CSE 2320 Notes 16: Shortest Paths

(CLRS 24.3, 25.2)

16.A. CONCEPTS

(Aside: http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2597757.2530531)

Input:

Directed graph with non-negative edge weights (stored as adj. matrix for Floyd-Warshall)
Dijkstra – source vertex

Output:

Dijkstra – tree that gives a shortest path from source to each vertex
Floyd-Warshall – shortest path between each pair of vertices (“all-pairs”) as matrix

16.B. DIJKSTRA’S ALGORITHM – three versions

```plaintext
0 1 2 3 4 5 6 7
0(-) ∞ ∞ ∞ ∞ ∞ ∞ ∞
* 10(0) 20(0) 15(0)
* 13(4) 11(1) 20(1) * 18(4)
* 14(2) 16(2) 20(2) * 15(3)
* 18(7) * * *
```
Similar to Prim’s MST:

\[
\begin{align*}
S &= \text{vertices whose shortest path is known (initially just the source)} \\
\text{Length of path} \\
\text{Predecessor (vertex) on path (AKA shortest path tree)} \\
T &= \text{vertices whose shortest path is not known}
\end{align*}
\]

Each phase moves a T vertex to S by virtue of that vertex having the shortest path among all T vertices.

Third version may be viewed as being BFS with the FIFO queue replaced by a priority queue.

1. “Memoryless” – Only saves shortest path tree and current partition.
 \(\text{http://ranger.uta.edu/~weems/NOTES2320/dijkstraMemoryless.c} \)

Place desired source vertex \(x \in V \) in S

\[
\begin{align*}
T &= V - \{x\} \\
x.\text{distance} &= 0 \\
x.\text{pred} &= (-1) \\
\text{while } T \neq \emptyset \\
\quad \text{Find the edge } (s, t) \text{ over all } t \in T \text{ and all } s \in S \text{ with minimum value for } s.\text{distance} + \text{weight}(s, t) \\
\quad \text{(i.e. scan adj. list for each } s) \\
\quad t.\text{distance} &= s.\text{distance} + \text{weight}(s, t) \\
\quad t.\text{pred} &= s \\
\quad T &= T - \{t\} \\
\quad S &= S \cup \{t\}
\end{align*}
\]

Since no substantial data structures are used, this takes \(\Theta(VE) \) time.

2. Maintains T-table that provides the predecessor vertex in S for each vertex \(t \in T \) to give the shortest possible path through S to t. \(\text{http://ranger.uta.edu/~weems/NOTES2320/dijkstraTable.c} \)

Eliminates scanning all S adjacency lists in every phase, but still scans the list of the last vertex moved from T to S.

Place desired source vertex \(x \in V \) in S

\[
\begin{align*}
T &= V - \{x\} \\
x.\text{distance} &= 0 \\
x.\text{pred} &= (-1) \\
\text{for each } t \in T \\
\quad \text{Initialize } t.\text{distance} \text{ with weight of } (x, t) \text{ (or } \infty \text{ if non-existent) and } t.\text{pred} = x
\end{align*}
\]
while \(T \neq \emptyset \)

Scan \(T \) entries to find vertex \(t \) with minimum value for \(t.\text{distance} \)

\[
T = T - \{t\}
\]

\[
S = S \cup \{t\}
\]

for each vertex \(x \) in adjacency list of \(t \) (i.e. \((t, x) \))

if \(x \in T \) and \(t.\text{distance} + \text{weight}(t, x) < x.\text{distance} \)

\[
x.\text{distance} = t.\text{distance} + \text{weight}(t, x)
\]

\[
x.\text{pred} = t
\]

Analysis:

Initializing the \(T \)-table takes \(\Theta(V) \).

Scans of \(T \)-table entries contribute \(\Theta(V^2) \).

Traversals of adjacency lists contribute \(\Theta(E) \).

\(\Theta(V^2 + E) \) overall worst-case.

