Multiple Choice. Write your answer to the LEFT of each problem. 4 points each

1. Which of the following sorts uses time beyond \(\Omega(n \lg n) \) in the average case?
 A. heapsort
 B. insertion
 C. merge
 D. quick

2. Which sort treats keys as several digits and uses a counting sort for each position?
 A. counting
 B. insertion
 C. merge
 D. radix

3. Which of the following is an accurate statement?
 A. Binary search is a good way to count inversions.
 B. Mergesort can count the inversions in a permutation using \(\Theta(n \log n) \) worst-case time.
 C. Mergesort can count the inversions in a permutation using \(\Theta(n^2) \) worst-case time.
 D. The decision-tree model indicates that the number of inversions in a permutation is bounded above by \(n \log n \).

4. Which function is in both \(\Omega(2^n) \) and \(O(3^n) \), but is not in \(\Theta(2^n) \) or \(\Theta(3^n) \)?
 A. \(2^n + n^2 \)
 B. \(3^n - n^2 \)
 C. \(2.5^n \)
 D. \(\ln n \)

5. Which recurrence describes the time used by mergesort?
 A. \(T(n) = T(n/2) + n \)
 B. \(T(n) = 2T(n/2) + n \)
 C. \(T(n) = T(n-1) + n-1 \)
 D. \(T(n) = T(n/2) + 1 \)

6. Which of the following sorts is stable?
 A. heapsort
 B. insertion
 C. quick
 D. shell

7. What is the value of \(H_3 \)?
 A. \(\lg 3 \)
 B. \(1/3 \)
 C. \(11/6 \)
 D. \(3 \)

8. The time for the following code is in which set?
   ```
   for (i=0; i<n; i++)
     for (j=0; j<n; j++)
   ```
 A. \(\Omega(n^2) \)
 B. \(\Omega(n) \)
 C. \(\Omega(1) \)
 D. \(\Theta(n^2) \)
```c
{
    c[i][j] = 0;
    for (k=0; k<n; k++)
        c[i][j] += a[i][k]*b[k][j];
}
```

9. Let \(f(n) \) and \(g(n) \) be asymptotically positive functions. Which of the following is true?

 A. \(f(n) = \Theta(f(n/2)) \)
 B. \(f(n) = O(g(n)) \) implies \(g(n) = \Omega(f(n)) \)
 C. \(f(n) = O(g(n)) \) implies \(g(n) = O(f(n)) \)
 D. \(f(n) + g(n) = \Theta(\min(f(n),g(n)) \)

10. After performing PARTITION, the pivot will be at which position?

 A. its final position when using QUICKSORT on the entire array.
 B. the first element of the subarray.
 C. the last element of the subarray.
 D. the median position of the subarray.

Long Answer

1. Prove that if \(\frac{1}{f(n)} \in \Omega\left(\frac{1}{g(n)}\right) \) then \(f(n) \in O(g(n)) \). 10 points

2. Use the substitution method to show that \(T(n) = 2T\left(\frac{n}{4}\right) + 1 \) is in \(\Theta(\sqrt{n}) \). 15 points

3. Use the recursion-tree method to show that \(T(n) = 2T\left(\frac{n}{4}\right) + 1 \) is in \(\Theta(\sqrt{n}) \). 15 points

4. Demonstrate PARTITION on the following array. 10 points

 9 3 1 8 0 5 6 2 7 4
 1 5 2 3
 4 8 5 6 7
 8 9 10 11
 11 10 9 7

5. Perform BUILD-MAX-HEAP. 10 points

CSE 2320
Test 2
Summer 2004

Multiple Choice. Write the letter of your answer to the LEFT of each problem. 4 points each
Problems 1 and 2 refer to the following hash table whose keys are stored by linear probing using
\(h(key, i) = (key + i) \mod 13 \).

