15. A. CONCEPTS

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the vertices. (AKA bottleneck shortest path tree)

Cut Property: Suppose S and T partition V such that

1. \(S \cap T = \emptyset \)
2. \(S \cup T = V \)
3. \(|S| > 0 \) and \(|T| > 0\)

then there is some MST that includes a minimum weight edge \(\{s, t\} \) with \(s \in S \) and \(t \in T \).

Proof:

Suppose there is a partition with a minimum weight edge \(\{s, t\} \).

A spanning tree without \(\{s, t\} \) must still have a path between \(s \) and \(t \).

Since \(s \in S \) and \(t \in T \), there must be at least one edge \(\{x, y\} \) on this path with \(x \in S \) and \(y \in T \).

By removing \(\{x, y\} \) and including \(\{s, t\} \), a spanning tree whose total weight is no larger is obtained.

Cycle Property: Suppose a given spanning tree does not include the edge \(\{u, v\} \). If the weight of \(\{u, v\} \) is no larger than the weight of an edge \(\{x, y\} \) on the unique spanning tree path between \(u \) and \(v \), then replacing \(\{x, y\} \) with \(\{u, v\} \) yields a spanning tree whose weight does not exceed that of the original spanning tree.
Proof: Including \{u, v\} in the set of chosen edges introduces a cycle, but removing \{x, y\} will remove the cycle to yield a modified tree whose weight is no larger.

The proof suggests a slow approach - iteratively find and remove a maximum weight edge from some remaining cycle:

15.B. **Prim’s Algorithm** – Three versions

Prim’s algorithm applies the cut property by having \(S\) include those vertices connected by a subtree of the eventual MST and \(T\) contains vertices that have not yet been included. A minimum weight edge from \(S\) to \(T\) will be used to move one vertex from \(T\) to \(S\)

1. “Memoryless” – Only saves partial MST and current partition.

 (http://ranger.uta.edu/~weems/NOTES2320/primMemoryless.c)

 Place any vertex \(x \in V\) in \(S\).

 \(T = V - \{x\}\)

 while \(T \neq \emptyset\)

 Find the minimum weight edge \(\{s, t\}\) over all \(t \in T\) and all \(s \in S\). (Scan adj. list for each \(t\))

 Include \(\{s, t\}\) in MST.

 \(T = T - \{t\}\)

 \(S = S \cup \{t\}\)

Since no substantial data structures are used, this takes \(\Theta(EV)\) time.

Which edge does Prim’s algorithm select next?
2. Maintains T-table that provides the closest vertex in S for each vertex in T.
(http://ranger.uta.edu/~weems/NOTES2320/primTable.c traverses adjacency lists)

Eliminates scanning all T adjacency lists in every phase, but still scans the adjacency list of the last vertex moved from T to S.

Place any vertex \(x \in V\) in S.

\[T = V - \{x\} \]

for each \(t \in T\)

- Initialize T-table entry with weight of \(\{t, x\}\) (or \(\infty\) if non-existent) and \(x\) as best-S-neighbor

while \(T \neq \emptyset\)

- Scan T-table entries for the minimum weight edge \(\{t, \text{best-S-neighbor}[t]\}\)

- over all \(t \in T\) and all \(s \in S\).

- Include edge \(\{t, \text{best-S-neighbor}[t]\}\) in MST.

\[T = T - \{t\} \]

\[S = S \cup \{t\} \]

for each vertex \(x\) in adjacency list of \(t\)

- if \(x \in T\) and weight of \(\{x, t\}\) < T-weight[x]

 - T-weight[x] = weight of \(\{x, t\}\)

 - best-S-neighbor[x] = t

What are the T-table contents before and after the next MST vertex is selected?

![Graph](image)

Analysis:

- Initializing the T-table takes \(\Theta(V)\).
- Scans of T-table entries contribute \(\Theta(V^2)\).
- Traversals of adjacency lists contribute \(\Theta(E)\).
- \(\Theta(V^2 + E)\) overall worst-case.
3. Replace T-table by a min-heap.

(http://ranger.uta.edu/~weems/NOTES2320/primHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move from T to S improves.

Place any vertex \(x \in V \) in S.

\(T = V - \{x\} \)

for each \(t \in T \)

Load T-heap entry with weight (as the priority) of \(\{t, x\} \) (or \(\infty \) if non-existent) and \(x \) as best-S-neighbor

\[\text{minHeapInit}(T\text{-heap}) \] // a fixDown at each parent node in heap

while \(T \neq \emptyset \)

Use \(\text{heapExtractMin} /* \text{fixDown} */ \) to obtain T-heap entry with the minimum weight edge over all \(t \in T \) and all \(s \in S \).

