Time Complexity

001 class notes

Alexandra Stefan

Overview

e Exact instruction count

* TC (Time complexity) :
* motivation,
O() notation,
* meaning,
calculation for case of a single variable

* TC for loops
o liter
TC,..,(loop_variable)
loop_variable as a function (expression) of iteration number:
* k =iter, j=2%*iter, k=3, v=N-iter
table
e TC of nested loops:

Exact instruction count is a sum of terms (often a polynomial)

void insertion_sort(int A[],int N) {
int j,k,curr;
for (j=1; j<N; Jj++){
curr = A[j]; //
// insert curr (A[j]) in the
// sorted sequence A[O0..j-1]
k =3-1; //
while ((k>=0) && (A[k]>curr)) {
A[k+1l] = A[k];
k = k-1;
}
A[k+1l] = curr; //

}

Instructions executed in the while loop, in the WORST case:

* There are 5 basic operations in the while loop:
k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1

e Each one of them (e.g. A[k+1] = A[k]) executes:
142+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2

Instruction Count Explanation
J=1;
j<N; (N-1) true, 1 false

curr = A[j];

k = j-1;

(k>=0)

(A[k]>curr)

&&

Alk+1]=A[k];

k = k-1;

A[k+1l] = curr;

J++

Total (sum of all
instructions)

Exact instruction count is a sum of terms (often a polynomial)

N
void insertion_sort(int A[],int N) { T 74 F
int j,k,curr; 14, 7, .. Ni) N Instruction Count Explanation
for (j=1; J<N; j++){ j=1; f ;V
I
curr = A[3]; // 3<N; Py NTNL) trud) 1 false
// insert curr (A[j]) in the curr = A[j]; N-4 N —a

// sorted sequence A[0..j-1]

k = j-1; N1 4
k = j-1; // Ml:—weh—sql'—

———— k>=0 — L) - 4 -
while ((k>=0) && (A[k]>curr)) { () N / ';,24'.‘#21"3;7“0 /

J
6[?:1] - @ = (A[k]>curr) N~/ J -~

k = k-1; && N- 4 >
} A[k+1]1=A[k]; D, ‘i
I -
A[k+1] = curr; // k = k-1; 0 &
} A[k+1l] = curr; N —/ N-7
Instructions executed in the while loop , in the WORST case: 34+ rJ— { N/
* There are 5 basic operations in the while loop: Total (sum of all *M:ﬂ ot H(N-1)4 IV +1
k>=0, A[k]>curr, ()&&(), Alk+1]=A[K], k=k-1 instructions) 2N~ \ +5 (N2)
- ; -— N_?: - _J
e Each one of them (e.g. A[k+1] = A[k]) executes: I - %,2_5_‘,\, =4
2

1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2 4

Exact instruction count is a sum of terms (often a polynomial)

void insertion_sort(int A[],int N) {
int j,k,curr;
for (j=1; j<N; Jj++){
curr = A[j]; //
// insert curr (A[j]) in the
// sorted sequence A[O0..j-1]
k =3-1; //
while ((k>=0) && (A[k]>curr)) {
A[k+1] = A[k];
k = k-1;
}
A[k+1l] = curr; //

}

Instructions executed in the while loop, in the WORST case:

* There are 5 basic operations in the while loop:
k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1

e Each one of them (e.g. A[k+1] = A[k]) executes:
142+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2

Instruction Count Explanation
j=1; 1
j<N; N (N-1) true, 1 false
curr = A[j]; N-1
k =3-1; N-1
(k>=0) N(N-1)/2
(A[k]>curr) N(N-1)/2
&& N(N-1)/2
A[k+1]=A[k]; | N(N-1)/2
k = k-1; N(N-1)/2
A[k+1l] = curr; N-1
J++ N-1

Total (sum of all
instructions)

1+N+4(N-1)+5*N(N-1)/2 =
(5/2)N2 + (5/2)N - 3

Exact instruction count is a sum of terms (often a polynomial)

void insertion_sort(int A[],int N) {
int j,k,curr;
for (j=1; j<N; Jj++){
curr = A[j]; //
// insert curr (A[j]) in the
// sorted sequence A[O0..j-1]
k =3-1; //
while ((k>=0) && (A[k]>curr)) {
A[k+1] = A[k];
k = k-1;
}
A[k+1l] = curr; //

}

Instructions executed in the while loop, in the WORST case:

* There are 5 basic operations in the while loop:
k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1

e Each one of them (e.g. A[k+1] = A[k]) executes:
142+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2

Instruction Count Explanation
j=1; 1
j<N; N (N-1) true, 1 false
curr = A[j]; N-1
k =3-1; N-1
(k>=0) N(N-1)/2
(A[k]>curr) N(N-1)/2
&& N(N-1)/2
A[k+1]=A[k]; | N(N-1)/2
k = k-1; N(N-1)/2
A[k+1l] = curr; N-1
J++ N-1

Total (sum of all
instructions)

1+N+4(N-1)+5*N(N-1)/2 =
(5/2)N2 + (5/2)N - 3

TC (time complexity)

» Algorithm performance for large data size (goes to infinity)

* Looks at dominant term in that expression
 focuses on N?