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>94</td>
<td>122</td>
<td>110</td>
<td>20</td>
<td>86</td>
<td>87</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name ________________________________
1. 1315 would be inserted into which slot of the given table?
 A. 0
 B. 1
 C. 2
 D. 11

2. 33 would be inserted into which slot of the given table?
 A. 2
 B. 4
 C. 9
 D. 11

Problems 3 and 4 refer to the following hash table whose keys are stored by double hashing using
 \(h_1(key) = key \mod 13 \) and \(h_2(key) = 1 + (key \mod 12). \)

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 120 & 166 & 187 & 162 & 122 & 110 & 194 & & & & & \\
\end{array}
\]

3. 397 would be inserted into which slot of the given table?
 A. 0
 B. 2
 C. 3
 D. 7

4. 303 would be inserted into which slot of the given table?
 A. 0
 B. 7
 C. 10
 D. 11

5. Why is it common for a circular queue implementation to waste one table element?
 A. To avoid confusing an empty table with a full table
 B. To have a place to store the tail and head values
 C. To make sure the queue always has at least one element in use
 D. To perform some loops faster

6. When evaluating a prefix expression, the stack contains
 A. Both operands and operators
 B. Both parentheses and operators
 C. Operands only
 D. Operators only

7. The worst-case time to find the maximum key in a circular, doubly-linked list with \(n \) nodes in
 ascending order is:
 A. \(\Theta(1) \)
 B. \(\Theta(\log n) \)
 C. \(\Theta(n \log n) \)
 D. \(\Theta(n) \)

8. How should the successor of a node with a right child in an unbalanced binary search tree be found?
 A. Examine the ancestors of the leaf
 B. Go right, then proceed to the left
 C. Inorder traversal
 D. Preorder traversal

9. If \(\text{POP} \) is implemented as \(\text{return stack}[\text{SP}--] \), then \(\text{PUSH} \) of element \(X \) is implemented as:
 A. \(\text{return stack}[\text{SP}++] \)
 B. \(\text{stack}[\text{SP}++] = X \)
10. Suppose that only numbers in 1...1000 appear in a binary search tree. While searching for 500, which of the following sequences of keys could not be examined?
A. 100, 1000, 200, 900, 300, 800, 400, 700, 500
B. 200, 300, 400, 700, 600, 500
C. 450, 550, 650, 400, 500
D. 600, 100, 550, 540, 500

Long Answer
1. Identify the problems with the following attempt at constructing a red-black tree. (10 points)

2. Determine (analytically) the expected successful search performance of the following data structures when 5,000,000 records are stored. You may assume that the keys are equally likely to be requested. (10 points)
 a. Chaining with a table with 500,000 entries. Each linked list is unordered.
 b. Double hashing with a table with 7,500,013 entries. (7,500,013 is prime.)

3. Insert 25 into the given red-black tree. Be sure to indicate the cases that you used. (10 points)

4. Insert 110 into the given red-black tree. Be sure to indicate the cases that you used. (10 points)

5. Delete 50 from the given red-black tree. Be sure to indicate the cases that you used. (10 points)
6. Delete 180 from the given red-black tree. Be sure to indicate the cases that you used. (10 points)
B. Finding strongly-connected components
C. Maximum network flow
D. Warshall’s algorithm

6. The number of \texttt{HEAP-EXTRACT-MINS} to build a Huffman code tree for \(n \) symbols is:
 A. \(\Theta(\log n) \)
 B. \(n - 1 \)
 C. \(n \)
 D. \(2n - 2 \)

7. During depth-first search on an undirected graph, a cycle is indicated by which edge type?
 A. Back
 B. Cross
 C. Forward
 D. Tree

8. Which of the following is a longest common subsequence for 0 1 2 0 1 2 and 0 0 1 1 2 2?
 A. 0 0 1 1
 B. 0 0 1 1 2
 C. 0 0 1 2
 D. 0 1 2 0

9. The worst-case time for depth-first search is:
 A. \(\Theta(V + E) \)
 B. \(\Theta(E \lg V) \)
 C. \(\Theta(V \lg V) \)
 D. \(\Theta(V \lg E) \)

10. Before searching for a minimum cut in a network, it is useful to do the following:
 A. Determine the type of each edge using depth-first search.
 B. Find and record augmenting paths until none remains.
 C. Find one augmenting path.
 D. Perform a breadth-first search on the input network.

11. A fail link of -1 requires the KMP matcher to take what action?
 A. Give up the search entirely, since the pattern cannot appear within the text.
 B. Move both pointers up one symbol.
 C. Move the pattern pointer to the next pattern symbol and set the text pointer to 0.
 D. Move the text pointer to the next text symbol and set the pattern pointer to 0.

12. Compressed adjacency lists have the following disadvantage:
 A. Testing whether an edge from \(X \) to \(Y \) is present will take \(\Theta(V + E) \) worst-case time.
 B. They are static.
 C. They can only be used for graphs without weights.
 D. They require \(\Theta(V + E) \) space to store.

