Time complexity of nested loops

• Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the body of the loop. This formulation is general and covers both the dependent (see $\sum_{i} \left(\frac{i}{3}\right) lgM$) and independent cases (see $\sum_{t} 1$ and $\sum_{k} \left(\frac{i}{3}\right)$).

Dominant term with constant: (N²lgM)/6

If the constant for the dominant term is not needed, we can drop the /3 in i/3 and use only i (use $\sum_k i$ instead of $\sum_k (i/3)$).

Steps for computing the time complexity of loops:

- 1. Compute the time complexity of the BODY of the loop, T_{body}
- 2. Write a "loose" summation over the loop variable of the time complexity of the body (e.g. $\sum_k T_{body}$)
- 3. Summation must be over CONSECUTIVE values. Do a change of variable if needed. Does the loop variable (say k) go in consecutive values?
 - 1. Yes. Write the summation explicitly: $\sum_{k=1}^{N} T_{body}$
 - 2. No. DO change of variable: k = f(e) where e goes from 0 (or 1) to p in consecutive values. Use loop condition to solve for p (note that even if you have k<N, you can use $k_{last} = f(p)=N$ since we do not need the exact count). Rewrite the summation using e in sigma, the expression you got for p and replacing k with f(e) in the term. (E.g. if k = 4e and k<N, solve: 4p=N => p = N/4, then do the change of variable: $\sum_k k^2 = \sum_{e=0}^{N/4} (4e)^2$ (Notice that p does not show in the final answer))
- 4. Solve the summation you got
- 5. Give Θ . (Keep the dominant term with the multiplication constant if needed)

** If this loop was nested in another, the answer from step 5 will be used to compute the time complexity of the body of that immediately outer loop (step 1 in calculations for that outer loop), and the process continues.

Time complexity of nested loops

 Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the body of the loop.

Dominant term with constant: (N³M)/12

for (t=0; t<N; t=t+4) $\rightarrow \sum_{t} [t^2 M] = \sum_{e=0}^{N/4} [(4e)^2 M] = \sum_{e=0}^{N/4} 16Me^2 = 16M \sum_{e=0}^{N/4} e^2 = 16M \frac{\frac{N}{4}(\frac{N}{4}+1)(2\frac{N}{4}+1)}{6} = \Theta(N^3 M)$ foo(t,M); $\rightarrow t^2 M$ (Use only the dominant term(s)) Values of t: 0,4,8,12,...,t_{last}<N, use t = 4e with Values of e: 0,1,2,3,...,p => t_{last}=N=4p => p=N/4 => Values of e: 0,1,2,3,...,N/4. (e has consecutive values) Change of variable: Replace t with e in summation over t

// assume given: $T_{foo}(t,M) = \Theta(t^2M)$

Useful processing of summation techniques (for Θ or dominant term calculations)

Note that some of these will NOT compute the EXACT solution for the summation

Independent case (term in summation does not have the variable of the summation).

$$\sum_{k=1}^{N} S = S + S + S + \dots + S = NS \quad (= S \sum_{k=1}^{N} 1 = SN)$$

4

Pull constant in front of summation: $\sum_{k=1}^{N} (Sk) = S \sum_{k=1}^{N} k = S \frac{N(N+1)}{2} = \Theta(SN^2)$

Break summation in two summations

$$\sum_{k=1}^{N} (kS + k^2) = \sum_{k=1}^{N} kS + \sum_{k=1}^{N} k^2 = S \sum_{k=1}^{N} k + \sum_{k=1}^{N} k^2 = S \frac{N(N+1)}{2} + \frac{N(N+1)(2N+1)}{6} = \Theta(SN^2 + N^3)$$

Drop lower order term from summation term. E. g. 10k is lower order compared to k^2 : $\sum_{k=1}^{N} (10k + k^2) = \sum_{k=1}^{N} k^2 = \frac{N(N+1)(2N+1)}{6} = \Theta(N^3)$

Use approximation by integrals for increasing or decreasing f(k): $\sum_{S}^{N} f(k) = \Theta(F(N) - F(S)) \text{ (where } F \text{ is the antiderivative of } f)$

Formula for values of i and exact calculation of number of loop iterations – Example 1

```
for (i=0; i<=N; i=i+3)
printf("A");</pre>
```

i takes values: **0,3,6,9,12,...** ≤ **N**

We notice that these are consecutive multiples of 3 so we will explicitly show that by writing i as a function of another variable:

i = 3*e

Where e takes values: 0,1,2,3,....,p

Here we use p to refer to that last multiple of 3 that is $\leq N$.

