Algorithms and Data Structures

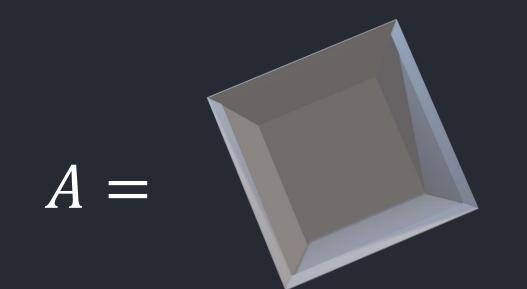
Discrete Structures and Math Review

A set is a collection of objects.

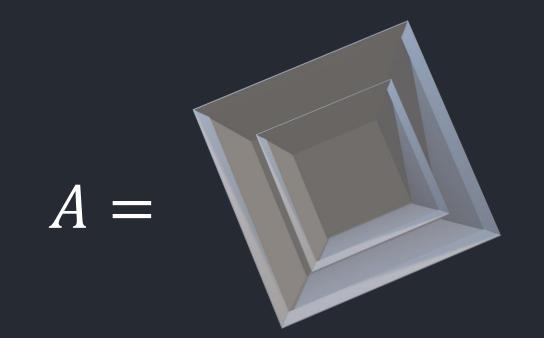


A set is a collection of objects.

 $\bigcirc \bigcirc \in A.$ $\swarrow \in A.$ $\bowtie \in A.$ $\oiint \notin A.$ $\oiint \notin A.$ $\blacksquare \notin A.$



Empty Set / Null Set



Set containing the empty set

$A = \{ \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow} \}$ $B = \{ \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow} \}$

$A = \{ \stackrel{\text{\tiny CO}}{\longrightarrow}, \stackrel{\text{\tiny CO}}{\longrightarrow}, \stackrel{\text{\tiny CO}}{\longrightarrow}, \stackrel{\text{\tiny CO}}{\longrightarrow} \}$ $B = \{ \stackrel{\text{\tiny CO}}{\longrightarrow}, \stackrel{\text{\tiny CO}}{\longrightarrow}, \stackrel{\text{\tiny CO}}{\longrightarrow}, \stackrel{\text{\tiny CO}}{\longrightarrow}, \stackrel{\text{\tiny CO}}{\longrightarrow} \}$

$A \cap B = \{ \stackrel{\frown}{\frown}, \stackrel{\frown}{\odot} \}$

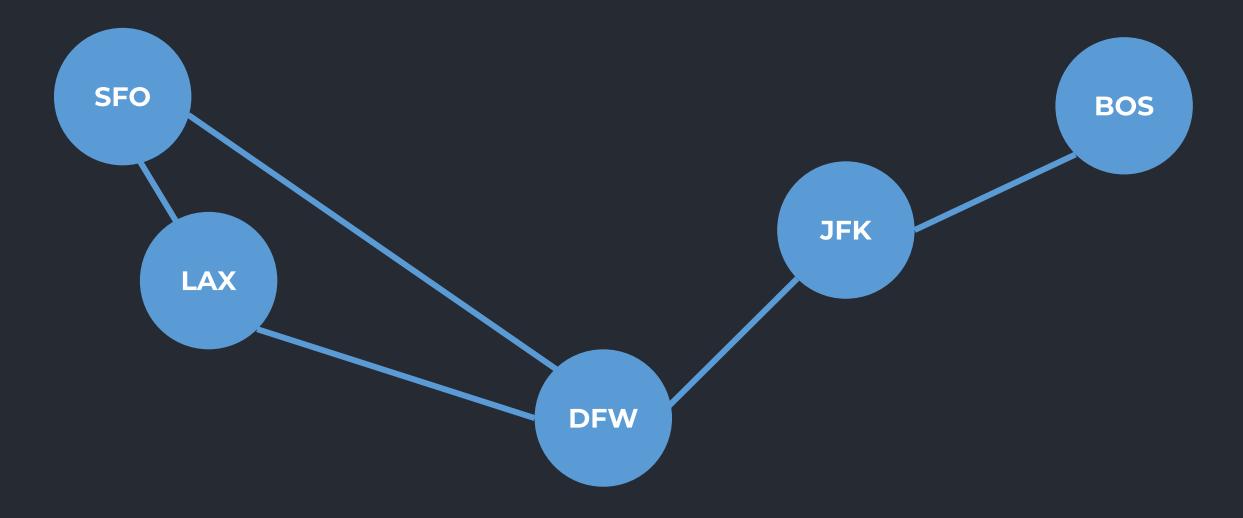
$A = \{ \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow} \}$ $B = \{ \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow}, \stackrel{\text{\tiny CP}}{\longrightarrow} \}$