13. Dijkstra’s algorithm, when implemented with a heap, is most suitable for:
 A. Finding the minimum spanning tree of a dense graph.
 B. Finding the minimum spanning tree of a sparse graph.
 C. Finding the shortest paths from a designated source vertex in a dense graph.
 D. Finding the shortest paths from a designated source vertex in a sparse graph.

14. The Edmonds-Karp variant is important because:
 A. It solves the bipartite matching problem.
 B. It solves the network flow problem in polynomial time.
 C. It solves the network flow problem using critical edges.
 D. It solves the network flow problem without using augmenting paths.

15. When finding the strongly connected components, the number of components is indicated by:
A. The number of back edges found during the first depth-first search.
B. The number of cross edges found during the second depth-first search.
C. The number of restarts for the first depth-first search.
D. The number of restarts for the second depth-first search.

16. Which of the following is solved heuristically by a greedy method?
 A. Fractional knapsack
 B. Finding the shortest paths from a designated source vertex in a sparse graph.
 C. Minimum spanning tree
 D. 0/1 knapsack

17. The capacity of the following cut is ______. (S vertices are bold.)

```
S ---- 5 ---- A ---- 10 ---- B ---- 1 ---- C ---- 3 ---- D ---- 4 ---- T
```
A. 1
B. 10
C. 13
D. 23

18. The fastest method for finding the diameter of a tree is to:
 A. Use breadth-first search.
 B. Use Dijkstra’s algorithm.
 C. Use the Floyd-Warshall algorithm.
 D. Use the Ford-Fulkerson algorithm.

19. Suppose that a depth-first search on a directed graph yields a path of tree edges from vertex X to vertex Y. If there is also an edge from Y to X, then its type will be:
 A. Back
 B. Cross
 C. Forward
 D. Tree

20. Suppose that there is exactly one path from vertex 5 to vertex 10 in a directed graph:
 5 → 7 → 8 → 3 → 2 → 10. During the scan of which column will Warshall’s algorithm record the presence of this path?
 A. 2
 B. 3
 C. 7
 D. 8

Long Answer
1. Fill in the KMP failure links. 10 points.

```
<table>
<thead>
<tr>
<th></th>
<th>pattern</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
```
2. Perform depth-first search on the following graph, including start/finish times and edge types (T=tree, B=back, C=cross, F=forward. Assume that the adjacency lists are ordered. Write your answer in the tables below. 15 points

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Start</th>
<th>Finish</th>
<th>Edge Type</th>
<th>Edge Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>0 1</td>
<td>6 5</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>0 2</td>
<td>6 7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0 6</td>
<td>8 5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>2 5</td>
<td>8 7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>3 1</td>
<td>8 9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>3 2</td>
<td>9 4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>4 3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>4 5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>5 7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>5 9</td>
<td></td>
</tr>
</tbody>
</table>

3. 15 points.
 a. Suppose that A is a binary adjacency matrix for a directed graph with n vertices (numbered 0 to n - 1). Give code for Warshall’s algorithm with successors. (10 points)
 c. The following successor matrix was produced by Warshall’s algorithm. Give the path from vertex 0 to vertex 1. (5 points)
 -1 3 3 3 3
 -1 3 3 3 4
 -1 1 1 1 4
 -1 2 2 2 2
 -1 -1 -1 -1 -1

4. Give augmenting paths for determining a maximum flow and give a minimum cut for the following network. 0 is the source and 7 is the sink. 10 points.

 S vertices: 0
T vertices: 7

Augmenting Paths and Contribution to Flow:

5. Complete the following instance of the optimal matrix multiplication ordering problem, including the tree showing the optimal ordering. 10 points

\[p[0] = 6 \]
\[p[1] = 2 \]
\[p[2] = 4 \]
\[p[3] = 3 \]
\[p[4] = 2 \]

\[
\begin{array}{cccccc}
1 & 0 & 0 & 48 & 1 & 60 & 1 & ??? & ? \\
2 & ------- & 0 & 0 & 24 & 2 & 36 & 3 \\
3 & ------- & ------- & 0 & 0 & 24 & 3 \\
4 & ------- & ------- & ------- & 0 & 0 \\
\end{array}
\]