
Time complexity of nested loops
• Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the body of

the loop. This formulation is general and covers both the dependent (see ∑𝑖𝑖
𝑖𝑖
3
𝑙𝑙𝑙𝑙𝑙𝑙) and independent cases (see ∑𝑡𝑡 1 and ∑𝑘𝑘(𝑖𝑖

3
)).

for(i=1; i<=N; i++) ∑𝒊𝒊[
𝒊𝒊
𝟑𝟑
𝒍𝒍𝒍𝒍𝒍𝒍] = ∑𝒊𝒊=𝟏𝟏𝑵𝑵 [𝒊𝒊

𝟑𝟑
𝒍𝒍𝒍𝒍𝒍𝒍] = 𝒍𝒍𝒍𝒍𝒍𝒍

𝟑𝟑
∑𝒊𝒊=𝟏𝟏𝑵𝑵 𝒊𝒊 = 𝒍𝒍𝒍𝒍𝒍𝒍

𝟑𝟑
𝑵𝑵(𝑵𝑵+𝟏𝟏)

𝟐𝟐
= 𝚯𝚯(𝑵𝑵𝟐𝟐𝒍𝒍𝒍𝒍𝒍𝒍)

for(k=1; k<=M; k=k*2) ∑𝒌𝒌(𝒊𝒊/𝟑𝟑) = ∑𝒆𝒆=𝟎𝟎
𝒍𝒍𝒍𝒍𝒍𝒍(𝒊𝒊/𝟑𝟑) = Θ(𝒊𝒊

𝟑𝟑
𝒍𝒍𝒍𝒍𝒍𝒍) (Use only the dominant term(s))

for(t=0; t<=i; t=t+3) ∑𝒕𝒕𝟏𝟏 = ∑𝒆𝒆=𝟎𝟎
𝒊𝒊/𝟑𝟑 𝟏𝟏 = 𝒊𝒊

𝟑𝟑
+ 𝟏𝟏 = Θ(𝒊𝒊

𝟑𝟑
) (Use only the dominant term)

printf("C"); 𝟏𝟏

Values of t: 0,3,6,9,…,tlast≤i , use t = 3e with
Values of e: 0,1,2,3,…,p => tlast=i=3p => p=i/3 =>
Values of e: 0,1,2,3,…,i/3. (e has consecutive values)
Change of variable: Replace t with e in summation over t

Values of k: 1,2,4,8,…,klast≤M , use k = 2e with
Values of e: 0,1,2,3,…,p =>
klast=M= 2p => (apply lg in both sides) => p=lgM =>
Values of e: 0,1,2,3,…,lgM. (e has consecutive values)
Change of variable: Replace k with e in summation over k

We do not need a change of variable for i
because values of i are already ‘good’
(consecutive numbers starting at 1)

Dominant term with constant: (N2lgM)/6

If the constant for the dominant term is not needed, we can drop the /3 in i/3 and use only i (use ∑𝑘𝑘 𝑖𝑖 instead of ∑𝑘𝑘(𝑖𝑖/3)).

You can think that dependent and independent refers to the
relation between the variable of a summation and the term of
the summation. E.g. ∑𝑘𝑘(𝑖𝑖/3) is independent because the
summation is over k, but k does not appear in the expression i/3.

1

Steps for computing the time complexity of loops:
1. Compute the time complexity of the BODY of the loop, Tbody

2. Write a “loose” summation over the loop variable of the time complexity of the
body (e.g. ∑𝑘𝑘 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

3. Summation must be over CONSECUTIVE values. Do a change of variable if
needed. Does the loop variable (say k) go in consecutive values?
1. Yes. Write the summation explicitly: ∑𝑘𝑘=1𝑁𝑁 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
2. No. DO change of variable: k = f(e) where e goes from 0 (or 1) to p in consecutive values. Use loop condition

to solve for p (note that even if you have k<N, you can use klast = f(p)=N since we do not need the exact
count). Rewrite the summation using e in sigma, the expression you got for p and replacing k with f(e) in
the term. (E.g. if k = 4e and k<N, solve: 4p=N => p = N/4, then do the change of variable:
∑𝑘𝑘 𝑘𝑘2 = ∑𝑒𝑒=0

𝑁𝑁/4 4𝑒𝑒 2 (Notice that p does not show in the final answer))

4. Solve the summation you got
5. Give Θ. (Keep the dominant term with the multiplication constant if needed)
** If this loop was nested in another, the answer from step 5 will be used to compute the time
complexity of the body of that immediately outer loop (step 1 in calculations for that outer loop)
, and the process continues. 2

Time complexity of nested loops

• Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the
body of the loop.