The loop executes (the condition is true) for all i = 3e where e takes values: $0,1,2,3,...,p \Rightarrow 1+p$ total values (because of the 0) \Rightarrow the loop iterates 1+p times. (A)

Next we will compute the exact formula for p:

Because of how we chose p we have: $3p \le N \le (p+1)$ (the next multiple of 3 will be strictly larger than N) We care about 3p because it is the last value of i for which the loop condition is true ($3p=i \le N$). We know that p is somewhat around N/3, but we need to figure out if it is rounded up or down.

If $N \in [3p, 3(p+1))$ and we divide by 3 on both sides $\Rightarrow \frac{N}{3} \in [p, p+1) \Rightarrow p = \lfloor \frac{N}{3} \rfloor$ (B)

From (A) and (B) it follows that the loop executes $1 + p = 1 + \left\lfloor \frac{N}{3} \right\rfloor$ times => The loop executes exactly: $1 + \left\lfloor \frac{N}{3} \right\rfloor$ times.

As a verification step you should check that the formula does give the exact number of loop iterations for a few values of N: 0,1,2,3,4,15,17

i=3e e 0 0 3 1 2 6 3 9 3e е • • • ... 3p р (i_{last} = **3p**, i_{last} ≤N 3p≤N => p = |N/3|

Formula for values of i and exact calculation of number of loop iterations – Example 2

```
for (i=2; i<=N; i=i+3)
printf("A");</pre>
```

```
i takes values: 2,5,8,11,14,.... \leq N
```

We notice that these are consecutive multiples of 3 with an offset of 2. We will explicitly show that by writing i as a function of another variable:

i = 2+(3*e)

Where e takes values: 0,1,2,3,....,p

Here we use p to refer to that last value 2+3p that is $\leq N$.

The loop executes (the condition is true) for all i = 2+3e where e takes values: 0,1,2,3,...,p => 1+p total values (because of the 0) => the loop iterates 1+p times.

 $2+3p \le N \Rightarrow 3p \le (N-2) \Rightarrow p \le (N-2)/3$, but p is an integer and largest with this property $\Rightarrow p = \left|\frac{N-2}{3}\right| \Rightarrow C$

FINAL ANSWER: The loop executes exactly: $1 + \left| \frac{N-2}{3} \right|$ times.

As a verification step you should check that the formula does give the exact number of loop iterations for a few values of N: **2,3,4,5,6** (Note that you start with the smallest value of N for which the loop iterates at least one time: 2. You do not use 0 or 1 for N in this verification.)

е	i=2+3e
0	2
1	5
2	8
3	11
е	i = 2+3e
р	i _{last} <=N (i _{last} =2+3p)

Formula for values of i and exact calculation of number of loop iterations – Example 3

for (i=1; i<=N; i=i*5)	е	i=5 ^e
<pre>printf("A");</pre>		1
i takes values: 1,5,25,125,<=N We notice that these are consecutive multiples powers of 5 so we will explicitly show that by writing i as a function of another variable: $i = 5^{e}$ Where e takes values: 0,1,2,3,,p Here we use p to refer to that largest value 5 ^p that is \leq N. The loop executes (the condition is true) for all i = 5 ^e where e takes values: 0,1,2,3,,p => 1+p total values (because of the 0) => the loop iterates 1+p times. (A)		5
		25
		125
		•••
Next we will compute the exact formula for p. Because of how we picked p we have: $5^p \le N < 5^{p+1}$ take \log_5 on all sides $\Rightarrow p \le \log_5 N < (p+1)$ $\Rightarrow p = \lfloor \log_5 N \rfloor$ (B)		i=5 ^e
		i _{last} <=N (i _{last} = 5 ^p) =>

From (A) and (B) it follows that the loop executes $1 + p = 1 + \lfloor \log_5 N \rfloor$ times =>

ANSWER: The loop executes exactly: $1 + \lfloor \log_5 N \rfloor$ times.

As a verification step you should check that the formula does give the exact number of loop iterations for a few values of N: 1,5,25,26,29,30

 $p = \lfloor \log_5 N \rfloor$

Time complexity of nested loops (small variation of the first example)

• Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the body of the loop. This formulation is general and covers both the dependent (see $\sum_{i} {\binom{i^2}{3}} lgM$) and independent cases (see $\sum_{t} 1$ and $\sum_{k} {\binom{i^2}{3}}$).

Dominant term with constant: (N²lgM)/6

If the constant for the dominant term is not needed, we can drop the /3 in i²/3 and use only i (use $\sum_{k} i$ instead of $\sum_{k} (i^{2k}/3)$).