3. Replace \(T \)-table by a min-heap.

(http://ranger.uta.edu/~weems/NOTES2320/dijkstraHeap.cpp)

The time for updating distances and predecessors increases, but the time for selection of the next vertex to move from \(T \) to \(S \) improves.

Place desired source vertex \(x \in V \) in \(S \)

\[
T = V - \{x\}
\]

\[
x.\text{distance} = 0
\]

\[
x.\text{pred} = (-1)
\]

for each \(t \in T \)

Initialize \(T \)-heap with weight (as the priority) of \((x, t) \) (or \(\infty \) if non-existent) and \(t.\text{pred} = x \)

\text{minHeapInit}(T\text{-heap}) // a \text{fixDown} at each parent node in heap

while \(T \neq \emptyset \)

Use \text{heapExtractMin} /* \text{fixDown} */ to obtain \(T \)-heap entry with minimum \(t.\text{distance} \)

\[
T = T - \{t\}
\]

\[
S = S \cup \{t\}
\]

for each vertex \(x \) in adjacency list of \(t \) (i.e. \((t, x) \))

if \(x \in T \) and \(t.\text{distance} + \text{weight}(t, x) < x.\text{distance} \)

\[
x.\text{distance} = t.\text{distance} + \text{weight}(t, x)
\]

\[
x.\text{pred} = t
\]

\text{minHeapChange}(T\text{-heap}) // \text{fixUp}

Analysis:

Initializing the \(T \)-heap takes \(\Theta(V) \).

Total cost for \text{heapExtractMins} is \(\Theta(V \log V) \).

Traversals of adjacency lists and \text{minHeapChanges} contribute \(\Theta(E \log V) \).

\(\Theta(E \log V) \) overall worst-case, since \(E > V \).
Which version is the fastest?

<table>
<thead>
<tr>
<th>Theory</th>
<th>Sparse (E = O(V))</th>
<th>Dense (E = \Omega(V^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\Theta(EV))</td>
<td>(\Theta(V^2))</td>
<td>(\Theta(V^3))</td>
</tr>
<tr>
<td>2. (\Theta(V^2 + E))</td>
<td>(\Theta(V^2))</td>
<td>(\Theta(V^2))</td>
</tr>
<tr>
<td>3. (\Theta(E \log V))</td>
<td>(\Theta(V \log V))</td>
<td>(\Theta(V^2 \log V))</td>
</tr>
</tbody>
</table>

16.C. FLOYD-WARSHALL ALGORITHM

Based on adjacency matrices. Will examine three versions:

Warshall’s Algorithm – After \(\Theta(V^3) \) preprocessing, processes each path existence query in \(\Theta(1) \) time.

Warshall’s Algorithm with Successors (or predecessors or transitive vertices) - After \(\Theta(V^3) \) preprocessing, provides a path in response to a path existence query in \(O(V) \) time (similar to dynamic programming backtrace).

Floyd-Warshall Algorithm (with Successors) - After \(\Theta(V^3) \) preprocessing, provides each shortest path in \(O(V) \) time.

Warshall’s Algorithm:

\[
\begin{align*}
\text{for } (j=0; \ j<V; \ j++) \\
\quad \text{for } (i=0; \ i<V; \ i++) \\
\quad \quad \text{if } (A[i][j]) \\
\quad \quad \quad \text{for } (k=0; \ k<V; \ k++) \\
\quad \quad \quad \quad \text{if } (A[j][k]) \\
\quad \quad \quad \quad \quad \ A[i][k]=1;
\end{align*}
\]

\hspace{1cm}

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & \quad & \quad & \\
1 & 1 & 1 & \quad & \\
2 & 1 & \quad & \quad & \\
3 & 1 & \quad & \quad & \\
4 & \quad & \quad & \quad & \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & \quad & \quad & \\
1 & 1 & 1 & \quad & \\
2 & 1 & \quad & \quad & \\
3 & 1 & \quad & \quad & \\
4 & \quad & \quad & \quad & \\
\end{bmatrix}
\]
If zero-edge paths are useful for an application (i.e. reflexive, self-loops), the diagonal may be all ones.