$A \cup B = \{ \stackrel{\text{\tiny CP}}{=}, \stackrel{\text{\tiny CP}$

Formal Definition

G = (V, E)

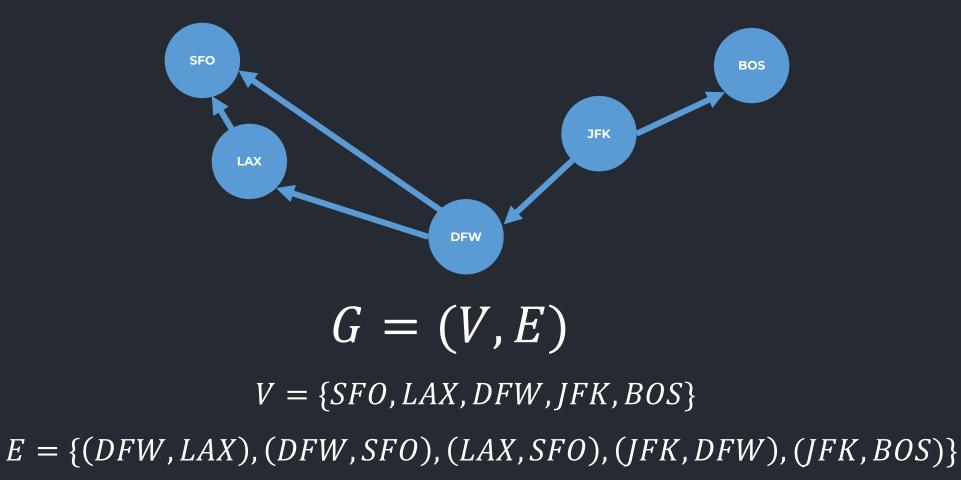
V: Set of verticesE: Set of edges



SFO BOS JFK LAX DFW G = (V, E) $V = \{SFO, LAX, DFW, JFK, BOS\}$ $E = \{\{SFO, LAX\}, \{SFO, DFW\}, \{LAX, DFW\}, \{DFW, JFK\}, \{JFK, BOS\}\}$

Graphs - Undirected

 \sim



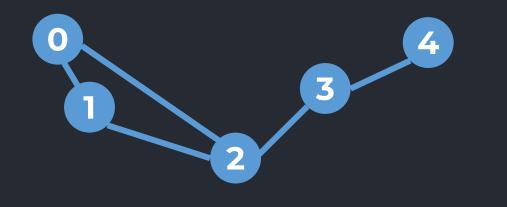
Graphs - Representation

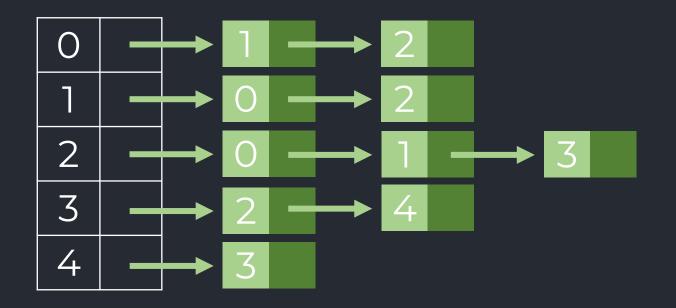
Adjacency Matrix

Graphs - Representation

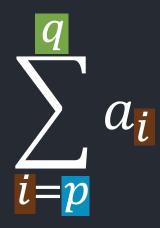
Adjacency Matrix

Graphs - Representation





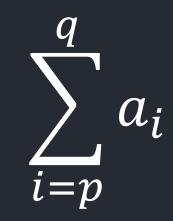
Adjacency List



Index Variable *i*

Initial Value p

Final Value q



$$\sum_{i=p}^{q} a_i = a_p + a_{p+1} + \dots + a_{q-1} + a_q$$

$\sum_{i=1}^{6} i = 1 + 2 + 3 + 4 + 5 + 6$

$\sum_{i=1}^{6} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2$

$\sum_{k=1}^{6} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2$

The choice of index variable does not change the value of the sum.

$$\sum_{n=3}^{4} n^2 = 3^2 + 4^2 = 25$$

Intuitively, A sequence is an **ordered list** of objects.

```
1, 2, 3, 4, 5, 7, ...
1, 1, 2, 3, 5, ...
a, aa, aaa, aaaa, aaaaa, ...
```


More formally, A sequence is a function whose domain is the set of natural numbers (\mathbb{N}).