// assume given: Tfoo(t,M) = Θ(t2M)

for(t=0; t<N; t=t+4) ∑𝒕𝒕[𝒕𝒕𝟐𝟐𝒍𝒍] = ∑𝒆𝒆=𝟎𝟎
𝑵𝑵/𝟒𝟒[(𝟒𝟒𝒆𝒆)𝟐𝟐𝒍𝒍] = ∑𝒆𝒆=𝟎𝟎

𝑵𝑵/𝟒𝟒 𝟏𝟏𝟏𝟏𝒍𝒍𝒆𝒆𝟐𝟐 = 𝟏𝟏𝟏𝟏𝒍𝒍∑𝒆𝒆=𝟎𝟎
𝑵𝑵/𝟒𝟒 𝒆𝒆𝟐𝟐 = 𝟏𝟏𝟏𝟏𝒍𝒍

𝑵𝑵
𝟒𝟒(𝑵𝑵𝟒𝟒+𝟏𝟏)(𝟐𝟐𝑵𝑵𝟒𝟒+𝟏𝟏)

𝟏𝟏
= 𝚯𝚯(𝑵𝑵𝟑𝟑𝒍𝒍)

foo(t,M); t2M (Use only the dominant term(s))

Values of t: 0,4,8,12,…,tlast<N , use t = 4e with
Values of e: 0,1,2,3,…,p => tlast=N=4p => p=N/4 =>
Values of e: 0,1,2,3,…,N/4. (e has consecutive values)
Change of variable: Replace t with e in summation over t
(Note that even though the loop has t<N, we use tlast = N
to solve for p, since we do not need the exact count)

Dominant term with constant: (N3M)/12

3

Useful processing of summation techniques (for Θ or dominant term calculations)
Note that some of these will NOT compute the EXACT solution for the summation

Independent case (term in summation does not have the variable of the summation).

�
𝒌𝒌=1

𝑵𝑵
𝑺𝑺 = 𝑆𝑆 + 𝑆𝑆 + 𝑆𝑆 + ⋯ . +𝑆𝑆 = 𝑵𝑵𝑺𝑺 (= 𝑆𝑆�

𝑘𝑘=1

𝑁𝑁

1 = 𝑆𝑆𝑆𝑆)

Pull constant in front of summation: ∑𝑘𝑘=1𝑁𝑁 (𝑆𝑆𝑘𝑘) = 𝑆𝑆 ∑𝑘𝑘=1𝑁𝑁 𝑘𝑘 = 𝑆𝑆 𝑁𝑁(𝑁𝑁+1)
2

= Θ(𝑆𝑆𝑆𝑆2)

Break summation in two summations

�
𝑘𝑘=1

𝑁𝑁

(𝑘𝑘𝑆𝑆 + 𝑘𝑘2) = �
𝑘𝑘=1

𝑁𝑁

𝑘𝑘𝑆𝑆 + �
𝑘𝑘=1

𝑁𝑁

𝑘𝑘2 = 𝑆𝑆�
𝑘𝑘=1

𝑁𝑁

𝑘𝑘 + �
𝑘𝑘=1

𝑁𝑁

𝑘𝑘2 = S
𝑆𝑆(𝑆𝑆 + 1)

2
+
𝑆𝑆(𝑆𝑆 + 1)(2𝑆𝑆 + 1)

6
= Θ(𝑆𝑆𝑆𝑆2 + 𝑆𝑆3)

