
Time Complexity

001 class notes

Alexandra Stefan

1

Overview
• Exact instruction count

• TC (Time complexity) :
• motivation,

• O() notation,

• meaning,

• calculation for case of a single variable

• TC for loops
• 1iter

• TC1iter(loop_variable)

• loop_variable as a function (expression) of iteration number:
• k = iter, j=2*iter, k = 3iter , v = N-iter

• table

• TC of nested loops: 2

Exact instruction count is a sum of terms (often a polynomial)

Instructions executed in the while loop , in the WORST case:

• There are 5 basic operations in the while loop:

k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1

• Each one of them (e.g. A[k+1] = A[k]) executes:

1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2

void insertion_sort(int A[],int N){

int j,k,curr;

for (j=1; j<N; j++){

curr = A[j]; //______

// insert curr (A[j]) in the

// sorted sequence A[0…j-1]

k = j-1; //______

while ((k>=0) && (A[k]>curr)){

A[k+1] = A[k];

k = k–1;

}

A[k+1] = curr; //______

}

3

Instruction Count Explanation

j=1;

j<N; (N-1) true, 1 false

curr = A[j];

k = j-1;

(k>=0)

(A[k]>curr)

&&

A[k+1]=A[k];

k = k-1;

A[k+1] = curr;

j++

Total (sum of all
instructions)

Exact instruction count is a sum of terms (often a polynomial)

Instructions executed in the while loop , in the WORST case:

• There are 5 basic operations in the while loop:

k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1

• Each one of them (e.g. A[k+1] = A[k]) executes:

1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2

void insertion_sort(int A[],int N){

int j,k,curr;

for (j=1; j<N; j++){

curr = A[j]; //______

// insert curr (A[j]) in the

// sorted sequence A[0…j-1]

k = j-1; //______

while ((k>=0) && (A[k]>curr)){

A[k+1] = A[k];

k = k–1;

}

A[k+1] = curr; //______

}

4

Instruction Count Explanation

j=1;

j<N; (N-1) true, 1 false

curr = A[j];

k = j-1;

(k>=0)

(A[k]>curr)

&&

A[k+1]=A[k];

k = k-1;

A[k+1] = curr;

j++

Total (sum of all
instructions)

Exact instruction count is a sum of terms (often a polynomial)

Instructions executed in the while loop , in the WORST case:

• There are 5 basic operations in the while loop:

k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1

• Each one of them (e.g. A[k+1] = A[k]) executes:

1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2

void insertion_sort(int A[],int N){

int j,k,curr;

for (j=1; j<N; j++){

curr = A[j]; //______

// insert curr (A[j]) in the

// sorted sequence A[0…j-1]

k = j-1; //______

while ((k>=0) && (A[k]>curr)){

A[k+1] = A[k];

k = k–1;

}

A[k+1] = curr; //______

}

5

Instruction Count Explanation

j=1; 1

j<N; N (N-1) true, 1 false

curr = A[j]; N-1

k = j-1; N-1

(k>=0) N(N-1)/2

(A[k]>curr) N(N-1)/2

&& N(N-1)/2

A[k+1]=A[k]; N(N-1)/2

k = k-1; N(N-1)/2

A[k+1] = curr; N-1

j++ N-1

Total (sum of all
instructions)

1+N+4(N-1)+5*N(N-1)/2 =
(5/2)N2 + (5/2)N - 3

Exact instruction count is a sum of terms (often a polynomial)

Instructions executed in the while loop , in the WORST case:

• There are 5 basic operations in the while loop:

k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1

• Each one of them (e.g. A[k+1] = A[k]) executes:

1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2

void insertion_sort(int A[],int N){

int j,k,curr;

for (j=1; j<N; j++){

curr = A[j]; //______

// insert curr (A[j]) in the

// sorted sequence A[0…j-1]

k = j-1; //______

while ((k>=0) && (A[k]>curr)){

A[k+1] = A[k];

k = k–1;

}

A[k+1] = curr; //______

}

6

Instruction Count Explanation

j=1; 1

j<N; N (N-1) true, 1 false

curr = A[j]; N-1

k = j-1; N-1

(k>=0) N(N-1)/2

(A[k]>curr) N(N-1)/2

&& N(N-1)/2

A[k+1]=A[k]; N(N-1)/2

k = k-1; N(N-1)/2

A[k+1] = curr; N-1

j++ N-1

Total (sum of all
instructions)

1+N+4(N-1)+5*N(N-1)/2 =
(5/2)N2 + (5/2)N - 3

TC (time complexity)

• Algorithm performance for large data size (goes to infinity)

• Looks at dominant term in that expression
• focuses on N2

• instead of (5/2)N2 + (5/2)N - 3

• Notation: O() (and a few other symbols)

