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A set is a collection of objects.



A set is a collection of objects.

   5️⃣  
          
      𝐴 =

 ∈ 𝐴.  ∈ 𝐴. ∈ 𝐴.

 ∉ 𝐴.  ∉ 𝐴. 8️⃣ ∉ 𝐴.



Empty Set / Null Set

𝐴 = 



Set containing the empty set

𝐴 =



𝐴 = { , , , , }

𝐵 = { , , , }



𝐴 = { , , , , }

𝐵 = {       , ,               , }

𝐴 ∩ 𝐵 = { , }



𝐴 = { , , , , }

𝐵 = {       , ,               , }

𝐴 ∪ 𝐵 = { , , , , , , }



Graphs

𝐺 = (𝑉, 𝐸)

Formal Definition

𝑉: Set of vertices
𝐸: Set of edges



Graphs

DFW

BOS

LAX

JFK

SFO



Graphs - Undirected

DFW

BOS

LAX

JFK

SFO

𝐺 = (𝑉, 𝐸)
𝑉 = {𝑆𝐹𝑂, 𝐿𝐴𝑋, 𝐷𝐹𝑊, 𝐽𝐹𝐾, 𝐵𝑂𝑆}

𝐸 = { 𝑆𝐹𝑂, 𝐿𝐴𝑋 , 𝑆𝐹𝑂, 𝐷𝐹𝑊 , 𝐿𝐴𝑋, 𝐷𝐹𝑊 , 𝐷𝐹𝑊, 𝐽𝐹𝐾 , {𝐽𝐹𝐾, 𝐵𝑂𝑆}}



Graphs - Directed

DFW

BOS

LAX

JFK

SFO

𝐺 = (𝑉, 𝐸)
𝑉 = {𝑆𝐹𝑂, 𝐿𝐴𝑋, 𝐷𝐹𝑊, 𝐽𝐹𝐾, 𝐵𝑂𝑆}

𝐸 = { 𝐷𝐹𝑊, 𝐿𝐴𝑋 , 𝐷𝐹𝑊, 𝑆𝐹𝑂 , 𝐿𝐴𝑋, 𝑆𝐹𝑂 , 𝐽𝐹𝐾, 𝐷𝐹𝑊 , (𝐽𝐹𝐾, 𝐵𝑂𝑆)}



Graphs - Representation

2

4

1 3

0
0 1 2 3 4

0 0 1 1 0 0
1 1 0 1 0 0
2 1 1 0 1 0
3 0 0 1 0 1
4 0 0 0 1 0

From:

To:

Adjacency Matrix



Graphs - Representation

0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 1 1 0 0 0
3 0 0 1 0 1
4 0 0 0 0 0

From:

To:

Adjacency Matrix

2

4

1 3
0



Graphs - Representation

2

4

1 3

0

Adjacency List

0
1
2
3
4

1 2
0 2
0 1 3
2 4

3





𝑖=𝑝

𝑞

𝑎𝑖

Summations

Index Variable 𝑖

Initial Value 𝑝

Final Value 𝑞





𝑖=𝑝

𝑞

𝑎𝑖

Summations





𝑖=𝑝

𝑞

𝑎𝑖 = 𝑎𝑝 + 𝑎𝑝+1 + ⋯ + 𝑎𝑞−1 + 𝑎𝑞

Summations



Summations



𝑖=1

6

𝑖 = 1 + 2 + 3 + 4 + 5 + 6



Summations



𝑖=1

6

𝑖2 = 12 + 22 + 32 + 42 + 52 + 62





𝑘=1

6

𝑘2 =

Summations

12 + 22 + 32 + 42 + 52 + 62

The choice of index variable does not change the value of the sum.



Exercise



𝑛=3

4

𝑛2 = 32 + 42 = 25



Sequences

Intuitively,

A sequence is an ordered list of objects.

1, 2, 3, 4, 5, 7, …
1, 1, 2, 3, 5, …
a, aa, aaa, aaaa, aaaaa, …



Sequences

More formally,

A sequence is a function whose domain 
is the set of natural numbers (ℕ).

1, 3, 5, 7, 9, …

𝑓 1 = 1

𝑓(2) = 3

𝑓(3) = 5

𝑓(4) = 7



Sequences

More formally,

A sequence is a function whose domain 
is the set of natural numbers (ℕ).

1, 3, 5, 7, 9, …

𝑎1 = 1

𝑎2 = 3

𝑎3 = 5

𝑎4 = 7



Sequences

Definition.

An arithmetic sequence is a sequence 
where the difference between 
consecutive terms always remains the 
same.

3 7 11 15

+4 +4 +4 +4

…



Sequences

Uniqueness

Any arithmetic sequence can be 
uniquely characterized by its first term 
(a) and the common difference (d).

a a+d a+2d a+3d

+d +d +d +d

…



Sequences

a a+d a+2d a+3d

+d +d +d +d

…
𝑇1 𝑇2 𝑇3 𝑇4

𝑇𝑛 = 𝑎 + 𝑛 − 1 𝑑



Arithmetic Sequences

𝑇𝑛 = 𝑎 + 𝑛 − 1 𝑑

𝑇5 = 𝑎 + 4𝑑

𝑇10 = 𝑎 + 9𝑑

𝑇20 = 𝑎 + 19𝑑



Arithmetic Sequences

𝑇𝑛 = 𝑎 + 𝑛 − 1 𝑑

Suppose we have an arithmetic sequence. 
Can we find a formula for its sum to n 
terms?

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)



Arithmetic Sequences
Suppose we have an arithmetic sequence. 
Can we find a formula for its sum to n 
terms?

