phi(X)^T \Phi(X)\tilde{\theta} - \Phi(X)^T Y
\]

- This leads to an analytic solution

\[
\Phi(X)^T \Phi(X)\tilde{\theta} - \Phi(X)^T Y = 0
\]

\[
\rightarrow \Phi(X)^T \Phi(X)\tilde{\theta} = \Phi(X)^T Y \leftarrow \text{These are the Normal Equations of the Least Squares problem}
\]

\[
\rightarrow \tilde{\theta} = \left(\Phi(X)^T \Phi(X)\right)^{-1} \Phi(X)^T Y = \Phi(X)^+ Y
\]

- A+ is called the Moore-Penrose Pseudoinverse
Analytic Optimization

- Using Pseudoinverse poses challenges
 - Computation the Pseudoinverse for matrices with a large number of rows can be numerically unstable
 - Pseudoinverses can be ill-conditioned, leading to numerically unstable/incorrect results
 - Results should always be verified

- There are more stable ways to solve this optimization problem
 - E.g. use of extended system and QR factorization
 - Incremental optimization
Linear Regression

- Choosing feature functions $\phi(x)$ allows linear regression to represent non-linear functions
 - Still linear in the learned parameters
 - Can not learn the type of non-linearity (only choose it)
 - Adding many feature functions leads to overfitting

- Locally Linear Regression learns different parameters for different regions of $\phi(x)$
Locally Weighted Linear Regression

- Different ways to increase the types of classes that linear regression can form exist
 - Locally weighted linear regression combines ideas of linear regression with ideas from non-parametric representations
 - Error is weighted squared error where the weight determines influence of a point and is based on similarity
 \[
 E(\theta, x) = \sum_{i=1}^{n} w^{(i)}(x)E(\theta,(x^{(i)}, y^{(i)})) = \frac{1}{2} \sum_{i=1}^{n} w^{(i)}(x)(h_{\theta}(x^{(i)}) - y^{(i)})^2
 \]
 - Weights are not parameters to be learned but fixed functions of the point for which the error is calculated
Locally Weighted Linear Regression

- Common weights are local to the point, e.g.:

\[
 w^{(i)}(x) = e^{-\frac{(x^{(i)} - x)^2}{2\gamma^2}}
\]

- Since weights are positive they can be pulled into the design matrix \(\Phi(X) \) and the target output \(Y \)

- Can be solved the same way as linear regression once the data point \(x \) is known
Locally Weighted Linear Regression

- For each point weights can be computed, reducing it to a weighted least squares problem with fixed weights
 - Corresponds to optimizing a different Error function for each query
- Locally linear regression forms on regression line for each data point, leading to a smooth regression curve using linear regression
 - Can have problems when there is limit data for which the weight function is sufficiently large
Linear Regression

- Linear regression is a powerful technique to build Maximum Likelihood predictors for regression problems
 - Has only to be linear in the learning parameters and can thus represent limited non-linear function in terms of the input
 - Choice of feature functions is important for its expressiveness
 - Analytic solution can be computed but is sometimes numerically unstable
 - Incremental techniques can be used for on-line learning or if analytic solution is not stable