• Motivation

7

Why use O(N2) instead of 100N+3N2+1000

N N
2

3N
2

100N 1000

10
4

Instructions:
10

8

Time: 0.1sec

Instructions:
3*10

8

Time: 0.3sec

Instructions:
10

6

Time: 0.001sec

Instructions:
10

3

Time: 10
-6

sec

10
9

Instructions:
(10

9
)
2
=10

18

Time: 31 yrs

Instructions:
3*(10

9
)
2
=3*10

18

Time: 95 yrs

Instructions:
100*10

9
= 10

11

Time: 100sec = 1.6 min

Instructions:
10

3

Time: 10
-6

sec

8

The table below will help understand why TC focuses on the dominant term instead of the exact instruction count.

Assume an exact instruction count for a program gives: 100N+3N2+1000
Assume we run this program on a machine that executes 109 instructions per second.

Compute the time for each term in the summation

(Review: Sample time calculation: 10000 instructions will take: 10000/109 = 10-5 seconds)

Values in table are approximations (not exact calculations).

1018/109 = 109 sec = 109 / (60sec*60min*24hrs*365days) = 109 / 31536000 = about 31yrs

You can also plot these functions, add or remove terms and see which terms determine the shape.

How to find the dominant term O(__?__)
(case with only one variable)

1. Remove multiplication constants
• NOTE that a term with no variable becomes: 1

• E.g. 1000 -> 1 b.c. 1000 = 1000*1 = 1000*n0 => the constant is 1000, the function is 1 (n0)

2. Look at each term as a separate function

3. Keep the function(s) that grow faster than the others
• more cases later when we look at expressions with 2 or more variables

4. Write it in O(____)

Example: 100N + 3N2 + 1000 = O(___)

1. remove constants: N + N2 + 1 (note we still keep 1 for 1000)

2. look at terms as fcts: N , N2 , 1 (e.g.: f(N) = N, g(N) = N2 , h(N) = 1)

3. Keep the faster growing one: N2

4. fill in O: O(N2) 9

Step 3: Keep the faster growing function:
Ordering functions of one variable by their growth

• Motivation:
• for calculation of O()

• to be able to compare 2 algorithms

• Notation: lg(n) = log2(N)

• Order these functions:

N , N2 , lgN , 50, NlgN , N3 , N1/2 , log5(N)

• Plot them to check

• Place the one you are sure about and
leave spaces for the others:

10

Arithmetic with O()

• O(1) + O(1) + … O(1) added T times is T*O(1) = O(T)

• O(1) + O(1) + O(1) = O(1)

• O(T) + O(T) + O(T) + … + O(T) added N times => N*O(T) = O(N*T)

11

Time Complexity for loops

12

Loop execution and
1iter (code executed in one loop iteration)

void ex1() {

int A[7] = {5, 1, 9, 3, 5, 9, 5};

int N = 7;

int T = 4;

int k;

k = 0;

while(k<T){

printf("%4d, ", A[k]);

k++;

}

printf("\n");

}

13

// code execution

k=0;

k = 0;

while(k<T){

printf("%4d, ", A[k]);

k++;

}

14

for(j = 0; j<N; j++){

for(v = 0; v<T; v++) {

printf(A[v])

}

}

Analyzed for(v) -> O(T) (prev page)

Analyze for j

1iter(j)

15

for(j = 0; j<N; j++){

for(v = 0; v<j; v++) {

printf(A[v])

}

}

Analyzed for-v -> O(j) (prev page)

Analyze for j

1iter(j)

16

for(t = 1 ; t<N ; t=t*3){

for(v = C; v>=1; v--) {

printf(A[v])

}

}

Analyzed for-v -> (prev page)

Analyze for j

1iter(j)

17

	Default Section
	Slide 1: Time Complexity 001 class notes
	Slide 2: Overview
	Slide 3: Exact instruction count is a sum of terms (often a polynomial)
	Slide 4: Exact instruction count is a sum of terms (often a polynomial)
	Slide 5: Exact instruction count is a sum of terms (often a polynomial)
	Slide 6: Exact instruction count is a sum of terms (often a polynomial)
	Slide 7: TC (time complexity)
	Slide 8: Why use O(N2) instead of 100N+3N2+1000
	Slide 9: How to find the dominant term O(__?__) (case with only one variable)
	Slide 10: Step 3: Keep the faster growing function: Ordering functions of one variable by their growth
	Slide 11: Arithmetic with O()

	TC for loops
	Slide 12: Time Complexity for loops
	Slide 13: Loop execution and 1iter (code executed in one loop iteration)
	Slide 14
	Slide 15
	Slide 16
	Slide 17