Include edge \(\{t, \text{best-S-neighbor}[t]\} \) in MST.

\(T = T - \{t\} \)

\(S = S \cup \{t\} \)

for each vertex \(x \) in adjacency list of \(t \)

if \(x \in T \) and weight of \(\{x, t\} < \text{T-weight}[x] \)

\(\text{T-weight}[x] = \text{weight of} \{x, t\} \)

\(\text{best-S-neighbor}[x] = t \)

\[\text{minHeapChange}(T\text{-heap}) \] // fixUp

Analysis:

Initializing the T-heap takes \(\Theta(V) \).

Total cost for \(\text{heapExtractMin} \)s is \(\Theta(V \log V) \).

Traversals of adjacency lists and \(\text{minHeapChange} \)s contribute \(\Theta(E \log V) \).

\(\Theta(E \log V) \) overall worst-case, since \(E > V \).

Which version is the fastest?

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Sparse ((E = O(V)))</th>
<th>Dense ((E = \Omega(V^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\Theta(EV))</td>
<td>(\Theta(V^2))</td>
<td>(\Theta(V^3))</td>
</tr>
<tr>
<td>2.</td>
<td>(\Theta(V^2 + E))</td>
<td>(\Theta(V^2))</td>
<td>(\Theta(V^2))</td>
</tr>
<tr>
<td>3.</td>
<td>(\Theta(E \log V))</td>
<td>(\Theta(V \log V))</td>
<td>(\Theta(V^2 \log V))</td>
</tr>
</tbody>
</table>
15.C. **Union-Find Trees to Represent Disjoint Subsets**

Abstraction:

Set of \(n \) elements: \(0 . . n - 1 \)

Initially all elements are in \(n \) different subsets

- **find(i)** - Returns integer ("leader") indicating which subset includes \(i \)

 \(i \) and \(j \) are in the same subset \(\iff \) find\((i) = \) find\((j) \)

- **union(i, j)** - Takes the set union of the subsets with leaders \(i \) and \(j \).

 Results of previous finds are invalid after a union.

Implementation 1: (http://ranger.uta.edu/~weems/NOTES2320/uf1.c)

Initialization:

\[
\text{for (i=0; i<n; i++)}
\]
\[
\quad \text{id[i]=i;}
\]

find(i):

\[
\text{return id[i];}
\]

unionFunc(i, j):

\[
\text{for (k=0; k<n; k++)}
\]
\[
\quad \text{if (id[k]==i)}
\]
\[
\quad \quad \text{id[k]=j;}
\]

Implementation 2: (http://ranger.uta.edu/~weems/NOTES2320/uf2.c)

find(i):

\[
\text{while (id[i]!=i)}
\]
\[
\quad \text{i=id[i];}
\]
\[
\quad \text{return i;}
\]

unionFunc(i, j):

\[
\text{id[i]=j;}
\]

Implementation 3: (http://ranger.uta.edu/~weems/NOTES2320/uf3.c)

Initialization:

\[
\text{for (i=0; i<n; i++)}
\]
\[
\quad \{
\quad \quad \text{id[i]=i;}
\quad \quad \text{sz[i]=1;}
\quad\}
\]

```c

```
find(x):
 for (i=x;
 id[i]! = i;
 i=id[i])
 ;
 root=i;
 // path compression – make all nodes on path
 // point directly at the root
 for (i=x;
 id[i]! = i;
 j=id[i],id[i]=root,i=j)
 ;
 return root;

unionFunc(i,j):
 if (sz[i]<sz[j])
 {
 id[i]=j;
 sz[j]+=sz[i];
 }
 else
 {
 id[j]=i;
 sz[i]+=sz[j];
 }

Best-case (shallow tree) and worst-case (deep tree) for a sequence of unions?

15.D. KRUSSLAL’S ALGORITHM – A Simple Method for MSTs Based on Union-Find Trees
(http://ranger.uta.edu/~weems/NOTES2320/kruskal.c)

Sort edges in ascending weight order.

Place each vertex in its own set.

Process each edge \{x, y\} in sorted order:

a=Find(x)
b=Find(y)
if a \ne b
 Union(a,b)
 Include \{x, y\} in MST
Time to sort, $\Theta(E \log V)$, dominates computation