CSE 2320 Notes 15: Minimum Spanning Trees

(Last updated 11/12/16 9:17 AM)

CLRS 21.3, 23.1-23.2

15.A. CONCEPTS

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the vertices. (AKA bottleneck shortest path tree)

Cut Property: Suppose S and T partition V such that

1. $S \cap T = \emptyset$
2. $S \cup T = V$
3. $|S| > 0$ and $|T| > 0$

then there is some MST that includes a minimum weight edge $\{s, t\}$ with $s \in S$ and $t \in T$.

Proof:

Suppose there is a partition with a minimum weight edge $\{s, t\}$.

A spanning tree without $\{s, t\}$ must still have a path between s and t.

Since $s \in S$ and $t \in T$, there must be at least one edge $\{x, y\}$ on this path with $x \in S$ and $y \in T$.

By removing $\{x, y\}$ and including $\{s, t\}$, a spanning tree whose total weight is no larger is obtained.

Cycle Property: Suppose a given spanning tree does not include the edge $\{u, v\}$. If the weight of $\{u, v\}$ is no larger than the weight of an edge $\{x, y\}$ on the unique spanning tree path between u and v, then replacing $\{x, y\}$ with $\{u, v\}$ yields a spanning tree whose weight does not exceed that of the original spanning tree.
Proof: Including \{u, v\} in the set of chosen edges introduces a cycle, but removing \{x, y\} will remove the cycle to yield a modified tree whose weight is no larger.

The proof suggests a slow approach - iteratively find and remove a maximum weight edge from some remaining cycle:

15.B. PRIM’S ALGORITHM – Three versions

Prim’s algorithm applies the cut property by having S include those vertices connected by a subtree of the eventual MST and T contains vertices that have not yet been included. A minimum weight edge from S to T will be used to move one vertex from T to S

1. “Memoryless” – Only saves partial MST and current partition.
 (http://ranger.uta.edu/~weems/NOTES2320/primMemoryless.c)

Place any vertex \(x \in V\) in S.
\[T = V - \{x\}\]
while \(T \neq \emptyset\)
 Find the minimum weight edge \(\{s, t\}\) over all \(t \in T\) and all \(s \in S\). (Scan adj. list for each t)
 Include \(\{s, t\}\) in MST.
 \[T = T - \{t\}\]
 \[S = S \cup \{t\}\]

Since no substantial data structures are used, this takes \(\Theta(EV)\) time.

Which edge does Prim’s algorithm select next?
2. Maintains T-table that provides the closest vertex in S for each vertex in T.
 (http://ranger.uta.edu/~weems/NOTES2320/primTable.c traverses adjacency lists)

Eliminates scanning all T adjacency lists in every phase, but still scans the adjacency list of the last
vertex moved from T to S.

Place any vertex \(x \in V\) in S.
\(T = V - \{x\}\)
for each \(t \in T\)
 Initialize T-table entry with weight of \(\{t, x\}\) (or \(\infty\) if non-existent) and \(x\) as best-S-neighbor
while \(T \neq \emptyset\)
 Scan T-table entries for the minimum weight edge \(\{t, \text{best-S-neighbor}[t]\}\)
 over all \(t \in T\) and all \(s \in S\).
 Include edge \(\{t, \text{best-S-neighbor}[t]\}\) in MST.
 \(T = T - \{t\}\)
 \(S = S \cup \{t\}\)
 for each vertex \(x\) in adjacency list of \(t\)
 if \(x \in T\) and weight of \(\{x, t\}\) < T-weight\([x]\]
 T-weight\([x]\) = weight of \(\{x, t\}\)
 best-S-neighbor\([x]\) = \(t\)

What are the T-table contents before and after the next MST vertex is selected?

Analysis:

Initializing the T-table takes \(\Theta(V)\).
Scans of T-table entries contribute \(\Theta(V^2)\).
Traversals of adjacency lists contribute \(\Theta(E)\).
\(\Theta(V^2 + E)\) overall worst-case.
3. Replace T-table by a min-heap.
 (http://ranger.uta.edu/~weems/NOTES2320/primHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move from T to S improves.