1, 3, 5, 7, 9, ...

f(1) = 1f(3) = 5f(2) = 3f(4) = 7

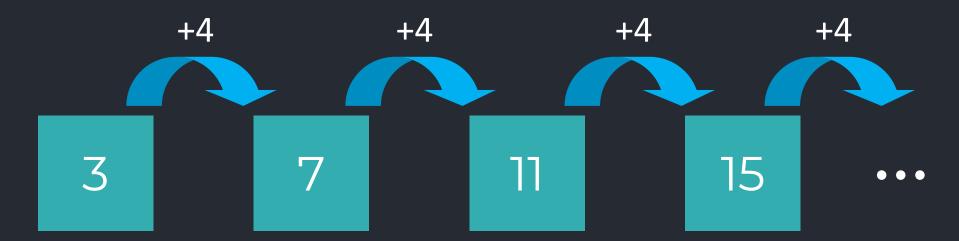
More formally, A sequence is a function whose domain is the set of natural numbers (\mathbb{N}).

1, 3, 5, 7, 9, ...

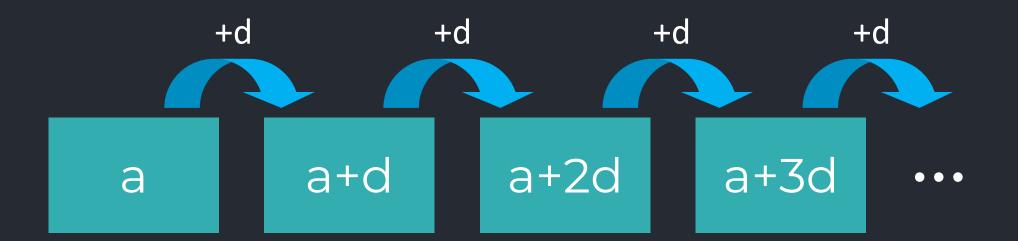
$$a_1 = 1$$
 $a_3 = 5$
 $a_2 = 3$ $a_4 = 7$

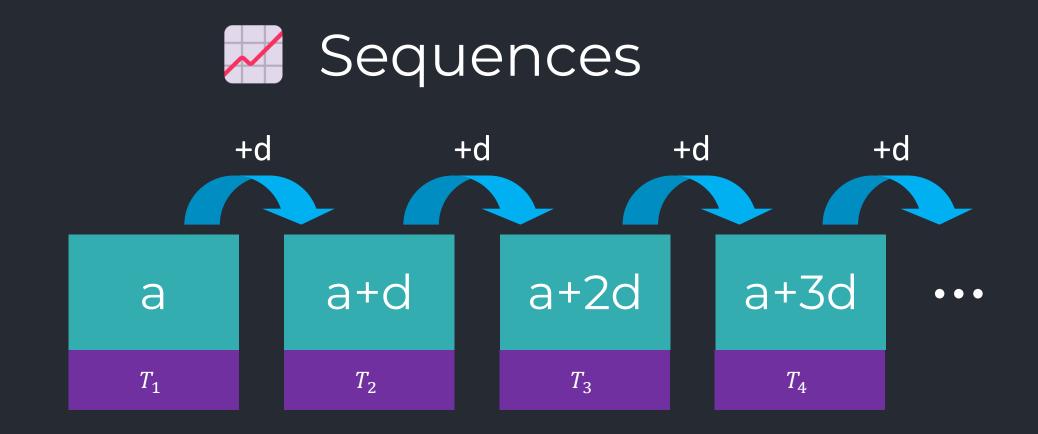
Definition.

An *arithmetic sequence* is a sequence where the difference between consecutive terms always remains the same.



Uniqueness Any arithmetic sequence can be uniquely characterized by its first term (a) and the common difference (d).





$$T_n = a + (n-1)d$$

Arithmetic Sequences

 $T_n = a + (n-1)d$

 $T_5 = a + 4d$

 $T_{10} = a + 9d$

 $T_{20} = a + 19d$

Arithmetic Sequences

$$T_n = a + (n-1)d$$

Suppose we have an arithmetic sequence. Can we find a formula for its sum to n terms?