* instead of (5/2)N% + (5/2)N - 3

* Notation: O() (and a few other symbols)
* Motivation

Why use O(N?) instead of 100N+3N2+1000

The table below will help understand why TC focuses on the dominant term instead of the exact instruction count.

Assume an exact instruction count for a program gives: 100N+3N2+1000
Assume we run this program on a machine that executes 10° instructions per second.

Compute the time for each term in the summation

(Review: Sample time calculation: 10000 instructions will take: 10000/10° = 10~ seconds)

Values in table are approximations (not exact calculations).

N N’ 3N° 100N 1000

104 Ins;cructions: Instrtéctions: InsGtructions: Ins3tructions:
10 3*10 10 10 ;
Time: 0.1sec Time: 0.3sec Time: 0.001sec Time: 10 sec

109 Instgrgctiolr;s: Instrugtzions: s Instructsgons:11 Ins3tructions:
(107) =10 3*(107) =3*10 100*10 =10 10]
Time: 31 yrs Time: 95 yrs Time: 100sec = 1.6 min Time: 10 sec

1018/10°=10°sec = 10°/ (60sec*60min*24hrs*365days) = 10° / 31536000 = about 31yrs

You can also plot these functions, add or remove terms and see which terms determine the shape.

How to find the dominantterm O(?)
(case with only one variable)

1. Remove multiplication constants

e NOTE that a term with no variable becomes: 1
« Eg.1000 -> 1 b.c. 1000 = 1000*1 = 1000*n° => the constant is 1000, the function is 1 (n°)

2. Look at each term as a separate function

3. Keep the function(s) that grow faster than the others
* more cases later when we look at expressions with 2 or more variables

4. Writeitin O)

Example: 100N + 3N2+ 1000 = O()

1. remove constants: N+ N2+ 1 (note we still keep 1 for 1000)

2. lookattermsasfcts: N, N2, 1 (eg: f(N)=N, g(N)=N2, h(N)=1)
3. Keep the faster growing one: N?

4. fillin O: O(N?)

Step 3: Keep the faster growing function:
Ordering functions of one variable by their growth

* Motivation:
 for calculation of O()
* to be able to compare 2 algorithms

* Notation: Ig(n) =log,(N)
* Order these functions:

N, N2, IgN, 50, NIgN, N3, N2 log.(N)
* Plot them to check

* Place the one you are sure about and
leave spaces for the others:

Arithmetic with O()

e O(1) +O(1) +... O(1) added T times is T*O(1) = O(T)
* O(1)+0O(1) + O(1) =0(1)
e O(T) + O(T) + O(T) + ... + O(T) added N times => N*O(T) = O(N*T)

Time Complexity for loops

Loop execution and
liter (code executed in one loop iteration)

void ex1 () { // code execution
int A[7] = {5, 1, 9, 3, 5, 9, 5}; k=0;
int N = Z;
int T = 4;

int k;

k =0;

while (k<T) {
printf("%4d, ", A[k]);
k++;

}

printf ("\n");

}

k = 0;
while (k<T) {

printf ("%4d,

k++;

", A[k]);

14

for(j = 0; j<N; j++){
for(v =0; v<T; v++) {
printf(A[v])

}
Analyzed for(v) -> O(T) (prev page)

Analyze for j
liter(j)

15

for(j = 0; j<N; j++){
for(v = 0; v<j; v++) {
printf(A[v])

}

Analyzed for-v -> O(j) (prev page)
Analyze for j

liter(j)

16

for(t=1;t<N; t=t*3){
for(v=C; v>=1; v--) {
printf(A[v])

}

Analyzed for-v -> (prev page)
Analyze for j

liter(j)

17

	Default Section
	Slide 1: Time Complexity 001 class notes
	Slide 2: Overview
	Slide 3: Exact instruction count is a sum of terms (often a polynomial)
	Slide 4: Exact instruction count is a sum of terms (often a polynomial)
	Slide 5: Exact instruction count is a sum of terms (often a polynomial)
	Slide 6: Exact instruction count is a sum of terms (often a polynomial)
	Slide 7: TC (time complexity)
	Slide 8: Why use O(N2) instead of 100N+3N2+1000
	Slide 9: How to find the dominant term O(__?__) (case with only one variable)
	Slide 10: Step 3: Keep the faster growing function: Ordering functions of one variable by their growth
	Slide 11: Arithmetic with O()

	TC for loops
	Slide 12: Time Complexity for loops
	Slide 13: Loop execution and 1iter (code executed in one loop iteration)
	Slide 14
	Slide 15
	Slide 16
	Slide 17