𝐷𝐷𝐷𝐷𝑏𝑏𝐷𝐷 𝑙𝑙𝑏𝑏𝑙𝑙𝑒𝑒𝐷𝐷 𝑏𝑏𝐷𝐷𝑏𝑏𝑒𝑒𝐷𝐷 𝑡𝑡𝑒𝑒𝐷𝐷𝑡𝑡 𝑓𝑓𝐷𝐷𝑏𝑏𝑡𝑡 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖𝑏𝑏𝑠𝑠 𝑡𝑡𝑒𝑒𝐷𝐷𝑡𝑡.𝐸𝐸.𝑙𝑙.10𝑘𝑘 𝑖𝑖𝑠𝑠 𝑙𝑙𝑏𝑏𝑙𝑙𝑒𝑒𝐷𝐷 𝑏𝑏𝐷𝐷𝑏𝑏𝑒𝑒𝐷𝐷 𝑐𝑐𝑏𝑏𝑡𝑡𝐷𝐷𝑠𝑠𝐷𝐷𝑒𝑒𝑏𝑏 𝑡𝑡𝑏𝑏 𝑘𝑘2:

�
𝑘𝑘=1

𝑁𝑁

(10𝑘𝑘 + 𝑘𝑘2) = �
𝑘𝑘=1

𝑁𝑁

𝑘𝑘2 =
𝑆𝑆(𝑆𝑆 + 1)(2𝑆𝑆 + 1)

6
= Θ 𝑆𝑆3

𝑈𝑈𝑠𝑠𝑒𝑒 𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑎𝑎𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖𝑏𝑏𝑠𝑠 𝑏𝑏𝑏𝑏 𝑖𝑖𝑠𝑠𝑡𝑡𝑒𝑒𝑙𝑙𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠 𝑓𝑓𝑏𝑏𝐷𝐷 𝑖𝑖𝑠𝑠𝑐𝑐𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑙𝑙 𝑏𝑏𝐷𝐷 𝑏𝑏𝑒𝑒𝑐𝑐𝐷𝐷𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑙𝑙 𝑓𝑓 𝑘𝑘 :

�
𝑆𝑆

𝑁𝑁
𝑓𝑓(𝑘𝑘) = Θ 𝐹𝐹 𝑆𝑆 − 𝐹𝐹 𝑆𝑆 (𝑙𝑙𝑤𝑒𝑒𝐷𝐷𝑒𝑒 𝐹𝐹 𝑖𝑖𝑠𝑠 𝑡𝑡𝑤𝑒𝑒 𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑏𝑏𝑒𝑒𝐷𝐷𝑖𝑖𝑎𝑎𝑠𝑠𝑡𝑡𝑖𝑖𝑎𝑎𝑒𝑒 𝑏𝑏𝑓𝑓 𝑓𝑓)

4

i takes values: 0,3,6,9,12,…. ≤ N
We notice that these are consecutive multiples of 3 so we will explicitly show that by writing i as a
function of another variable:
i = 3*e
Where e takes values: 0,1,2,3,….,p
Here we use p to refer to that last multiple of 3 that is ≤N.
The loop executes (the condition is true) for all i = 3e where e takes values: 0,1,2,3,…,p => 1+p total
values (because of the 0) => the loop iterates 1+p times. (A)

Next we will compute the exact formula for p:
Because of how we chose p we have: 3p ≤ N<3(p+1) (the next multiple of 3 will be strictly larger than N)
We care about 3p because it is the last value of i for which the loop condition is true (3p=i ≤ N).
We know that p is somewhat around N/3, but we need to figure out if it is rounded up or down.