$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

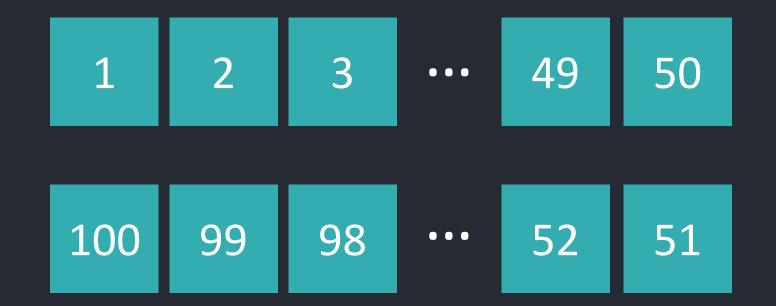
Arithmetic Sequences

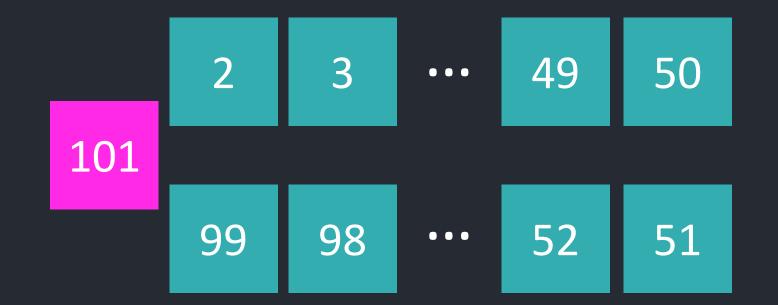
Suppose we have an arithmetic sequence. Can we find a formula for its sum to n terms?

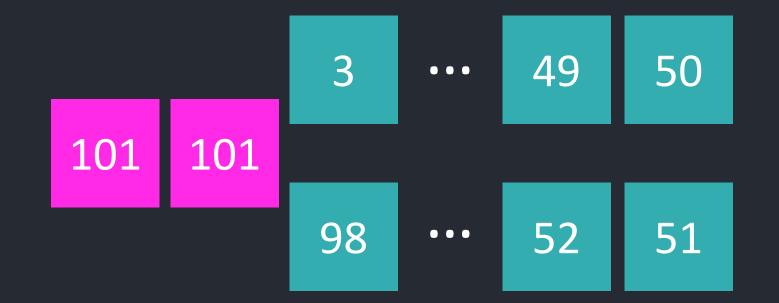
$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

$1 + 2 + 3 + \dots + 98 + 99 + 100$

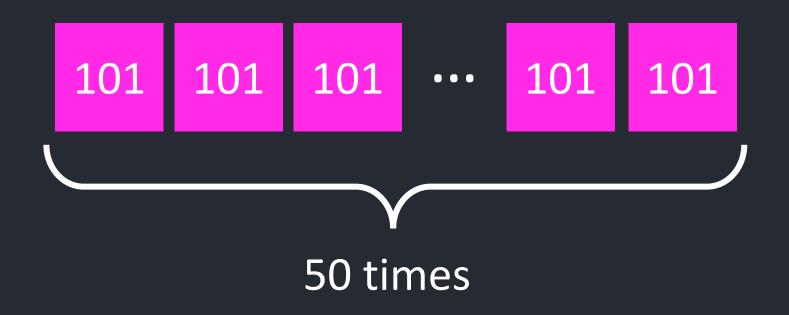
There's no way you're right! Go check your work again.







$1 + 2 + 3 + \dots + 49 + 50 + 51 + 52 \dots + 98 + 99 + 100$

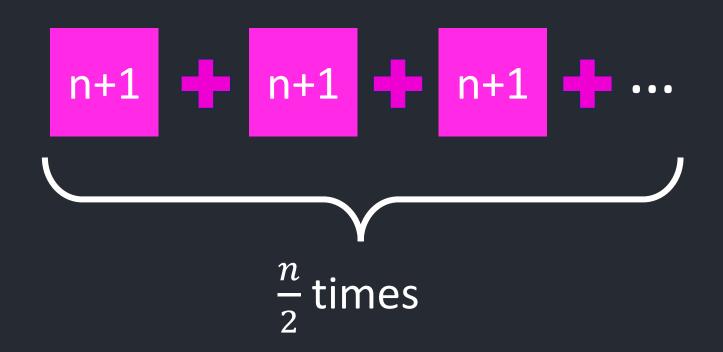


$1 + 2 + 3 + \dots + 49 + 50 + 51 + 52 \dots + 98 + 99 + 100$

$1 + 2 + 3 + \dots + 49 + 50 + 51 + 52 \dots + 98 + 99 + 100$

Generalizing to the First n Natural Numbers,

Generalizing to the First n Natural Numbers,



Generalizing to the First n Natural Numbers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

In a finite arithmetic sequence, the sum of the *i*th term from the start and the *i*th term from the end remains the same, for all *i*.