Place any vertex \(x \in V\) in S.
T = \(V - \{x\}\)
for each \(t \in T\)
 Load T-heap entry with weight (as the priority) of \(\{t, x\}\) (or \(\infty\) if non-existent) and \(x\) as best-S-neighbor

\text{minHeapInit}(T\text{-heap}) \ // \text{a fixDown at each parent node in heap}

while \(T \neq \emptyset\)
 Use \text{heapExtractMin} /* \text{fixDown} */ to obtain T-heap entry with the minimum weight edge over all \(t \in T\) and all \(s \in S\).
 Include edge \(\{t, \text{best-S-neighbor}[t]\}\) in MST.
T = \(T - \{t\}\)
S = \(S \cup \{t\}\)
for each vertex \(x\) in adjacency list of \(t\)
 if \(x \in T\) and weight of \(\{x, t\}\) < T-weight[\(x\)]
 T-weight[\(x\)] = weight of \(\{x, t\}\)
 best-S-neighbor[\(x\)] = \(t\)
 \text{minHeapChange}(T\text{-heap}) \ // \text{fixUp}

Analysis:

Initializing the T-heap takes \(\Theta(V)\).
Total cost for \text{heapExtractMin}s is \(\Theta(V \log V)\).
Traversals of adjacency lists and \text{minHeapChange}s contribute \(\Theta(E \log V)\).
\(\Theta(E \log V)\) overall worst-case, since \(E > V\).

Which version is the fastest?

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Sparse ((E = O(V)))</th>
<th>Dense ((E = \Omega(V^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\Theta(EV))</td>
<td>(\Theta(V^2))</td>
<td>(\Theta(V^3))</td>
</tr>
<tr>
<td>2.</td>
<td>(\Theta(V^2 + E))</td>
<td>(\Theta(V^2))</td>
<td>(\Theta(V^2))</td>
</tr>
<tr>
<td>3.</td>
<td>(\Theta(E \log V))</td>
<td>(\Theta(V \log V))</td>
<td>(\Theta(V^2 \log V))</td>
</tr>
</tbody>
</table>
15.C. UNION-FIND TREES TO REPRESENT DISJOINT SUBSETS

Abstraction:

Set of n elements: $0 \ldots n - 1$

Initially all elements are in n different subsets

\textbf{find}(i)\textbf{-} Returns integer ("leader") indicating which subset includes i

\begin{align*}
i \text{ and } j \text{ are in the same subset } &\iff \textbf{find}(i) == \textbf{find}(j) \\
\textbf{union}(i, j) \text{-} & \text{ Takes the set union of the subsets with leaders } i \text{ and } j.
\end{align*}

\textbf{Implementation 1}: \texttt{(http://ranger.uta.edu/~weems/NOTES2320/uf1.c)}

\textbf{Initialization}:

\begin{verbatim}
for (i=0; i<n; i++)
 id[i]=i;
\end{verbatim}

\textbf{find}(i):

\begin{verbatim}
return id[i];
\end{verbatim}

\textbf{unionFunc}(i, j):

\begin{verbatim}
for (k=0; k<n; k++)
 if (id[k]==i)
 id[k]=j;
\end{verbatim}

\textbf{Implementation 2}: \texttt{(http://ranger.uta.edu/~weems/NOTES2320/uf2.c)}

\textbf{find}(i):

\begin{verbatim}
while (id[i]!=i)
 i=id[i];
return i;
\end{verbatim}

\textbf{unionFunc}(i, j):

\begin{verbatim}
id[i]=j;
\end{verbatim}

\textbf{Implementation 3}: \texttt{(http://ranger.uta.edu/~weems/NOTES2320/uf3.c)}

\textbf{Initialization}:

\begin{verbatim}
for (i=0; i<n; i++)
 {
 id[i]=i;
 sz[i]=1;
 }
\end{verbatim}
find(x):
 for (i=x;
 id[i]!=i;
 i=id[i])
 ;
 root=i;
 // path compression - make all nodes on path
 // point directly at the root
 for (i=x;
 id[i]!=i;
 j=id[i],id[i]=root,i=j)
 ;
 return root;

unionFunc(i,j):
 if (sz[i]<sz[j])
 {
 id[i]=j;
 sz[j]+=sz[i];
 }
 else
 {
 id[j]=i;
 sz[i]+=sz[j];
 }

Best-case (shallow tree) and worst-case (deep tree) for a sequence of unions?

15.D. KRUNSKAL’S ALGORITHM – A Simple Method Based on Union-Find Trees
(http://ranger.uta.edu/~weems/NOTES2320/kruskal.c)

Sort edges in ascending weight order.

Place each vertex in its own set.

Process each edge \{x, y\} in sorted order:

\[a = \text{FIND}(x) \]
\[b = \text{FIND}(y) \]
\[\text{if } a \neq b \]
\[\text{UNION}(a,b) \]
Include \{x, y\} in MST
Time to sort, $\Theta(E \log V)$, dominates computation