If 𝐍𝐍 ∈ 𝟑𝟑𝟑𝟑,𝟑𝟑 𝟑𝟑 + 𝟏𝟏 𝑠𝑠𝑠𝑠𝑏𝑏 𝑙𝑙𝑒𝑒 𝑏𝑏𝑖𝑖𝑎𝑎𝑖𝑖𝑏𝑏𝑒𝑒 𝑏𝑏𝑏𝑏 3 𝑏𝑏𝑠𝑠 𝑏𝑏𝑏𝑏𝑡𝑡𝑤 𝑠𝑠𝑖𝑖𝑏𝑏𝑒𝑒𝑠𝑠 ⇒ 𝑵𝑵
𝟑𝟑
∈ 𝟑𝟑,𝟑𝟑 + 𝟏𝟏 ⇒ 𝐩𝐩 = 𝑵𝑵

𝟑𝟑
(B)

From (A) and (B) it follows that the loop executes 1 + p = 1 + 𝑁𝑁
3

times =>

The loop executes exactly: 1 + 𝑁𝑁
3

times.
As a verification step you should check that the formula does give the exact number of loop iterations
for a few values of N: 0,1,2,3,4,15,17

Practice: how would you solve: for (i=3; i<=N; i=i+3) printf("A"); 5

for (i=0; i<=N; i=i+3)
printf("A");

e i=3e

0 0

1 3

2 6

3 9

… …

e 3e

… …

p 3p
(ilast = 3p,
ilast ≤N
3p≤N =>
𝐷𝐷 = 𝑆𝑆/3

Formula for values of i and exact calculation of
number of loop iterations – Example 1

i takes values: 2,5,8,11,14,…. ≤ N
We notice that these are consecutive multiples of 3 with an offset of 2. We will explicitly show that by
writing i as a function of another variable:
i = 2+(3*e)
Where e takes values: 0,1,2,3,….,p
Here we use p to refer to that last value 2+3p that is ≤ N.
The loop executes (the condition is true) for all i = 2+3e where e takes values: 0,1,2,3,…,p => 1+p total
values (because of the 0) => the loop iterates 1+p times.

2+3p ≤ N => 3p ≤ (N-2) => p ≤ (N-2)/3, but p is an integer and largest with this property => 𝐩𝐩 = 𝑵𝑵−𝟐𝟐
𝟑𝟑

⇒

FINAL ANSWER: The loop executes exactly: 𝟏𝟏 + 𝑵𝑵−𝟐𝟐
𝟑𝟑

times.
As a verification step you should check that the formula does give the exact number of loop iterations
for a few values of N: 2,3,4,5,6 (Note that you start with the smallest value of N for which the loop
iterates at least one time: 2. You do not use 0 or 1 for N in this verification.)

6

for (i=2; i<=N; i=i+3)
printf("A");

e i=2+3e

0 2

1 5

2 8

3 11

… …

e i = 2+3e

… …

p ilast <=N
(ilast =2+3p)

Formula for values of i and exact calculation
of number of loop iterations – Example 2

i takes values: 1,5,25,125,,….<=N
We notice that these are consecutive multiples powers of 5 so we will explicitly show that by writing i as a
function of another variable:
i = 5e

Where e takes values: 0,1,2,3,….,p
Here we use p to refer to that largest value 5p that is ≤N.
The loop executes (the condition is true) for all i = 5e where e takes values: 0,1,2,3,…,p => 1+p total values
(because of the 0) => the loop iterates 1+p times. (A)

Next we will compute the exact formula for p.
Because of how we picked p we have: 𝟓𝟓𝟑𝟑 ≤ 𝑵𝑵 < 𝟓𝟓𝟑𝟑+𝟏𝟏
take log5 on all sides ⇒ 𝟑𝟑 ≤ 𝒍𝒍𝒍𝒍𝒍𝒍𝟓𝟓 𝑵𝑵 < 𝟑𝟑 + 𝟏𝟏
⇒ 𝟑𝟑 = log𝟓𝟓 𝑵𝑵 (B)

From (A) and (B) it follows that the loop executes 𝟏𝟏 + 𝐩𝐩 = 𝟏𝟏 + log𝟓𝟓 𝑵𝑵 times =>

ANSWER: The loop executes exactly: 𝟏𝟏 + log𝟓𝟓 𝑵𝑵 times.