$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

$$a$$
 $a+d$ $a+2d$...

$$a + (n-1)d$$
 $a + (n-2)d$ $a + (n-3)d$...

$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

$$\begin{array}{c}
a + d & a + 2d & \cdots \\
2a + (n-1)d & & \\
a + (n-2)d & a + (n-3)d & \cdots
\end{array}$$

$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

$$\begin{array}{c}
a + 2d \\
a +$$

$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

$$2a + (n-1)d$$
 $2a + (n-1)d$ $2a + (n-1)d$...

$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

$$2a + (n-1)d$$
 $2a + (n-1)d$ $2a + (n-1)d$...

 $\frac{n}{2}$ times

$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

$$=\frac{n}{2}\cdot (2a+(n-1)d)$$

$$S_n = \sum_{i=1}^n (a + (i-1)d)$$

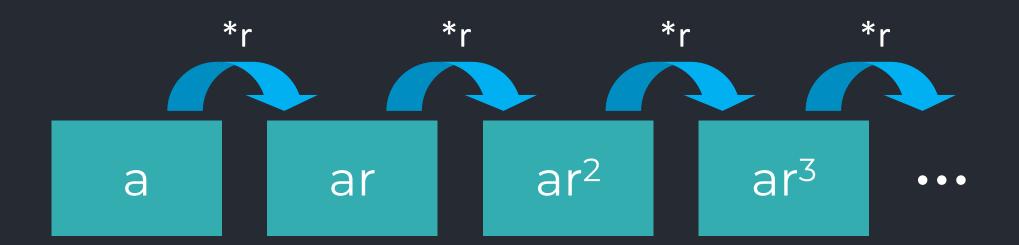
$$=\frac{n}{2}\cdot$$
 (First Term + Last Term)

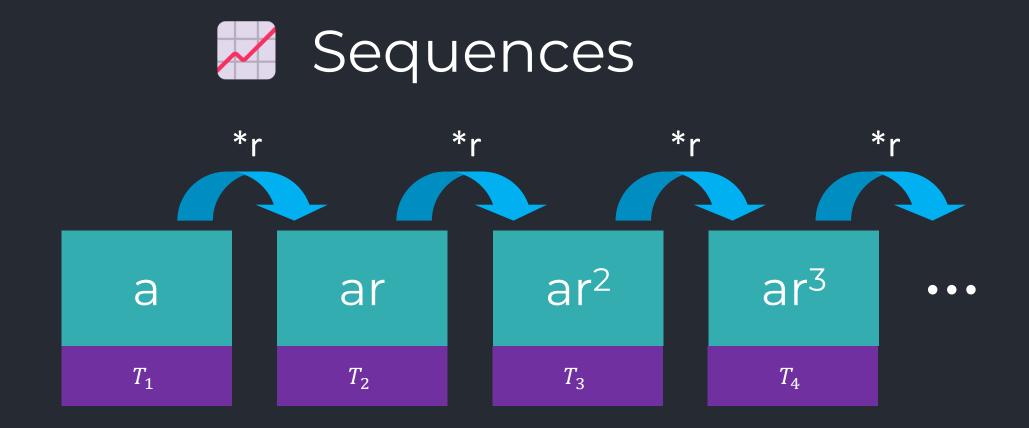
Definition.

A geometric sequence is a sequence where the ratio of consecutive terms always remains the same.

Uniqueness

Any geometric sequence can be uniquely characterized by its first term (a) and the common ratio (r).





$$T_n = ar^{n-1}$$

$$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1}$$
$$r \cdot S_n = r (a + ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1})$$

$$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1}$$

$$r \cdot S_n = ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1} + ar^n$$

$$S_n(1-r) = a$$

 $-ar^{n}$

 $\overline{S_n(1-r)} = a - ar^n$

$$S_n = \frac{a - ar^n}{(1 - r)}$$

$$a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a - ar^{n}}{(1 - r)}$$

$$a + ar + ar^{2} + \dots + ar^{n-1} = \frac{\text{First Term} - \text{First excluded term}}{(1-r)}$$

Measuring Running Time of Code

• It is easy to simply measure how long it takes for a program to execute using a computer's clock.

• But is that a good idea?

Other processes running may affect measured runtime.

Runtime is system-dependent

Instead, let's count the number of "basic operations" our algorithm performs.