
A first C program

using

Code::Blocks

CSE 1310 – Introduction to Computers and Programming

Alexandra Stefan

University of Texas at Arlington

18/19/2024

Outline

• Program: write, compile, run/execute, input, output

• 3 types of errors

• Program syntax rules and error messages

• Simple program output with printf

• Starting code template

• Review and list of terms

2

Writing and running a program

• Writing vs running a program

– Write a recipe vs cooking according to a recipe

– Installing a program/game/app vs lunching that game

• Program output

– what your program “sends out” while it runs

– Most common form: “print to the screen”

• Program input

– What data/information is sent into the program while it
runs.

– Most common form: from the keyboard
3

Errors

1. Syntax errors
– You do not follow the rules for writing code

– The compiler catches them and

– Reports an error message

– You cannot run the code until you fix it

2. Logical errors (at runtime)
– the program runs, but does the wrong thing (e.g. incorrect

computations). E.g. prints: Hello Wold

3. Program crashes (at runtime)
– Program “crashes/fails/aborts” during execution.

– E.g. Give input of the wrong type (e.g. text instead of number)

4

Create and run a C file in Code::Blocks

• Create a C file with the content below.
– If you do not remember how to do that, see the Slides on Installing

Code::Blocks.

• You should be able to build and run it and that will bring up
the execution window

5

int main(void)

{

return 0; // This is the last instruction that will execute

}

• Once you have created a C file you can:
– See that file from File Explorer

– Open it in the Code::Blocks Editor window

– Open it with ANY other editor (e.g. Notepad++). You can also edit it in Notepad++
and then open it, build and run it in Code::Blocks

– Compile and run the program with the “Build and run” button:

or build it separately and then run it but you risk executing a previous
version of the program (not the most recent one) so ALWAYS use “Build and run”

– After you build anyou can see that 2 other files were created: welcome.o (called
“object file”) and welcomed run.exe (called “executable file”)

– The .c (i.e. welcome.c) file is called the “source file” or the “source code" what you
will be submitting for your homework. Do NOT submit the .o or .exe files that are
created after compiling

6

Create a new C file continued

Source code (or source file) vs executable file
(EXTRA material)

7

- The executable file, .exe, (e.g. welcome.exe) can run on its own even on
other machines (that match the processor instruction set, operating system
and have the libraries the program depends on) even if there is no C compiler
on that machine. If you open a command-line window you can run the .exe
(e.g. welcome.exe) file by itself (from outside of Code::Blocks). Try these:

- Double click the .exe file
- Run .exe from command window

- cd to directory with welcome.exe
- Run the code by just typing: welcome.exe

- Delete or rename welcome.c and try to run welcome.exe again (it works)

- You can also compile code from the command window, but you first need to
setup the system variables to include the path to the C compiler.

- If the source code (.c) respects certain standards/rules, it can be compiled on
any machine that has a compiler that respects the same standards.

- This content is for deepening your understanding of how C works.

• The simplest C program is:
int main(void)

{

return 0; // This is the last instruction that will execute

}

- Every C program we want to run on its own must have a main function.

- Execution starts at main

- Must match {} and ()

- ; - Almost every line of C code must end with ; (we will see some exceptions)

- When clicking “Build and run” the code is compiled and then it is executed
(runs). We see a black window. That is the execution window. For more complex
programs it will display the program output and will take input from the user.

- Syntax/syntax rules – are the rules that define a correct C program.

- Syntax error - If the syntax rules are not respected the code will not compile. We call
that a syntax error. E.g. Try removing the ;

- Meeting the syntax rules is the minimum requirement of a program.

- If a program has no syntax error (it compiles and runs) it may still be wrong (e.g. not
compute the correct result or abort before finishing its work)

- Keywords – special words that the compiler knows: int, void, return

- The program is CASE SENSITIVE – you must use the exact names for keywords,
the main function and other functions you call, identifiers, etc

8

Syntax rules

Syntax rules - spaces
int main(void)

{

return 0; // This is the last instruction to execute

}

- Tokens - smallest building components of a program:
- Key words, specific symbols (,;, (,) , [,]), literals (values such as 0), identifiers (variable names

and function names)

- Spaces

- At least one space is needed to separate consecutive keywords and identifiers.