As a verification step you should check that the formula does give the exact number of loop iterations for
a few values of N: 1,5,25,26,29,30

7

for (i=1; i<=N; i=i*5)
printf("A");

e i=5e

0 1

1 5

2 25

3 125

… …

e i=5e

… …

p ilast <=N
(ilast =5p) =>
𝐷𝐷 = log5 𝑆𝑆

Formula for values of i and exact calculation of
number of loop iterations – Example 3

Time complexity of nested loops (small variation of the first example)
• Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the body of

the loop. This formulation is general and covers both the dependent (see ∑𝑖𝑖
𝑖𝑖2

3
𝑙𝑙𝑙𝑙𝑙𝑙) and independent cases (see ∑𝑡𝑡 1 and ∑𝑘𝑘(𝑖𝑖

2

3
).

for(i=1; i<=N; i++) ∑𝒊𝒊[
𝒊𝒊𝟐𝟐

𝟑𝟑
𝒍𝒍𝒍𝒍𝒍𝒍] = ∑𝒊𝒊=𝟏𝟏𝑵𝑵 [𝒊𝒊𝟐𝟐

𝟑𝟑
𝒍𝒍𝒍𝒍𝒍𝒍] = 𝒍𝒍𝒍𝒍𝒍𝒍

𝟑𝟑
𝒊𝒊𝟐𝟐 = 𝒍𝒍𝒍𝒍𝒍𝒍

𝟑𝟑
𝑵𝑵(𝑵𝑵+𝟏𝟏)(𝟐𝟐𝑵𝑵+𝟏𝟏)

𝟏𝟏
= 𝚯𝚯(𝑵𝑵𝟑𝟑𝒍𝒍𝒍𝒍𝒍𝒍)

for(k=1; k<=M; k=k*2) ∑𝒌𝒌(𝒊𝒊𝟐𝟐/𝟑𝟑) = ∑𝒆𝒆=𝟎𝟎
𝒍𝒍𝒍𝒍𝒍𝒍(𝒊𝒊𝟐𝟐/𝟑𝟑) = Θ(𝒊𝒊𝟐𝟐

𝟑𝟑
𝒍𝒍𝒍𝒍𝒍𝒍) (Use only the dominant term(s))

for(t=0;t<=i*i; t=t+3) ∑𝒕𝒕𝟏𝟏 = ∑𝒆𝒆=𝟎𝟎
𝒊𝒊/𝟑𝟑 𝟏𝟏 = 𝒊𝒊𝟐𝟐

𝟑𝟑
= Θ(𝒊𝒊

𝟐𝟐

𝟑𝟑
) (Use only the dominant term)

printf("C"); 𝟏𝟏

Values of t: 0,3,6,9,…,tlast≤i , use t = 3e with
Values of e: 0,1,2,3,…,p => tlast=i2=3p => p=i2/3 =>
Values of e: 0,1,2,3,…,i2/3. (e has consecutive values)
Change of variable: Replace t with e in summation over t

Values of k: 1,2,4,8,…,klast≤M , use k = 2e with
Values of e: 0,1,2,3,…,p =>
klast=M= 2p => (apply lg in both sides) => p=lgM =>
Values of e: 0,1,2,3,…,lgM. (e has consecutive values)
Change of variable: Replace k with e in summation over k

We do not need a change of variable for i
because values of i are already ‘good’
(consecutive numbers starting at 1)

Dominant term with constant: (N2lgM)/6

If the constant for the dominant term is not needed, we can drop the /3 in i2/3 and use only i (use ∑𝑘𝑘 𝑖𝑖 instead of ∑𝑘𝑘(𝑖𝑖2/3)).

You can think that dependent and independent refers to the
relation between the variable of a summation and the term of
the summation. E.g. ∑𝑘𝑘(𝑖𝑖2/3) is independent because the
summation is over k, but k does not appear in the expression i2/3.

8

	Time complexity of nested loops
	Steps for computing the time complexity of loops:
	Time complexity of nested loops
	Useful processing of summation techniques (for Θ or dominant term calculations)�Note that some of these will NOT compute the EXACT solution for the summation
	Formula for values of i and exact calculation of number of loop iterations – Example 1
	Formula for values of i and exact calculation of number of loop iterations – Example 2
	Formula for values of i and exact calculation of number of loop iterations – Example 3
	Time complexity of nested loops (small variation of the first example)

