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Overview

e Exact instruction count

* TC (Time complexity) :
* motivation,
O() notation,
* meaning,
calculation for case of a single variable

* TC for loops
o liter
TC,..,(loop_variable)
loop_variable as a function (expression) of iteration number:
* k =iter, j=2%*iter, k=3, v=N-iter
table
e TC of nested loops:



Exact instruction count is a sum of terms (often a polynomial)

void insertion_sort(int A[],int N) {
int j,k,curr;
for (j=1; j<N; Jj++){
curr = A[j]; //
// insert curr (A[j]) in the
// sorted sequence A[O0..j-1]
k =3-1; //
while ((k>=0) && (A[k]>curr)) {
A[k+1l] = A[k];
k = k-1;
}
A[k+1l] = curr; //

}

Instructions executed in the while loop, in the WORST case:

* There are 5 basic operations in the while loop:
k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1

e Each one of them (e.g. A[k+1] = A[k] ) executes:
142+3+4+..+(N-2)+(N-1) = ((N-1)*N )/2 =N(N-1)/2

Instruction Count Explanation
J=1;
j<N; (N-1) true, 1 false

curr = A[j];

k = j-1;

(k>=0)

(A[k]>curr)

&&

Alk+1]=A[k];

k = k-1;

A[k+1l] = curr;

J++

Total (sum of all
instructions )




Exact instruction count is a sum of terms (often a polynomial)

N
void insertion_sort(int A[],int N) { T 74 F
int j,k,curr; 14, 7, .. Ni) N Instruction Count Explanation
for (j=1; J<N; j++){ j=1; f ;V
I
curr = A[3]; // 3<N; Py NTNL) trud) 1 false
// insert curr (A[j]) in the curr = A[j]; N-4 N —a

// sorted sequence A[0..j-1]

k = j-1; N1 4
k = j-1; // Ml:—weh—sql'—

———— k>=0 — L ) - 4 -
while ((k>=0) && (A[k]>curr)) { ( ) N / ';,24'.‘#21"3;7“0 /

J
6[?:1] - @ = (A[k]>curr) N~/ J -~

k = k-1; && N- 4 >
} A[k+1]1=A[k]; D, ‘i
I -
A[k+1] = curr; // k = k-1; 0 &
} A[k+1l] = curr; N —/ N-7
Instructions executed in the while loop , in the WORST case: 34+ rJ— { N/
* There are 5 basic operations in the while loop: Total (sum of all *M:ﬂ ot H(N-1)4 IV +1
k>=0, A[k]>curr, ()&&(), Alk+1]=A[K], k=k-1 instructions ) 2N~ \ +5 (N2 )
- ; -— N_?: - _J
e Each one of them (e.g. A[k+1] = A[k] ) executes: I - %,2_5_‘,\, =4
2

1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N )/2 =N(N-1)/2 4



Exact instruction count is a sum of terms (often a polynomial)

void insertion_sort(int A[],int N) {
int j,k,curr;
for (j=1; j<N; Jj++){
curr = A[j]; //
// insert curr (A[j]) in the
// sorted sequence A[O0..j-1]
k =3-1; //
while ((k>=0) && (A[k]>curr)) {
A[k+1] = A[k];
k = k-1;
}
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k>=0, A[k]>curr, ()&&(), A[k+1]=A[k], k=k-1
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TC (time complexity)

» Algorithm performance for large data size (goes to infinity)

* Looks at dominant term in that expression
 focuses on N?

* instead of (5/2)N% + (5/2)N - 3

* Notation: O() (and a few other symbols)
* Motivation



Why use O(N?) instead of 100N+3N2+1000

The table below will help understand why TC focuses on the dominant term instead of the exact instruction count.

Assume an exact instruction count for a program gives: 100N+3N2+1000
Assume we run this program on a machine that executes 10° instructions per second.

Compute the time for each term in the summation

(Review: Sample time calculation: 10000 instructions will take: 10000/10° = 10~ seconds )

Values in table are approximations (not exact calculations).

N N’ 3N° 100N 1000

104 Ins;cructions: Instrtéctions: InsGtructions: Ins3tructions:
10 3*10 10 10 ;
Time: 0.1sec Time: 0.3sec Time: 0.001sec Time: 10 sec

109 Instgrgctiolr;s: Instrugtzions: s Instructsgons:11 Ins3tructions:
(107) =10 3*(107) =3*10 100*10 =10 10 ]
Time: 31 yrs Time: 95 yrs Time: 100sec = 1.6 min Time: 10 sec

1018/10°=10°sec = 10°/ (60sec*60min*24hrs*365days) = 10° / 31536000 = about 31yrs

You can also plot these functions, add or remove terms and see which terms determine the shape.



How to find the dominantterm O( ? )
(case with only one variable)

1. Remove multiplication constants

e NOTE that a term with no variable becomes: 1
« Eg.1000 -> 1 b.c. 1000 = 1000*1 = 1000*n° => the constant is 1000, the function is 1 (n°)

2. Look at each term as a separate function

3. Keep the function(s) that grow faster than the others
* more cases later when we look at expressions with 2 or more variables

4. Writeitin O )

Example: 100N + 3N2+ 1000 = O( )

1. remove constants: N+ N2+ 1 (note we still keep 1 for 1000)

2. lookattermsasfcts: N, N2, 1 (eg: f(N)=N, g(N)=N2, h(N)=1)
3. Keep the faster growing one: N?

4. fillin O: O(N?)



Step 3: Keep the faster growing function:
Ordering functions of one variable by their growth

* Motivation:
 for calculation of O()
* to be able to compare 2 algorithms

* Notation: Ig(n) =log,(N)
* Order these functions:

N, N2, IgN, 50, NIgN, N3, N2 log.(N)
* Plot them to check

* Place the one you are sure about and
leave spaces for the others:



Arithmetic with O()

e O(1) +O(1) +... O(1) added T times is T*O(1) = O(T)
* O(1)+0O(1) + O(1) =0(1)
e O(T) + O(T) + O(T) + ... + O(T) added N times => N*O(T) = O(N*T)



Time Complexity for loops



Loop execution and
liter (code executed in one loop iteration)

void ex1 () { // code execution
int A[7] = {5, 1, 9, 3, 5, 9, 5}; k=0;
int N = Z;
int T = 4;

int k;

k =0;

while (k<T) {
printf("%4d, ", A[k]);
k++;

}

printf ("\n");

}



k = 0;
while (k<T) {

printf ("%4d,

k++;

", A[k]);

14



for(j = 0; j<N; j++){
for(v =0; v<T; v++) {
printf(A[v])

}
Analyzed for(v) -> O(T) (prev page)

Analyze for j
liter(j)

15



for(j = 0; j<N; j++){
for(v = 0; v<j; v++) {
printf(A[v])

}

Analyzed for-v -> O(j) (prev page)
Analyze for j

liter(j)

16



for(t=1;t<N; t=t*3){
for(v=C; v>=1; v--) {
printf(A[v])

}

Analyzed for-v -> (prev page)
Analyze for j

liter(j)

17
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