- E.g. return 0 int main (try with no space: return0 intmain

- Otherwise, any number of spaces (or no spaces) is fine
- Modify spaces and see if the program still compiles (has no syntax error)

- Spaces in strings are respected: "CSE1310" vs "CSE 1310" vs "CSE 1310"

- Indentation – is not required syntax, but it makes the program readable. You
must use it. (It is a CSE1310 learning outcome)

- New lines – are not required, but they make the program readable. You must use
them.

- Practice with it! 9

https://mavsuta.sharepoint.com/sites/cse13xx/Shared%20Documents/Forms/AllItems.aspx?id=%2Fsites%2Fcse13xx%2FShared%20Documents%2FSLO%2FCSE%201310%20Student%20Learning%20Outcomes%2Epdf&parent=%2Fsites%2Fcse13xx%2FShared%20Documents%2FSLO

C code – syntax rules - comments

int main(void)

{

return 0; // This is the last instruction that will execute

}

- Comments – a way to write notes/information useful to the programmer in
understanding/clarifying what the code does. They are IGNORED by the compiler.

- Single line comments: // indicates a “line comment” , meaning that the text
following it, on the same, line will be a comment (not executed). Code before it,
if any, WILL be executed.

- Multiple line comments are indicated by start and end special symbols: /* */
(must use the * and / in the exact order as shown)

E.g.:

/* this

is a comment

on multiple lines */

// This is a comment on one line. 10

Program output
• Program output – content that the program prints in the execution window.

– Later we will see how to make the program print/write into a text file.

• E.g. We want the program to print: Welcome to CSE 1310!

11

#include <stdio.h>

int main(void)

{

printf("Welcome to CSE 1310!");

return 0;

}

Code

Execution window showing the program output

This line is a preprocessor directive
It allows your code to use all functions from
the stdio.h library.
< > indicate that it is a standard library that
came with the compiler (as opposed to one
created by you or another programmer).
Learn it by heart.

Calls the printf function (from the stdio.h
library) and prints the text given in " " . It
must have that exact spelling and have ()
and double quotes " " as shown.
We’ll learn to do more with it soon.

12

• The error message:

error: expected ';' before 'return'

• indicates the problem ';' expected

• And the number 6 tells you what line of code has that problem

• You will see many error messages. You should not be scared by them, but instead use
them to understand what is wrong with your program.

Error messages for Syntax errors

• Some errors messages immediately describe the problem and/or the fix, while others
do not. See below error from using int main { instead of int main(void) {

Explore syntax errors and see error messages

• Try to violate syntax rules and see what happens.
– If you get error messages, read them, and try to understand them.

Work with a partner: they introduce a syntax error and you
1. First try to understand the problem from the error message.

2. Fix it.

• Suggested changes:
– Missing semicolon,

– Move statements outside main()

– Mismatch () and/or {}

– Modify spelling for keywords, main or printf.

– Remove required spaces

– Add extra spaces

– Remove all the spaces you can so that the program will still be correct.

– Other

13

Template for your program:

• You can start every program with this template.
• You should not copy/paste this every time, but type from memory

until you learnt it.

14

/* This program does …..

*/

#include <stdio.h> // need for printing and user input

int main(){

// Replace this line with your code

return 0;

}

Review and terms

• The 3 types of errors
• Program syntax

– Matching {}
– ; at end of statement

• Compile vs run
• Source code vs executable files vs program output
• Keywords: int, return, include, void

• Syntax and syntax rules
• Printing function and its syntax:

– printf(…);

• Program execution
– Where it starts (first statement in main)())
– Executes line by line in given order
– (Later: Use debugger to see this execution)

• Comments:
– One line
– Multiple lines

15

Use debugger to see program
execution

• We will do this later

16

	Default Section
	Slide 1
	Slide 2: Outline
	Slide 3: Writing and running a program
	Slide 4: Errors
	Slide 5: Create and run a C file in Code::Blocks
	Slide 6: Create a new C file continued
	Slide 7: Source code (or source file) vs executable file (EXTRA material)
	Slide 8: Syntax rules
	Slide 9: Syntax rules - spaces
	Slide 10: C code – syntax rules - comments
	Slide 11: Program output
	Slide 12: Error messages for Syntax errors
	Slide 13: Explore syntax errors and see error messages
	Slide 14: Template for your program:
	Slide 15: Review and terms
	Slide 16: Use debugger to see program execution

