Time complexity of nested loops

* Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the body of
the loop. This formulation is general and covers both the dependent (see);; (é) lgM) and independent cases (see); 1 and Zk(é)).

for(i=1; i<=N; i++)
for(k=1; k<=M; k=k*2)

for(t=0; t<=1; t=t+3)

printf('C'");

Dominant term with constant: (N2lgM)/6

> 2il(5) taM] = 2X4((5) tgm) = L7 xN i = LR ECED = o(N2igM)

ZlgM(l/3) _) (Use only the dominant term(s))

2> 1= Zl/3 INS (é + 1) = G)(é) (Use only the dominant term)
2> 1

2> 2k(i/3) 3

Values of k: 1,2,4,8,....k,«<M , use k = 2¢ with

Values of t: 0,3,6,9,...,t,.,.<i , use t = 3e with Valuesofe:0,1,2,3,..,.p =>

Values of e: 0,1,2,3,...,p =>t,,=i=3p => p=i/3 => Ka=M= 27 => (apply Ig in both sides) => p=IgM =>

Values of e: 0,1,2,3,....i/3. (e has consecutive values) Values of e: 0,1,2,3,...,IgM. (e has consecutive values)
Change of variable: Replace t with e in summation over t Change of variable: Replace k with e in summation over k

We do not need a change of variable for i
because values of i are already ‘good’
(consecutive numbers starting at 1)

You can think that dependent and independent refers to the
relation between the variable of a summation and the term of
the summation. E.g.)}, (i/3) is independent because the

summation is over k, but k does not appear in the expression i/3.

If the constant for the dominant term is not needed, we can drop the /3 ini/3 and use only i (use) i instead of }.,.(i/3)).

Steps for computing the time complexity of loops:
Compute the time complexity of the BODY of the loop, T,

2. Write a “loose” summation over the loop variable of the time complexity of the
body (e.g. 2k T hoay)
3. Summation must be over CONSECUTIVE values. Do a change of variable if

needed. Does the loop variable (say k) go in consecutive values?

1. Yes. Write the summation explicitly: ¥¥—; T poay

2. No. DO change of variable: k = f(e) where e goes from 0 (or 1) to p in consecutive values. Use loop condition
to solve for p (note that even if you have k<N, you can use k. = f(p)=N since we do not need the exact
count). Rewrite the summation using e in sigma, the expression you got for p and replacing k with f(e) in
the term. (E.g. if k = 4e and k<N, solve: 4p=N => p = N/4, then do the change of variable:

Ykt = ZQZ‘S(%)Z (Notice that p does not show in the final answer))
4. Solve the summation you got
5. Give ©. (Keep the dominant term with the multiplication constant if needed)

** If this loop was nested in another, the answer from step 5 will be used to compute the time
complexity of the body of that immediately outer loop (step 1 in calculations for that outer loop)
, and the process continues.

Time complexity of nested loops

* Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the
body of the loop.

. Dominant term with constant: (N3M)/12
// assume given: T, (t,M) = O(t2M)

(+1 2— 1
for(t=0; t<N; t=t+4) > Y, [2M] =¥ /¢[(4e)?M] = 3"/: 16Me? = 16M /2 €2 —16M4()6() — o(N3M)
foo(t,M); > t2M (Use only the dominant term(s))

Values of t: 0,4,8,12,...,t..<N , use t = 4e with

Values of e: 0,1,2,3,...,p =>t,=N=4p => p=N/4 =>
Values of e: 0,1,2,3,...,N/4. (e has consecutive values)
Change of variable: Replace t with e in summation over t
(Note that even though the loop has t<N, we use t ., = N
to solve for p, since we do not need the exact count)

Useful processing of summation techniques (for © or dominant term calculations)

Note that some of these will NOT compute the EXACT solution for the summation

[Independent case (term in summation does not have the Vag‘viable of the summation).

N

S=S+S+S+-.+S=NS (=521=51v)
k=1

N(N+1)

Pull constant in front of summation: YX_,(Sk) =SYN_,k=S = O(SN?)

Break summation /n two summat/ons

Z(k5+k2) - ZkS+Zk2 SZk+Zk2 - SN(N2+ D NV A 1)6(2N+ D _ o(sn? + N3

Drop lower order term from Summatwn term.E. g.10k is lower order compared to k?:

Z(lok+k2)—2k2 N(N+1)6(2N+1) oN?)

Use approximaﬁion by integrals for increasing or decreasing f (k):

z f(k) = @(F(N) — F(S)) (where F is the antiderivative of f)
S

Formula for values of i and exact calculation of
number of loop iterations — Example 1

for (i=0; i<=N:; i=i+3) e |is3e

printf("'A™); 0 0
i takes values: 0,3,6,9,12,.... <N 1 3
We notice that these are consecutive multiples of 3 so we will explicitly show that by writing i as a
function of another variable: 2 6
i=3%e
Where e takes values: 0,1,2,3,....,p 3 9

Here we use p to refer to that last multiple of 3 that is <N.