Why does it work?

a. *Correct* in use of transitivity.

b. Is it *complete*?

<table>
<thead>
<tr>
<th>When</th>
<th>Paths That Can Be Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before $j=0$</td>
<td>$x \rightarrow y$</td>
</tr>
<tr>
<td>After $j=0$</td>
<td>$x \rightarrow 0 \rightarrow y$</td>
</tr>
<tr>
<td>After $j=1$</td>
<td>$x \rightarrow 1 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 0 \rightarrow 1 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 1 \rightarrow 0 \rightarrow y$</td>
</tr>
<tr>
<td>After $j=2$</td>
<td>$x \rightarrow 2 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 0 \rightarrow 2 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 1 \rightarrow 2 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 2 \rightarrow 0 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 2 \rightarrow 1 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 0 \rightarrow 2 \rightarrow 1 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 1 \rightarrow 0 \rightarrow 2 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 1 \rightarrow 2 \rightarrow 0 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 2 \rightarrow 0 \rightarrow 1 \rightarrow y$</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow 2 \rightarrow 1 \rightarrow 0 \rightarrow y$</td>
</tr>
</tbody>
</table>

...

After $j=p$
$x \rightarrow$ Permutation of *subset* of $0 \ldots p \rightarrow y$

After $j=V-1$
ALL PATHS

Math. Induction:
Warshall’s Algorithm with Successors

Successor Matrix

Buc-ee’s directions:

\[
\begin{array}{ccc}
100 & 20 & 37 \\
s[100][200]=20 & s[20][200]=37 & s[37][200]=200 \\
\end{array}
\]

Initialize:

\[
\begin{array}{c}
\begin{array}{c}
\text{s[x][y]=y} \\
\text{(-1 otherwise)}
\end{array}
\end{array}
\]

Warshall Matrix Update:

\[
\begin{array}{c}
\begin{array}{c}
succ[i][j] = A \\
succ[j][k] = B \\
succ[i][k] = ?
\end{array}
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 3 & & \\
1 & 3 & 4 & \\
2 & 1 & & \\
3 & 2 & & \\
4 & & & \\
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{for (j=0; j<V; j++)} \\
\text{for (i=0; i<V; i++)} \\
\text{if (s[i][j] != (-1))} \\
\text{for (k=0; k<V; k++)} \\
\text{if (succ[i][k]==(-1) & succ[j][k]!=(-1))} \\
\text{succ[i][k] = succ[i][j];}
\end{array}
\end{array}
\]

Suppose code [in box] is removed for this graph:

\[
\begin{array}{c}
\begin{array}{c}
\text{0} \\
\text{1} \\
\text{2} \\
\text{3} \\
\text{4}
\end{array}
\end{array}
\]
Other ways to save path information:

Predecessors (warshallPred.c)

Transitive/Intermediate/Column (warshallCol.c)
Floyd-Warshall Algorithm with Successors (http://ranger.uta.edu/~weems/NOTES2320/floydWarshall.c)

After j = p has been processed, the shortest path from each x to each y that uses only vertices in 0 ... p as intermediate vertices is recorded in matrix.

for (j=0; j<n; j++)
{
 for (i=0; i<n; i++)
 if (dist[i][j]<oo)
 for (k=0; k<n; k++)
 if (dist[j][k]<oo)
 {
 newDist=dist[i][j]+dist[j][k];
 if (newDist<dist[i][k])
 {
 dist[i][k]=newDist;
 succ[i][k]=succ[i][j];
 }
 }
}
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>oo</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>oo</td>
<td>oo</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
<tr>
<td>4</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>oo</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>oo</td>
<td>oo</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
<tr>
<td>4</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
</tbody>
</table>

Note: In this example, zero-edge paths are not considered.