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)

Story time 



1 + 2 + 3 + ⋯ + 98 + 99 + 100

It’s 5050.
There’s no way you’re 
right! Go check your 

work again.

I can prove it.



1 + 2 + 3 + ⋯ + 49 + 50 + 51 + 52 ⋯ + 98 + 99 + 100

1 2 3 49 50

51529899100

…

…



1 + 2 + 3 + ⋯ + 49 + 50 + 51 + 52 ⋯ + 98 + 99 + 100

1

2 3 49 50

51529899

101

…

…



1 + 2 + 3 + ⋯ + 49 + 50 + 51 + 52 ⋯ + 98 + 99 + 100

1 2

3 49 50

515298

101101

…

…



1 + 2 + 3 + ⋯ + 49 + 50 + 51 + 52 ⋯ + 98 + 99 + 100

1 2 3

49 50

5152

101101101

…

…



1 + 2 + 3 + ⋯ + 49 + 50 + 51 + 52 ⋯ + 98 + 99 + 100

1 2 3 49 50101101101101101 …

50 times



1 + 2 + 3 + ⋯ + 49 + 50 + 51 + 52 ⋯ + 98 + 99 + 100

10150 * 



1 + 2 + 3 + ⋯ + 49 + 50 + 51 + 52 ⋯ + 98 + 99 + 100

5050

Told you!



Generalizing to the First n Natural Numbers,

1 2 3

n-2n-1n

…

…



Generalizing to the First n Natural Numbers,

1 n+1n+1n+1 …

𝑛

2
 times



Generalizing to the First n Natural Numbers



𝑖=1

𝑛

𝑖 = 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2



Key Insight 

In a finite arithmetic sequence, the sum of 
the ith term from the start and the ith term 
from the end remains the same, for all i.



Generalizing to Arithmetic Series

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)

𝑎 𝑎 + 𝑑 𝑎 + 2𝑑

𝑎 + 𝑛 − 3 𝑑𝑎 + 𝑛 − 2 𝑑𝑎 + 𝑛 − 1 𝑑

…

…



𝑎2𝑎 + 𝑛 − 1 𝑑

Generalizing to Arithmetic Series

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)

𝑎 + 𝑑 𝑎 + 2𝑑

𝑎 + 𝑛 − 3 𝑑𝑎 + 𝑛 − 2 𝑑

…

…



𝑎2𝑎 + 𝑛 − 1 𝑑

Generalizing to Arithmetic Series

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)

𝑎 + 𝑑

𝑎 + 2𝑑

𝑎 + 𝑛 − 3 𝑑

2𝑎 + 𝑛 − 1 𝑑

…

…



𝑎2𝑎 + 𝑛 − 1 𝑑

Generalizing to Arithmetic Series

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)

𝑎 + 𝑑 𝑎 + 2𝑑2𝑎 + 𝑛 − 1 𝑑2𝑎 + 𝑛 − 1 𝑑 …



𝑎2𝑎 + 𝑛 − 1 𝑑

Generalizing to Arithmetic Series

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)

𝑎 + 𝑑 𝑎 + 2𝑑2𝑎 + 𝑛 − 1 𝑑2𝑎 + 𝑛 − 1 𝑑 …

𝑛

2
 times



(2𝑎 + 𝑛 − 1 𝑑)

Generalizing to Arithmetic Series

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)

=
𝑛

2
⋅



Generalizing to Arithmetic Series

𝑆𝑛 = 

𝑖=1

𝑛

(𝑎 + 𝑖 − 1 𝑑)

=
𝑛

2
⋅ ( First Term + Last Term )



Sequences

Definition.

A geometric sequence is a sequence 
where the ratio of consecutive terms 
always remains the same.

3 6 12 24

*2 *2 *2 *2

…



Sequences

Uniqueness

Any geometric sequence can be 
uniquely characterized by its first term 
(a) and the common ratio (r).

a ar ar2 ar3

*r *r *r *r

…



Sequences

a ar ar2 ar3

*r *r *r *r

…
𝑇1 𝑇2 𝑇3 𝑇4

𝑇𝑛 = 𝑎𝑟𝑛−1



Sum to n terms of a Geometric Sequence

𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟𝑛−2 + ar𝑛−1

𝑟 ⋅ 𝑆𝑛 = 𝑟 (𝑎 +  𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟𝑛−2 + ar𝑛−1)



Sum to n terms of a Geometric Sequence

𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟𝑛−2 + ar𝑛−1

𝑟 ⋅ 𝑆𝑛 =  𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟𝑛−2 + ar𝑛−1 + 𝑎𝑟𝑛

𝑆𝑛 1 − 𝑟 = 𝑎 − 𝑎𝑟𝑛



Sum to n terms of a Geometric Sequence

𝑆𝑛 1 − 𝑟 = 𝑎 − 𝑎𝑟𝑛



Sum to n terms of a Geometric Sequence

𝑆𝑛 =
𝑎 − 𝑎𝑟𝑛

(1 − 𝑟)



Sum to n terms of a Geometric Sequence

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1 =
𝑎 − 𝑎𝑟𝑛

(1 − 𝑟)



Sum to n terms of a Geometric Sequence

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1 =
First Term − First excluded term

(1 − 𝑟)



 Time Complexity



Measuring Running Time of Code

• It is easy to simply measure how long it takes for a 
program to execute using a computer’s clock.

• But is that a good idea?

Runtime is system-dependent
Other processes running may 
affect measured runtime.



Instead, let’s count the number 
of “basic operations” our 

algorithm performs.
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