The loop executes (the condition is true) for all i = 3e where e takes values: 0,1,2,3,...,p => 1+p total
values (because of the 0) => the loop iterates 1+p times. (A)

e 3e
Next we will compute the exact formula for p:
Because of how we chose p we have: 3p < N<3(p+1) (the next multiple of 3 will be strictly larger than N)
We care about 3p because it is the last value of i for which the loop condition is true (3p=i < N).
We know that p is somewhat around N/3, but we need to figure out if it is rounded up or down. p 3p
If N € [3p,3(p + 1)) and we divide by 3 on both sides = g Elpp+1)=>p-= EJ (B) (ijast = 3P,
IIast <N

: N|.. 3p<N =>

From (A) and (B) it follows that the loop executes 1 +p= 1+ |=| times =>
g p=IN/3]

The loop executes exactly: 1 + EJ times.

As a verification step you should check that the formula does give the exact number of loop iterations
for a few values of N: 0,1,2,3,4,15,17

Practice: how would you solve: for (1=3; 1<=N; 1=1+3) printf("'A");

Formula for values of i and exact calculation

of number of loop iterations — Example 2

for (1=2; 1<=N; 1=i1+3)
printf(""'A™);

i takes values: 2,5,8,11,14,.... < N

We notice that these are consecutive multiples of 3 with an offset of 2. We will explicitly show that by
writing i as a function of another variable:

i =2+(3%e)

Where e takes values: 0,1,2,3,....,p

Here we use p to refer to that last value 2+3p that is < N.

The loop executes (the condition is true) for all i = 2+3e where e takes values: 0,1,2,3,...,p => 1+p total
values (because of the 0) => the loop iterates 1+p times.

2+3p < N =>3p < (N-2) => p £ (N-2)/3, but p is an integer and largest with this property =>p = INT_Z =

FINAL ANSWER: The loop executes exactly: 1 + lNT_ZJ times.

As a verification step you should check that the formula does give the exact number of loop iterations
for a few values of N: 2,3,4,5,6 (Note that you start with the smallest value of N for which the loop
iterates at least one time: 2. You do not use 0 or 1 for N in this verification.)

w N - O

i =24+3e

IIa::,t <=N
(i,55t =2+3p)

Formula for values of i and exact calculation of

number of loop iterations — Example 3

for (1=1; 1<=N; I=1*5)
printf("'A™);

i takes values: 1,5,25,125,,....<=N

We notice that these are consecutive multiples powers of 5 so we will explicitly show that by writing i as a
function of another variable:

i=5¢
Where e takes values: 0,1,2,3,....,p
Here we use p to refer to that largest value 5° that is <N.

The loop executes (the condition is true) for all i = 5¢ where e takes values: 0,1,2,3,...,p => 1+p total values
(because of the 0) => the loop iterates 1+p times. (A)

Next we will compute the exact formula for p.
Because of how we picked p we have: 57 < N < 5P*1
take log: on all sides = p < logs N < (p + 1)

= p = |logsN| (B)

From (A) and (B) it follows that the loop executes 1 + p = 1+ |logg N| times =>

ANSWER: The loop executes exactly: 1 + |logs N| times.

As a verification step you should check that the formula does give the exact number of loop iterations for
a few values of N: 1,5,25,26,29,30

0
1
2
3

1

5

25

125

i=5¢

iIast <=N

(ilast =5p) =>
p = |logs N|

Time complexity of nested loops (small variation of the first example)

 Time complexity of loops should be calculated using: sum over the values of the loop variable of the time complexity of the bodg of
the loop. This formulation is general and covers both the dependent (see);; (—) lgM) and independent cases (see);; 1 and Zk(—)

Dominant term with constant: (N2lgM)/6

for(i=1; 1<=N; 1++) -> ZJ(?) IgM] = [()l M] = lgM 2 = lg;MN(N+1)6(2N+1) @(N3lgM)

for(k=1; k<=M; k=k*2) > Zk(i2/3) _ ZlgM(lZ/?:) ,' M) (Use only the dominant term(s))

for(t=0;t<=1*1; t=t+3) =2 ;1 —Zl/3 i—) = G)(%) (Use only the dominant term)

printf("'C'"); 2> 1

Values of k: 1,2,4,8,....k,«<M , use k = 2¢ with

Values of t: 0,3,6,9,...,t,,,Si , use t = 3e with Valuesofe:0,1,2.3,...p =>

Values of €: 0,1,2,3,..,p =>t,=i2=3p => p=i}/3 => Kjast=M= 2P => (apply Ig in both sides) => p=IgM =>

Values of e: 0,1,2,3,...,i%/3. (e has consecutive values) Values of e: 0,1,2,3,...,IgM. (e has consecutive values)

Change of variable: Replace t with e in summation over t Change of variable: Replace k with e in summation over k

We do not need a change of variable for i You can think that dependent and independent refers to the

because values of i are already ‘good’ relation between the variable of a summation and the term of

(consecutive numbers starting at 1) the summation. E.g. Y, (i2/3) is independent because the
summation is over k, but k does not appear in the expression i%/3.

If the constant for the dominant term is not needed, we can drop the /3 in i?/3 and use only i (use ., i instead of Zk(iZ/B)).

	Time complexity of nested loops
	Steps for computing the time complexity of loops:
	Time complexity of nested loops
	Useful processing of summation techniques (for Θ or dominant term calculations)�Note that some of these will NOT compute the EXACT solution for the summation
	Formula for values of i and exact calculation of number of loop iterations – Example 1
	Formula for values of i and exact calculation of number of loop iterations – Example 2
	Formula for values of i and exact calculation of number of loop iterations – Example 3
	Time complexity of nested loops (small variation of the first example)

